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Abstract

Background: Of the three subclasses of Porcine Endogenous Retrovirus (PERV), PERV-A is able
to infect human cells via one of two receptors, HUPAR| or HuPAR2. Characterizing the structure-
function relationships of the two HUPAR receptors in PERV-A binding and entry is important in
understanding receptor-mediated gammaretroviral entry and contributes to evaluating the risk of
zoonosis in xenotransplantation.

Results: Chimeras of the non-permissive murine PAR and the permissive HuPAR?2, which scanned
the entire molecule, revealed that the first 135 amino acids of HUPAR2 are critical for PERV-A
entry. Within this critical region, eighteen single residue differences exist. Site-directed
mutagenesis used to map single residues confirmed the previously identified L109 as a binding and
infectivity determinant. In addition, we identified seven residues contributing to the efficiency of
PERV-A entry without affecting envelope binding, located in multiple predicted structural motifs
(intracellular, extracellular and transmembrane). We also show that expression of HUPAR2 in a
non-permissive cell line results in an average | I-fold higher infectivity titer for PERV-A compared
to equal expression of HuPARI, although PERV-A envelope binding is similar. Chimeras between
HuPAR-I and -2 revealed that the region spanning amino acids 152-285 is responsible for the
increase of HUPAR2. Fine mapping of this region revealed that the increased receptor function
required the full sequence rather than one or more specific residues.

Conclusion: HuPAR2 has two distinct structural regions. In one region, a single residue
determines binding; however, in both regions, multiple residues influence receptor function for
PERV-A entry.
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Background

Pigs are considered as suitable alternatives for human cell,
tissue and organ sources due to physiological and size
compatibilities and development of pathogen-free herds.
However, one concern with the use of pigs in clinical
xenotransplantation is Porcine Endogenous Retrovirus
(PERV), a potential zoonotic gammaretroviral infection
risk. While productive PERV infection in patients exposed
to porcine cells or tissues after xenotransplantation has
not been documented [1-13], the fact is that there is little
evidence of long-term survival of pig tissues in a human
host. Thus, it is still important to understand the molecu-
lar determinants of human-tropic receptor-mediated
PERV infection as interest in commercialization of pig
donor xenotransplantation continues to evolve with at
least one biotechnology company doing clinical trials
with pig islet transplants.

PERV-A [14-16] and PERV-B [15-17] are human-tropic
viral species while PERV-C [18,19] is not. PERV-A enters
human cells via one of two receptors, HuPAR1 or HuPAR2
[20], while the human receptor for PERV-B remains
unknown. Even so, PERV-A represents the most signifi-
cant risk for human infection since it is present in the pig
genome at levels higher than PERV-B [15] and can recom-
bine with PERV-C to produce higher titer human-tropic
PERV-A/C recombinants [21]. Therefore, understanding
the receptor determinants that contribute to PERV-A and
PERV-A/C entry is a logical step in the science-based risk
assessment of possible PERV transmission and infection
in clinical xenotransplantation.

Gammaretroviral entry requires viral envelope binding to
a multiple transmembrane domain cell-surface receptor
and subsequent viral and plasma membrane fusion. Most
gammaretroviruses use one cell-surface molecule for
entry. E-MLV uses mCAT1 [22]; FeLV-T [23], GALV [24]
use Pitl; A-MLV [25,26] uses Pit2; RD114 uses ASCT2
[27,28]; X-MLV and P-MLV [29] use the X-receptor; FeLV-
C [30,31] uses FLVCR1; and FeLV-A [32] uses THTRI.
Feline Leukemia Virus T (FeLV-T) is the exception in that
it also requires a soluble cofactor, FeLV infectivity X-essory
protein (FeLIX) [23], in addition to its primary cell-surface
receptor, Pitl [33]. Chimeras of permissive and non-per-
missive orthologs have identified receptor regions
required for entry for all the receptors described above but
THTRI1. Extracellular loop(s) are important for the viral
receptor function of mCAT1 [34,35], Pit2 [36,37], X-
receptor [38], ASCT1, ASCT2 [39] and FLVCR1 [30], while
both a transmembrane [40] and an intracellular [41-43]
region are required for Pit1. In addition, BaEV [27,28] and
HERV-W [44] can use either ASCT1 or ASCT2, while 10A1
MLV [42] can use either Pit1 or Pit2. However, functional
mapping between the individual receptors in such homol-
ogous pairs has not been done.
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PERV-A can use either HuPAR1 or HuPAR2 to enter
human cells or non-permissive cell lines expressing the
receptors (e.g. SIRC and NIH3T3) [20]. Structurally, the
445 amino acid HuPAR1 protein and 448 amino acid
HuPAR?2 protein share 86.5% sequence identity. Current
experimental evidence [45] and topology prediction algo-
rithms [46,47] support an eleven transmembrane model
with an intracellular N-terminus and an extracellular C-
terminus. In contrast, the N- and C-termini of all the other
known gammaretroviral receptors are either both intracel-
lular or both extracellular. While most gammaretroviral
receptors are small metabolite transporters (reviewed in
[48] and [49]), HUPAR1 was recently identified as a G-
protein coupled receptor for gamma-hydroxybutyrate
(GHB) in the brain [50], although lack of the canonical 7
transmembrane domains characteristic of G-protein-cou-
pled receptors, inadequate controls in the reported data,
and absence of independent verification, leaves the major
conclusion open to further interpretation. The endog-
enous function of HuPAR?2 is unknown and the function
of HuPAR1 in other tissues has not been tested.

The structure-function determinants of PERV-A entry have
not been extensively studied for HuPAR1 and HuPAR2.
Presently, leucine 109 (L109) in the second predicted
extracellular loop, is the only residue that has been shown
to be essential for HuPAR2 function by mediating PERV-
A binding. In the non-functional HuPAR orthologs of Mus
musculus and Mus dunni, this residue is a proline and
explains the resistance of the murine species [45]. Addi-
tionally, the initial receptor characterizations indicated
that HuPAR2 was approximately ten-fold more functional
than HuPAR1 for PERV-A infection [20]. The structural
basis for this functional difference is unknown.

In this manuscript we confirm the role of L109 in viral
envelope binding and identify seven new residues in the
N-terminal 135 amino acids that each influence HuPAR2
function significantly for PERV-A entry but without affect-
ing PERV envelope binding.

Using chimeras constructed between HuPAR1 and
HuPAR2, we demonstrate that a second region comprised
of the third extracellular loop, the sixth transmembrane
domain, the third intracellular loop and the seventh trans-
membrane domain (a.a. 152-285) of HuPAR?2 is respon-
sible for the ten-fold functional superiority of HuPAR?2.
We have identified two regions in this gamma retroviral
receptor with distinct structure-function relationships that
either determine or enhance HuPAR?2 function in human-
tropic PERV infection.

Methods

Cell lines: maintenance, transfection and selection

293 T cells were maintained in DMEM (Gibco) supple-
mented with 10% fetal bovine serum (HyClone), 5% 1 M
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Hepes (Gibco), 5% 100 mM sodium pyruvate (Gibco)
and 5% 100x penicillin-streptomycin-glutamine (Gibco).
SIRC cells (rabbit cornea, ATCC CCL-60) were main-
tained in MEM + L-glutamine (Gibco) supplemented with
10% bovine serum (HyClone, Logan, UT), 5% 1 M Hepes
(Gibco), and 5% 100x penicillin-streptomycin. SIRC cells
were transfected with 3 pg plasmid encoding the PAR
c¢DNA by nucleofection (Amaxa). Stable cell lines were
selected with 400 ng/mL Zeocin (Invitrogen). After 3-4
weeks, cell lines were sorted for eGFP selection. Sorted cell
lines were maintained without antibiotics and remained
stable.

Constructs

Starting with a molecular clone, PERV-A14/220 (GenBank
AY570980) [51] (kind gift from Dr. Y. Takeuchi, Univer-
sity College London), we created a PERV-A 14/220* infec-
tious clone by site-directed mutagenesis to introduce an
F162S mutation in the Gag protein's second L domain.
This clone has a 3.5-fold higher infectious titer on 293 T
cells (25).

To generate GFP-tagged PAR cDNAs, we first PCR-ampli-
fied the enhanced GFP (eGFP) cDNA using primers that
introduce a 5' Kpnl and a 3'Apal site, digested with the
respective enzymes and cloned into pcDNA3.1(+)/Zeo
(Invitrogen) to generate pcDNA3.1(+)/Zeo eGFP.
HuPAR1 (GenBank NP 078807) and HuPAR2 (GenBank
QINWF4) cDNAs were amplified using primers that
introduce a 5' Hindlll site and 3'Kpnl site. The HuPAR2
template contained two amino acid polymorphisms,
T261 and M296. Hindlll and Kpnl were used to clone the
cDNAs into pcDNA3.1(+)/Zeo eGFP immediately
upstream of the eGFP cDNA. These constructs are referred
to as HuPAR1eGFP and HuPAR2eGFP. The c-myc tag was
inserted into the pcDNA3.1(+)/Zeo HuPAR2 backbone by
site-directed mutagenesis with the following primer pair:
5'-CCAGCITTGGGCTGAATGGAACAAAAACTTATITCT-
GAAGAA GATCTGATGGCAGCACCCACG 3'and 5'-CGT-
GGGTGCTGCCATCAGATCITCT ~ TCAGAAATAAGTTT
TTGITCCATTCAGCCCAAAGCTGG-3'. MuPAR regions
were introduced into the c-myc HuPAR2 or HuPAR2eGFP
backbone by site-directed mutagenesis based on a meg-
aprimer strategy [52]. Primer sequences used to generate
the megaprimers are shown in Additional file 1, Table S1.
Site-directed mutagenesis was used to introduce point
mutations into the HuPAR2eGFP backbone and primer
sequences are shown in Additional file 1, Table S2.

To create chimeric cDNAs, HuPAR1(HuPAR2 1-
169)eGFP and HuPAR1(HuPAR2 170-448), the unique
restriction site, Xhol, common to both HuPAR1 and
HuPAR2 cDNA (n.t. 507-512) was used. HuPAR1eGFP
and HuPAR2eGFP were digested with HindIll/Xhol and
Xhol/Kpnl. Fragments were excised from a 2% agarose gel
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and purified with the QIAquick Gel Extraction Kit (Qia-
gen). Vector and insert were ligated using the Rapid DNA
Ligation Kit (Roche) to yield HuPAR1(HuPAR2 1-
169)eGFP and HuPAR1(HuPAR2 170-448). HuPAR2
regions were introduced into the HuPAR1eGFP backbone
by site-directed mutagenesis that required prior amplifica-
tion of the HuUPAR2 sequence to create a megaprimer with
5' and 3' homology to HuPAR1 nucleotide sequence
based on [52]. Primer sequences used to create the meg-
aprimers as well as traditional site-directed mutagenesis
primers to create HuPAR1(HuPAR2 ECL4)eGFP and the
three amino acid insertion, KEE a.a. 245-247, are shown
in Additional file 1, Table S3. All constructs were verified
by sequencing.

Assay for receptor function

Two hundred thousand cells, either naive SIRC or SIRC
cells stably expressing PAR cDNA, were plated in a 6-well
plate. Twenty-four hours later, cells were exposed for four
hours at 37°C to 1.0 mL supernatant harvested from 293
T cells chronically infected with PERV-A 14/220* supple-
mented with 8 pg/mL polybrene. PERV-containing super-
natant was then removed and cells were washed three
times with 2.0 mL PBS and replaced with fresh media. Sev-
enty-two hours later, cells were detached and genomic
DNA was purified with the DNeasy Kit (Qiagen). 250 ng
genomic DNA was used for PERV pol detection by TagMan
quantitative PCR based on [53] with the following modi-
fications: 20 pl total reaction volume and the TagMan Fas-
tUniversal PCR Master Mix (2x) (Applied Biosystems).
Reactions were run on the 7900 HT Real Time PCR System
(Applied Biosystems). SIRC background PERV pol copy
numbers were subtracted from each sample. All cell lines
in a given experiment were normalized to the average
wild-type receptor function as determined by PERV pol
copy number.

PERV SU-IgG assay for receptor binding

PERV SU-IgG fusion proteins were expressed and purified
and binding was performed according to methods previ-
ously described (24). Briefly, 1-3 x 10°¢ target cells were
detached using 0.5 M EDTA, washed with PBS and fixed
in 3% paraformaldehyde for 15 minutes. Cells were
washed with PBS and 5% BSA sequentially and resus-
pended in 0.2-0.4 ml of 5% BSA containing a total of 500
ng of PERV SU-IgG per 10¢ cells and incubated for 1 hour
on ice. The cells were washed twice with cold PBS contain-
ing 2% BSA and then incubated for 30 minutes on ice
with anti-rabbit IgG antibody conjugated to Phycoeryth-
rin (1:50 dilution) (Jackson ImmunoResearch). The cells
were then washed 4 times with cold PBS containing 2%
BSA. To determine PERV SU-rlgG binding, 10,000-
15,000 live cell events were measured for Mean Channel
Fluorescence on a FACScan (BD PharMingen) and ana-
lyzed using FlowJo (Tree Star Inc.). In these assays the PE
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signal generated by the full length PERV-A SU-rlgG was
the metric for envelope binding and the eGFP signal was
used to normalize for receptor expression. We then
expressed the results as positive when the increase in the
normalized PE channel signal was greater than or equal to
twice the receptor-negative SIRC controls.

Determination of HUuPARI and HuPAR2 mRNA expression
Multiple human tissues were tested for relative HuPAR1
and HuPAR2 mRNA expression. Human colon, testes,
lung, ovary and brain total RNA was purchased (Strata-
gene). Human peripheral blood lymphocyte (PBL), heart,
liver and kidney were obtained as anonymous samples of
purified RNA from an on-going, Scripps IRB-approved
clinical study. Total RNA from these tissues was purified
by Trizol (Invitrogen) extraction. Bone marrow was
obtained from Dr. Edward Ball (University of California,
San Diego) and was extracted using the RNeasy kit (Qia-
gen). 1 pug total RNA was used for cDNA amplification
with the iScript cDNA Synthesis Kit (BioRad). The equiv-
alent of 25 ng input RNA was used for TagMan qPCR
determination of HuPAR1 and HuPAR2 copy number.
Samples were tested in triplicate. HuPAR1 primers and
probe used were 5'-GCATGCTGTGCCTCGAATGTCACT-
3" (forward) and 5'-GACCCAGGAAGAATGACCGTAAG-
3' (reverse); HuPAR1 probe, 5'-FAM TTCITGAGCCACCT-
GCCACCTCGC BHQ-3'. Underlined nucleotides repre-
sent differences between HuPAR1 and HuPAR2 in this
region. HuUPAR2 primers and probe used were 5'-GCCT-
GTTGTACCTCTAATGTCACT-3' (forward) and 5'-GAC-
CCAGGAAGAAAGACCGTAAG-3' (reverse); HuPAR2
probe, 5'-FAM TTCCTGAGCCACCTGCCACCTCCT BHQ-
3'. Final reaction concentrations were 200 nM probe and
300 nM primers in 20 pl total reaction volume with the
TagMan FastUniversal PCR Master Mix (2x) (Applied Bio-
systems). A ten-fold dilution series (10!-10°) of
HuPAR1eGFP and HuPAR2eGFP plasmid DNA was used
to create two standard curves. Comparisons of HuPAR1
and HuPAR2 copy numbers in different tissues are
expressed relative to these standard curves. The average
fold difference is expressed as an average of three patient
samples (PBL, heart, liver, kidney and bone marrow) or
the average of triplicates of single patient samples availa-
ble commercially (colon, testes, lung, ovary and brain).
Specificity of the primer/probe sets were as follows: a)
HuPAR?2 primer/probe set yielded <10 copies in a sample
of 107 HuPAR1 copies and, b) the HuPAR1 primer/probe
set yielded <10 copies in a sample of 104 HuPAR2 copies.
Receptor-specific cDNA copy numbers detected in the all
tissue compartments tested were below these thresholds.

Results

HuPAR2 exhibits greater function for PERV-A 14/220*
infection than HuPARI

Full-length HuPAR1 and HuPAR2 with C-terminal eGFP
tags were stably expressed in the non-permissive cell line,
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SIRC. C-terminal eGFP tags were used to sort homoge-
nous cell populations with similar receptor expression
levels. SIRC cells expressing either HuPAR1eGFP or
HuPAR2eGFP were infected with supernatants from a sta-
ble producer line, PERV-A 14/220*. Seventy-two hours
after infection, genomic DNA from the infected
HuPAR1eGFP and HuPAR2eGFP SIRC cell lines was iso-
lated. PERV pol copy numbers present in 250 ng of
genomic DNA were determined by qPCR. HuPAR2eGFP
PERV pol copy numbers were normalized by
HuPAR1eGFP PERV pol copy numbers in each individual
experiment (n = 3 with 3 replicates in each) and are
expressed as percent of HuPAR1 function for PERV-A 14/
220* infection (Figure 1). HuPAR2eGFP is 11-fold more
functional for PERV-A 14/220* infection than
HuPAR1eGFP (p < 0.001). However, we are not trying to
over-emphasize the exact 11-fold number for this func-
tional difference but rather that there is a consistent and
significant difference in the functionality of HuPAR2
(from 5-fold to 15-fold in individual experiments) in
every experiment performed.

Increased HuPAR2 function is not due to increased PERV-
A envelope binding

To determine whether the average 11-fold increase in
HuPAR2 function relative to HuPAR1, was due to
increased binding of the PERV-A envelope protein, we
measured the PERV SU rabbit-IgG (rIgG) binding. We
recently reported that the regions of PERV-A envelope
required for HuPAR recognition are Varible Region A (a.a.
95-125), Variable Region B (a.a. 163-198) and the Pro-
line Rich Region (a.a. 254-298) [54]. Sorted SIRC cell
lines expressing either HuPAR1eGFP or HuPAR2eGEFP at
equivalent levels were probed with various concentrations
of various constructs of PERV SU-rIgG, followed by an
anti-rabbit IgG PE-conjugated secondary antibody. Full-
length SU, PERV-A 460, and truncated but functional SU,
PERV-A 360, were used (Figure 2A). FACS was used to
determine the Mean Fluorescence Intensity (MFI) of SU-
IgG binding (Figure 2B). HuPAR1eGFP and HuPAR2eGFP
display similar MFIs for both full-length and minimally
required PERV-A SU-rIgG fusions. The PERV-A binding
levels observed for HuPAR1eGFP and HuPAR2eGFP are
similar to 293 T, which serves as a positive control for
PERV-A SU-rIgG binding. These studies were always done
at previously determined and optimal binding concentra-
tions of ligand for this assay (24). PERV-A SU binding to
SIRC/HuPAR2 and SIRC/HuPAR2eGFP was equivalent
indicating that the receptor's C-terminal eGFP tag does
not interfere with envelope binding. These results demon-
strate that the increased viral entry function of HuPAR2
for PERV-A 14/220* infection is not due to an increase in
virus binding.
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HuPARI and HuPAR?2 function for PERV-A 14/220%
infection. HuUPAR| and HuPAR2 C-terminally tagged eGFP
constructs were expressed in non-permissive SIRC cells. Sta-
ble lines were sorted by eGFP expression to yield cell popu-
lations with similar receptor expression levels. PERV pol
copy number in 250 ng genomic DNA of infected SIRC/
receptor-expressing cell lines was determined to assess
receptor function. HuPAR2 PERV pol copy number was nor-
malized by HuPARI PERYV pol copy number in each experi-
ment and expressed as percent of HUPARI function. The
average function determined by three individual infection
experiments with three replicates each is shown with stand-
ard errors. HUPAR2 is | |-fold more functional than HuPARI
(p < 0.001).

N-terminal 135 amino acids of HuPAR2 determine the
functionality of the receptor

Since HuPAR2 mediates PERV-A entry more efficiently
than HuPAR1, the molecular determinants required for
infection were mapped using chimeras of the permissive
HuPAR2 and nonpermissive MuPAR. An N-terminal c-
myc or a C-terminal eGFP epitope tag was used to monitor
chimera expression levels. Regions of HuPAR2 were
swapped with the homologous regions in MuPAR by
mega-primer PCR mutagenesis. Six HuPAR2/MuPAR chi-
meras were constructed to scan the entire 448 amino acids
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Figure 2

In vitro PERYV SU-IgG binding by HUPARI and
HuPAR2. (A) shows the SU constructs of either minimally-
required (360 a.a.) or full-length (440 a.a.) PERV-A envelopes.
All SU-IgG constructs contain Variable Region A (VRA), Var-
iable Region B (VRB) and the Proline Rich Region (PRR).
Binding of the soluble SU-IgG constructed is detected by a
PE-conjugated secondary antibody that recognizes Rabbit
IgG. (B) shows the Mean Fluorescence Intensity (MFI)
detected by FACS and is representative of duplicate experi-
ments. The 293 T cell line (gray bars) is a positive control for
PERV-A binding. SIRC HuPAR2 (dotted bars) is a control for
interference of the eGFP epitope tag in PERV-A binding. Both
HuPAR1eGFP (black bars) and HuPAR2eGFP (white bars)
bind PERV-A 360 and PERV-A 440 similar to the levels of 293
T and SIRC HuPAR?2. Therefore, the difference between
HuPAR| and HuPAR?2 in PERV-A 14/220* infection is not
due to any difference in envelope binding.

of HuPAR? (Figure 3). Tagged HuPAR2/MuPAR chimeras
were expressed in SIRC cells and then assessed for PERV-A
14/220* infection levels by qPCR of PERV pol from
genomic DNA. The first two HuPAR2/MuPAR chimeras,
1-63 and 54-135, were non-functional for PERV-A 14/
220* infection. Thus, the N-terminal 135 amino acids are
critical for PERV-A infection.

Six structural regions in HUPAR2 impact PERV-A infection
but only one alters PERV-A binding

Within the critical N-terminal 135 amino acids, there are
eighteen single amino acid differences between HuPAR2
and MuPAR. Figure 4A shows these amino acid differ-
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MuPAR and HuPAR2 chimeras reveal regions
required for PERV-A 14/220%* infection. MuPAR is not
permissive for PERV-A binding and entry, while HuPAR2 is
permissive for both. Chimeras were constructed by swap-
ping regions of HUPAR?2 (solid black) with the corresponding
residues of MuPAR (hatched black). Constructs were tagged
with either an N-terminal c-myc tag (open circle) or a C-ter-
minal eGFP tag (gray oval), as a way to monitor expression.
Chimeras were expressed in non-permissive SIRC cells and
tested for PERV-A infection. Levels of infection were deter-
mined by PERV pol qPCR of 250 ng genomic DNA and com-
pared to wild-type HUPAR2 and MuPAR. (-/+) indicates the
status of PERV-A infection. The average PERV pol copy num-
bers and standard deviations (n = 3) are shown for each.
These chimeras revealed that the N-terminal 135 amino
acids are critical for PERV-A 14/220* infection.

ences and their predicted locations in HuPAR2. Each resi-
due was tested individually or in clusters of three (i.e.
mini-regions). Seventy-two hours after infection, genomic
DNA was purified and PERV pol copy number in 250 ng
was determined by qPCR. Results were normalized to that
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of wild-type HuPAR2eGFP and expressed as percent func-
tion for PERV-A 14/220* infection (Figure 4B). The same
cell lines were used to assess PERV-A SU binding.

Results of the infection experiments revealed that seven
mutations significantly decreased (p < 0.05) HuPAR2
function, expressed here as a percent of wild-type func-
tion: T5P (55%), D40E (36%), P73R (39%), Q82R
(58%), QLH(108-110)KPY (0%), L119F (58%) and
T127A (46%). Proper membrane orientation of these
receptor mutants was verified by confirming that the C-
terminal eGFP tag was extracellular (data not shown).
With the single exception of QLH(108-110)KPY, the
functional reductions were not due to a lack of PERV-A SU
rIgG binding. Figure 4C shows the FACS analysis plot for
the full length PERV-A SU-IgG binding assay of the
QLH(108-110)KPY mutation (dotted line), the SIRC cell
control (solid grey) and the binding wild-type receptor
(solid black line). It is clear that the QLH(108-110)KPY
mutation completely abolished PERV-A SU binding. The
lack of both binding and infection of the QLH(108-110)
mutation agrees with the previous report identifying 1.109
in the second extracellular loop as critical for mediating
PERV-A entry [45]. Here we identify six additional resi-
dues that are also important in HuPAR2 function as a viral
receptor.

Fine mapping QLH(108-110 for PERV-A binding and
infection

Figure 5A shows the individual effects of Q108K, L109P
and H110Y on HuPAR2 PERV-A binding and infection.
Q108K does not affect PERV-A SU binding or HuPAR2
function for PERV-A infection. As previously reported
[45], L109P completely abolished HuPAR2 function for
PERV-A infection (p < 0.01) and abrogates envelope bind-
ing as shown in Figure 5B. In contrast, H110Y, which was
not individually tested previously, significantly decreased
HuPAR?2 function for PERV-A infection by 77% relative to
wild-type receptor. However, the decrease in infection for
H110Y was not due to a lack of envelope binding (Figure
5B). Therefore, H110Y represents a functional determi-
nant impacting a post-binding step.

We determined infectious titers using a beta-galactosidase
pseudotyped PERV-A to confirm our qPCR assay with a
second independent method. Titers are expressed as Blue
Forming Units (BFU) per milliliter with the Standard
Error (SE) averaged from two independent experiments
performed in duplicate. The data in Table 1 confirms that
QLH(108-110)KPY and L109P results in a complete loss
of receptor function for infection and H110Y results in a
55% decrease in infection compared to wild-type (p <
0.0003).
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Figure 4

Single residue and mini-region mapping of the eighteen amino acid differences in the critical N-terminal
region of HUPAR2 for binding and infection. (A) shows the location of the residue differences in HUPAR2 based on the
current topology model. Mutations were introduced in the HuPAR2eGFP fusion protein and were expressed in non-permis-
sive SIRC cells. Stably selected and eGFP sorted SIRC/HuPAR?2 populations were assayed for PERV-A binding and infection by
a FACS-based PERV-A SU IgG binding assay and a PERV pol qPCR-based infection assay. PERV pol copy numbers were normal-
ized to wild-type HUPAR2 and expressed as percent (%) of wild-type (WT) HuPAR?2 function. (B) shows the results from both
the binding and infection assays (average of three replicates). Eight mutations significantly decreased HUPAR?2 function for
PERV-A infection (p = 0.05). Only one mutation, QLH(108—110)KPY, completely prevented PERV-A binding. (C) shows the
FACS histogram from the binding assay. The PE fluorescence shift seen for wild-type HuPAR?2 (solid black line) is not seen for
QLH(108-110)KPY (dotted black line), which is identical to the SIRC cells not expressing a receptor (solid gray graph).
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Contribution of QLH(108-110) to HuPAR2 function
for PERV-A 14/220%* infection at the single residue
level. The individual requirement of each residue of the
QLH(108-110) region to PERV-A binding and infection was
determined. (A) shows both the percent (%) of wild-type
(WT) HuPAR?2 function and full-length PERV-A SU binding
for QLH(108-110)KPY, Q108K, LIO9P and HI 10Y. The
L109P mutant does not bind PERV-A SU. HI 10Y results in a
significant decrease (p < 0.01) of HUPAR?2 function for infec-
tion, but does not affect PERV-A SU binding. (B) shows the
FACS histogram from the binding assay for both LI09P and
H110Y. The negative controls (naive SIRC cells; gray shading)
and L109P (dotted black line) shown in the first plot, indicate
no binding of PERV-A SU IgG compared to HuPAR2eGFP
(solid black line). In the second plot, HI 10Y (dotted black
line) and the positive control, HUPAR2eGFP (solid black line)
show equivalent SU IgG binding. Therefore, L109 is the only
residue within the QLH mini-region that determines
HuPAR?2 binding.

Mapping the region of HUuPAR2 associated with increased
PERV-A entry function compared to HuPARI

While we showed above that there is no difference in
envelope binding between HuPAR1 and HuPAR2, the
expression of HuUPAR2 in the non-permissive SIRC cells

http://www.retrovirology.com/content/6/1/3

results in an average 11-fold increase in PERV infection
(Figure 1). We constructed chimeras between HuPAR1
and HuPAR?2 to determine the regions responsible for this
difference. The first set of chimeras used a unique restric-
tion site common to HuPAR1 and HuPAR2, Xhol, to cre-
ate two chimeras roughly splitting the receptor in half as
shown in Figure 6.

SIRC cell lines stably expressing either HuPAR1(HuPAR2
1-169)eGFP or HuPAR1(HuPAR2 170-448)eGFP were
tested for infection. Figure 6 shows the results relative to
HuPAR1  function set arbitrarily as  100%.
HuPAR1(HuPAR2 1-169)eGFP exhibited a 64% decrease
in function (p < 0.01) compared to HuPAR1eGFP demon-
strating that the N-terminal region of HuPAR2, including
all the determinants mapped above, is not responsible for
the increased function observed. HuPAR1(HuPAR2 170-
448)eGFP exhibited function equal to HuPAR2eGFP and
significantly higher function than HuPAR1eGFP (p <
0.01). Therefore, the C-terminal half of the HuPAR2 mol-
ecule (a.a. 170-448) is responsible for the increased
HuPAR2 function.

Of the 58 residues that distinguish HuPAR-1 and -2, 43
(74%) are found in C-terminal 338 residues (Figure 7A).
We mapped this region with a series of HuPAR1/
HuPAR2eGFP chimeras tested for infection (Figure 7B).
HuPAR1(HuPAR2 TM9-10)eGFP, HuPARI(HuPAR2
ECL4)eGFP and HuPAR1(HuPAR2 ECD1)eGFP were
functionally equivalent to HuPAR1eGFP; therefore, the
HuPAR?2 regions in these chimeric receptors are not suffi-
cient for the increased HuPAR2 function. In contrast,
HuPAR1(HuPAR2 ECL3)eGFP and HuPAR1(HuPAR2
TM6-7)eGFP demonstrated statistically significant 2.6-
fold (p < 0.03) and 6.2-fold increases (p < 0.001), respec-
tively. However, neither of the HuPAR2 region chimeras,
alone, was able to fully reconstitute HuPAR2 PERV-A
infection levels in the HuPAR1 backbone.

Given the increases in HuPAR1 function by replacing
either the third extracellular loop (ECL3) or the region
containing transmembrane domain 6 (TM6), intracellular
loop 3 (ICL3) and transmembrane domain 7 (TM7), we
determined if combining these regions would produce
wild-type levels of HuUPAR2 function. Figure 7C demon-
strates that expression of the HuPAR2 ECL3-TM6-ICL3-
TM7 in the HuPAR1 backbone does indeed function as
well as full length HuPAR2.

Comparison of amino acid residues of HuPAR-1 and -2
reveals that the region encompassing, ICL3-TM7 (Figure
7A) contains the most variation (24 differences plus a 3
amino acid insertion). Thus, we divided ICL3 and TM7
into Region I and Region II shown in Figure 8A and cre-
ated chimeras using the HuPAR1 backbone containing the
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Table I: PERV-A lacZ pseudotype infectious titers of HuPAR2 constructs QLH(108-110)KPY, LI0O9P and HI10Y.

HuPAR2eGFP construct Average BFU2/mL * SEP  Percent (%)

HuPAR2 function p value compared to wild-type HuPAR2

Wild-type 2.86 x 0%+ 1.89 x |03
QLH(108-110)KPY 0+0
L109P 0+0
HI10Y 128 x 104+ 1.58 x |03

100

0 p < 0.0003
0 p < 0.0003
45 p < 0.0003

2= Blue Forming Units

b= Standard Error

ECL3 of HuPAR2. We also created a chimera with the
three amino acid insertion, KEE. Figure 8B shows that sub-
stitution of Region I, Region II or the KEE insertion into
the HuPAR1(HuPAR2ECL3) chimera were not sufficient

HuPAR1eGFP
HuPAR1(HuPAR?2 é@ 4
1-169)eGFP 2w
£ e, . D
HuPAR1(HuPAR2 TYErTY
170- 448)eGFP M} E";"Q @ @
p ,,/;
SN e '/""; £ s /'/’O
HuPAR2¢GFP AAMANGAGA G
B T § B B
o/
Figure 6

to restore PERV-A receptor function to the level of
HuPAR2. Thus, the full sequence of HuUPAR? in this por-
tion of the receptor's structure is required for the increased
function.

*=p<0.01

100 200 300 400 500 600 700

Percent (%) HuPARI1 function for
PERV-A 14/220%* infection

0

HuPARI and HuPAR2 chimeras reveal that the C-terminal two-thirds of HuPAR2 is responsible for the
increased functionality compared to HuPARI. eGFP-tagged chimeras (gray oval) were constructed between HuPAR|
(solid black) and HUPAR2 (dashed black). PERV-A 14/220* infection levels were determined for SIRC cells stably expressing
each of the chimeric constructs. For purposes of comparison, we arbitrarily set the function of HuPARIeGFP to 100%. The
results indicate that HUPAR2 residues 170—448 contain the sequences responsible for the increased function for PERV-A infec-

tion.
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Figure 7

Finer mapping of HUPARZ2 residues 170-448 reveal that extracellular loop 3 (ECL3), and the region spanning
transmembrane domain 6 and 7 (TM6-7), contribute to the increased function. (A) shows the number of single
amino acid differences for each structural region in the current topology model. (B) shows the eGFP-tagged chimeras (gray
oval) constructed between HuPARI (solid) and HuPAR2 (dashed) used for mapping [transmembrane (TM), extracellular loop
(ECL), intracellular loop (ICL), extracellular domain (ECD)]. Statistically significant increases were seen for ECL3 (p < 0.03) and
TMé6-7 (p < 0.001), implicating these regions as contributing to the increased functional efficiency of HUPAR2. (C) shows a sta-
tistically significant (p < 0.002) increase for infection, essentially to HUPAR2 wild-type levels, for the ECL3-TM7-containing chi-
mera.
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HuPARI mRNA expression is higher than HuPAR2 in
multiple tissue compartments

Given two functional viral receptors, the infectious risk is
dependent on the relative function of each receptor as
well as their relative expression in target tissues. HuPAR1
and HuPAR2 expression in various human tissues was
previously determined by Northern blot analysis using a
pan-HuPAR probe [20]. We designed HuPAR1- and
HuPAR2-specific primer and probe sets for RT-qPCR. The
relative fold difference in mRNA expression for HuPAR1
and HuPAR? transcripts in the ten tissue compartments
tested is shown in Table 2. With the exception of testes,
HuPAR1 mRNA expression is 2 to 50-fold higher than
HuPAR? in all tissues tested. Therefore, while expression
of HuPAR?2 in the non-permissive SIRC cell line demon-
strates an average 11-fold advantage over HuPAR1 in
mediating infection, the endogenous level of expression
of HuPAR1 is significantly higher than this in many
human tissues.

Discussion

PERV-A, like other gammaretroviruses, exploits endog-
enous multi-membrane spanning cell-surface molecules
to infect cells. Yet, PERV-A is one of a few gammaretrovi-
ruses that can enter human cells via either one of two
receptors, HuPAR1 or HuPAR2. Moreover, PERV is an
infectious risk to humans that would undergo cell, tissue
or organ xenotransplantation from a porcine donor espe-
cially under intense immunosuppression. Therefore, the
structure-function relationships of HuPAR1 and HuPAR2
are not only important to further a general understanding
of gammaretroviral cell entry, but also, central to advanc-
ing a science-based risk-assessment for a productive PERV
infection in human patients after xenotransplantation.

We identified two functionally distinct regions for PERV-
A infection (Figure 9). The first region, identified by chi-
meras made with the non-permissive MuPAR ortholog,
lies within the first N-terminal 135 amino acids. The N-
terminal region contains both an absolute determinant of
viral envelope binding (L109) as well as six additional res-
idues that enhance the efficiency of PERV-A entry without
any impact on envelope binding. The second region, iden-
tified by chimeras between the two permissive human
PARs, is located in the middle of HuPAR2 (a.a. 152-285).
This second region is responsible for the 11-fold increased
function as compared to HuPAR1 and has no effect on
PERV envelope binding.

The first region of HuPAR?2 contains the envelope-binding
determinant, L109, in the second extracellular loop. To
date, the envelope binding regions of gammaretroviral
receptors map to extracellular loops. For example, the first
extracellular loop of Pit2 is important for binding of
amphotropic MLV (A-MLV) [55]. Residues Y242 and

http://www.retrovirology.com/content/6/1/3

E244 in the third extracellular loop of mCAT-1, the recep-
tor for ecotropic MLV, are required for both binding and
infection [56].

In contrast to the extracellular location of the envelope
binding site, we found that multiple residues predicted to
be within extracellular loops, intracellular loops or trans-
membrane domains influence HuPAR2 function for
PERV-A infection. Within the N-terminal 135 amino
acids, we identified seven single residues (T5, D40, P73,
Q82, H110, L119 and T127) that determine the func-
tional efficiency of HuPAR2 independent of affecting viral
envelope binding. These residues are located in multiple
structural regions (intracellular domain 1, extracellular
loop 1, intracellular loop 1, and transmembrane regions 3
and 4). Based on the current literature, HuPAR?2 is unique
in having three types of structural features modulating
receptor function. For example, GALV entry via Pitl
requires only an intracellular loop and a transmembrane
region, denoted Regions A [41-43,57] and B [40] and
within Region A, a single residue, D550, is involved
[41,57-61]. Other gammaretroviral receptors, such as
Pit2, FLVCR1 and X-receptor, require only extracellular
loops for their function for A-MLV [55,62-64], FeLV-C
[65] and X-MLV/P-MLV [38,66], respectively. The struc-
tural basis upon which residues determining the efficiency
of HuPAR2 are found in intracellular, extracellular and
transmembrane features is not readily apparent, as there
are presently no crystallographic structures or empiric
confirmation of predicted topological features for any of
these receptors.

We show that HuPAR?2 is on average 11-fold more func-
tional than HuPAR1 for infection and that is not
explained by any difference in viral envelope binding. The
11-fold functional superiority of HuPAR2 reflects the 5- to
15-fold range observed across the multiple experiments
presented in this manuscript. This range in observed fold-
differences between HuPAR2 and HuPAR1 is not due to
differences in expression, as the initial expression levels
selected for by eGFP did not change, but rather reflects the
inherent biological variability in these viral infection test-
ing strategies. The receptor determinants responsible for
the significant increase in HuPAR2 function mapped to
the second region that spans the third extracellular loop,
sixth transmembrane domain, the third intracellular loop
and the seventh transmembrane domain. Interestingly,
the greatest degree of diversity between HuPAR1 and
HuPAR?2 sequence exists in this region. It was also clear
that structural elements of the entire region, and not just
a few discrete residues, are required for the enhanced
PERV-A receptor function of HuPAR2.

While evidence for PERV-A infection in humans is lacking

[1-5,7-12,67], long-term functional survival of a porcine
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Figure 8

Mapping the contribution of the third intracellular loop of HUPAR2 for PERV-A infection. The third intracellular
loop (ICL3) contains eighteen single amino acid differences, between HUPAR| and HuPAR2, and a three amino acid insertion in
HuPAR?2. In order to determine what sequences in HUPAR2 ICL3 are required in addition to the third extracellular loop

(ECL3) of HuPAR?2, two HuPAR2 regions, | and Il,

were swapped. (A) shows the location of Regions | and Il and the respective

sequence differences (in bold) between HuPAR| and HuPAR?2. (B) shows chimera function for PERV-A [4/220* infection.
Region Il in the HUPAR | (HuPAR2 ECL3)eGFP backbone results in a statistically significant (p < 0.03) increase, though neither

Region confers full HUPAR?2 function.
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Table 2: Relative HuPARI and HUPAR2 mRNA expression levels in human tissues.

Tissue

Relative fold difference (HuPARI>HuPAR2)

Testes

Heart

Bone Marrow

Peripheral Blood Lymphocytes
Liver

Colon

Brain

Kidney

Ovary

Lung

o U1t D —

18
40
50

cell or tissue xenotransplant has also not been achieved.
Thus, it is still important to identify and characterize fac-
tors, such as receptor function and tissue expression, that
could contribute to the infection risk in xenotransplanta-
tion while advances in the transplant science and immu-
nosuppression are pursued to make clinical success
possible. HuPAR1 and HuPAR?2 expression in human tis-
sues was originally determined by a pan-HuPAR Northern
blot [20]. In this study, we determined relative expression
levels for HuPAR1 and HuPAR2 using specific primer-
probe sets. HuPAR1 mRNA was consistently expressed at
2 to 50-fold higher levels than HuPAR2 in the majority of

Figure 9

Location of HUPAR2 residues and regions that deter-
mine HuPAR2 function identified to date. HUPAR2 (no
shading) has two regions involved in its function as a PERV-A
receptor. The first N-terminal 135 amino acids contain the
absolute requirements for viral receptor function. The role
of L109 (open white diamond) as a determinant of PERV-A
SU binding was confirmed. Residues T5, D40, P73, Q82,
HI110, LI19 and T127 (black circles), identified by MuPAR/
HuPAR2 chimeras, contribute to the efficiency of HuPAR2
function and are found in multiple structural elements. The
second region (a.a. 152-285), identified by HUPAR|/HuPAR2
chimeras, determines the enhanced efficiency of HuPAR2
function for PERV-A infection. This region spans the third
extracellular loop, sixth transmembrane domain, third intrac-
ellular loop and seventh transmembrane domain.

the human tissues tested. Note that we are assuming at
least a rough positive correlation between mRNA expres-
sion and cell-surface protein expression. We cannot easily
test this assumption in human tissues as an antibody
against HuPAR1 or HuPAR2 is not available. But we
believe that the 11-fold higher activity of HuPAR2 for
PERYV infection is fairly balanced by a much higher tissue
expression of HuPAR1 such that in clinical risk terms,
both receptors represent significant portals for PERV
entry.

Conclusion

Our data show that multiple regions of HuPAR are
required for optimal receptor function. We propose that
the initial events of viral envelope binding are influenced
by the L109 residue and several nearby residues, while
subsequent events of viral fusion and entry impacting on
receptor functionality are determined by additional resi-
dues within two separate regions of the receptor, the N-
terminal 135 amino acids and the more complex struc-
tural features of a second region comprising ECL3 through
TM?7. Therefore, these results identify at least two distinct
regions of receptor sequences necessary for the full process
of viral binding and fusion that are all candidates for bet-
ter understanding the structure/function determinants of
this class of retroviral receptors and potentially develop-
ing novel anti-viral therapies.
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