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Abstract

Nearly all mechanochemical models of the cross-bridge treat myosin as a simple linear spring arranged parallel to the
contractile filaments. These single-spring models cannot account for the radial force that muscle generates (orthogonal to
the long axis of the myofilaments) or the effects of changes in filament lattice spacing. We describe a more complex myosin
cross-bridge model that uses multiple springs to replicate myosin’s force-generating power stroke and account for the
effects of lattice spacing and radial force. The four springs which comprise this model (the 4sXB) correspond to the
mechanically relevant portions of myosin’s structure. As occurs in vivo, the 4sXB’s state-transition kinetics and force-
production dynamics vary with lattice spacing. Additionally, we describe a simpler two-spring cross-bridge (2sXB) model
which produces results similar to those of the 4sXB model. Unlike the 4sXB model, the 2sXB model requires no iterative
techniques, making it more computationally efficient. The rate at which both multi-spring cross-bridges bind and generate
force decreases as lattice spacing grows. The axial force generated by each cross-bridge as it undergoes a power stroke
increases as lattice spacing grows. The radial force that a cross-bridge produces as it undergoes a power stroke varies from
expansive to compressive as lattice spacing increases. Importantly, these results mirror those for intact, contracting muscle
force production.
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Introduction

Radial forces are the same order of magnitude as axial forces in

contracting muscles [1–3]. These forces, along with axial force

acting in the direction of muscle contraction, depend on

myofilament lattice spacing [4,5]. At the same time, structural

information about myosin cross-bridges suggests that they generate

force by applying torque to a lever arm [6–8]. This lever arm

generates the strain accompanying the power stroke via a change

in the rest angle at which the lever is attached to S1 region [8,9].

This change in angle occurs at the converter region, a flexible area

in myosin S1 which acts as a torsional spring. These phenomena

may be related: the radial forces a cross-bridge creates are results

of the lever arm geometry (as suggested by Schoenberg [10]).

Existing theoretical and computational models of cross-bridge

force generation at the level of the half-sarcomere assume that

force is generated by a simple extensional linear spring oriented

parallel to the long axis of the myofilaments (Figure 1A). This

assumption has persisted from the earliest fundamental models of

muscle contraction to more elaborate and spatially explicit models

[11–15]. These single-spring models yielded insight into the

processes that regulate production of force in the direction of

contraction, parallel to the long axis of the myofilaments.

However, these prior models of muscle contraction have paid less

attention to radial forces and the effects of changes in filament

lattice spacing. As a result, geometries of the single spring cross-

bridge models have changed little while kinetic schemes governing

transitions between conformational states have increased in

complexity [11,12,16,17]. To analyze the radial forces that occur

during muscle contraction, a different cross-bridge geometry is

needed: a geometry that produces both forces aligned with and

forces orthogonal to the long axis of the myofilaments. A lever arm

of several springs can: (1) simulate the deformations a cross-bridge

undergoes as it generates force through the power stroke, (2)

provide a geometry which is practical for use in cross-bridge

models, and (3) account for both axial and radial forces [9].

Here we detail two models of cross-bridges that use multiple

springs to replicate the lever arm mechanism and capture its

biologically relevant effects (Figure 1B–C). Both models are

affected by changes in lattice spacing as well as axial offset from

binding sites along the thin filament, and both account for the

radial component of force produced during the power stroke. The

first model (referred to as the 4sXB model) simulates the cross-

bridge as a system of four linearly elastic springs arranged in a

geometry based upon the structure of the S1 and S2 regions of

myosin II (Figure 1C). Our second model (referred to as the 2sXB

model) consists of two linearly elastic springs and provides greater

computational efficiency than the 4sXB model while replicating

many of the more complex model’s behaviors (Figure 1B). A prior

two spring cross-bridge model was proposed by Schoenberg

(1980), with the S2 arm represented as an extensional spring and

the S2-S1 junction as a torsional spring [10,18]. Both the 4sXB
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model and the 2sXB model use a three-state model of cross-bridge

cycling kinetics, consisting of an unbound state, a low-force pre-

power stroke state, and a force-producing post-power stroke state.

The kinetics of transition from one state to another in our models

are similar to those used previously but are generalized for use in

two dimensions; our kinetics calculate transition probabilities using

the free energy landscape of the cross-bridges instead of the offset

of the cross-bridge head (Figure 1D and Figure S1) [12,14,16,19].

We compare the 4sXB and 2sXB models to a single spring model

of the cross-bridge (referred to as the 1sXB model), similar to those

used previously. We quantify both the axial and the radial forces of

our two cross-bridge models. Additionally, we show how changes

in lattice spacing and axial offset affect kinetics and forces in our

multiple-spring models.

Results

The 4sXB and 2sXB models detailed here were developed to

discover the consequences of lattice spacing on cross-bridge

kinetics and two dimensional force production. Multi-spring cross-

bridges introduce a lattice spacing dependence into force

production and kinetics, and account for radial forces. As lattice

spacing changes, the kinetics and forces of the 4sXB and 2sXB

models shift in both magnitude and axial offset.

At 34 nm d10, the multi- and single-spring cross-bridges have
similar kinetics and energies

At rest lattice spacing, the free energies and kinetics of the of the

single- and multi-spring cross-bridge models are largely similar, as

seen in Figure 2 (where the 1sXB values used are calculated as in

Figure 10 of Tanner et al. (2007) [14]). These properties share a

common base that is intentionally conserved, where possible,

between the multiple-spring and single-spring cross-bridges [16].

The free energies of the multi-spring cross-bridges are a result of

both extensional springs that are at an angle to the thick filament

and torsional springs sensitive to the angle they make with the

thick filament. As the multi-spring cross-bridges move in the axial

direction, their angles to the thick filament backbone change. This

angle dependence skews the free energies of the multi-spring cross-

bridges from the symmetric hyperbola of the 1sXB (Figure 2A).

The two-dimensional diffusion-based binding probability function

that governs the multi-spring cross-bridges (as described in the

binding rate calculation section) causes the likely binding areas to

occupy a greater range of axial positions than those of the single-

spring cross-bridge (Figure 2B) [20,21]. Multi-spring cross-bridges

are thus less likely than the 1sXB model to bind near their rest

position, but are more likely to bind than the 1sXB at greater

offsets from their rest position. This flattening and spreading of the

binding probability function is a result of the extra degrees of

freedom of motion in the two-dimensional models. The power

stroke rate constants of the multi-spring cross-bridges are the same

as those of the single-spring cross-bridge, with energy-dependent

terms using the sum of the free energy of every spring comprising a

cross-bridge (Figure 2C). The detachment rate constant of the

1sXB explicitly relies on cross-bridge head position as well as

energy. This position dependence was removed in adapting the

1sXB model’s detachment rate constant for the multi-spring cross-

bridges. The detachment rate constant thus loses the intentional

asymmetry that the position term provided and retains only the

asymmetry created by the spring geometries of the 2sXB and

Author Summary

The molecular motor myosin drives the contraction of
muscle, but doesn’t just produce force in the axis of
shortening. Models of muscle contraction have primarily
treated myosin as a simple spring oriented parallel to its
direction of movement. This assumption does not allow
prediction of the relationship between the forces pro-
duced and the spacing between contractile filaments or of
radial forces, perpendicular to the axis of shortening, all of
which are observed during muscle contraction. We
develop an alternative model, still computationally effi-
cient enough to be used in simulations of the sarcomere,
that incorporates both extensional and torsional (angle
dependent, like those found in a watch) springs. Our
model captures much of the spacing-dependent kinetics
and forces that are missing from single-spring models of
the cross-bridge.

Figure 1. Cross-bridge types and kinetic scheme. (A)–(C) The
three cross-bridge models, plotted against a myosin crystal structure for
comparison (structure image generated from Gourinath et al. (2003)
[40] with PyMol [41]). The energy landscape of each cross-bridge and
the free energy at rest lattice spacing are shown adjacent to the cross-
bridge schematic. (A) The 1sXB introduced in Huxley (1957) [11]. (B) The
2sXB which uses a torsional/angular spring (h) and an extensional
spring (r). (C) The 4sXB with two torsional and two extensional springs.
Of the 4sXB’s springs, a corresponds to the point at which the S2 region
rejoins the thick filament backbone, b to the S2 region itself, d to the
area linking the S2 and the light chain domains, and c to the light chain
domain itself. d replicates the change in angle accompanying the power
stroke by applying torque to the freely moving joint representing the
converter domain. (D) The three state kinetic system. The three states
represent (1) an unbound state, (2) a pre-power stroke state, and (3) a
post-power stroke state. The rate of transition between states i and j is
represented as rij . The forward and reverse transition rate constants are
functions of energy stored in the cross-bridge.
doi:10.1371/journal.pcbi.1001018.g001

Cross-Bridge Forces Depend on Lattice Spacing
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4sXB models (Figure 2D). The rate of detachment and the other

cross-bridge kinetic rate constants remain close to those of the

1sXB, even though the kinetics of the multi-spring cross-bridges

are based not on axial position but on the free energy of the cross-

bridge in multiple dimensions.

Axial offsets of most cross-bridge properties decrease as
lattice spacing grows

The axial offset of a cross-bridge property is the axial distance

from the point where the cross-bridge attaches to the thick

filament to the point where the cross-bridge property reaches an

extreme value or inflection point. These axial offsets are depicted

in Figure 3 and Figure S2 where, for example, the axial offset of

the 2sXB attachment rate constant at 34 nm d10 is approximately

12 nm. As lattice spacing increases, the axial offsets of most multi-

spring cross-bridge kinetic rates and free energies grows smaller.

This relationship is shown in Figures 3A and B and Figure S2 A

and B, where the axial offset of the 4sXB or 2sXB model’s lowest

energy point is more than 3 nm greater at a lattice spacing of

32 nm d10 than at a lattice spacing of 38 nm d10. The positions

where cross-bridges are most likely to bind shift to smaller axial

offsets at larger lattice spacings, decreasing how extended a cross-

bridge is likely to be upon binding (Figures 3C–D and Figure

S2C–D). Similarly, as lattice spacing increases, decreases in the

axial offset of the power stroke rate constant inflection point cause

the size of the power stroke to change with lattice spacing

(Figures 3E–F and Figure S2E–F). The 4sXB model’s rate of

detachment is the only cross-bridge property whose axial offset is

predominately invariant with changes in lattice spacing (Figure 3G

and Figure S2G). This exception is explained by the largely

radially aligned post-power stroke orientation of c, the 4sXB

model’s final spring. Combined, these effects reduce the axial force

a cross-bridge generates at larger lattice spacings with implications

for the sarcomere length dependence of force production and

relaxation. These multi-spring cross-bridge models are the first to

be capable of reproducing these lattice spacing dependent effects

on force production and kinetics.

Probability of a cross-bridge being bound decreases as
lattice spacing diverges from rest

The number of cross-bridges in a force generating state depends

on lattice spacing. At any axial location, as lattice spacing diverges

from its 34 nm d10 rest value, the rate of attachment decreases

while the rate of detachment increases (Figure 3C–D and 3G–H).

These kinetic rate constants change with lattice spacing because

they depend on the difference in free energy between the unbound

state and the pre- or post-power stroke state, a difference which

increases with lattice spacing. This increase in energy makes a

cross-bridge increasingly likely to transition to the unbound state

and remain there (Figure 3C–D and 3G–H). An example of the

decrease in the likelihood of a cross-bridge remaining bound can

be seen in the 4sXB model, where the slowest rate of detachment

is 20/sec at a lattice spacing of 34 nm d10 but rises to 260/sec at

38 nm d10 (Figure 3G). As a result of these changes, individual

cross-bridges spend less time in a bound state and are less likely to

generate force as lattice spacing diverges from its rest value.

Forces at a given axial offset increase with lattice spacing
The axial and radial forces at a given axial offset correlate with

lattice spacing (Figures 4 and 5). When lattice spacing is

compressed, more expansive radial forces and smaller axial forces

are produced. When lattice spacing is expanded, more compres-

Figure 2. Forces, energy, and kinetics of the 1sXB, 2sXB, and 4sXB models at resting lattice spacing. (A)–(F) show the energy, transition
rate constants, and forces of the 1sXB model (black), 2sXB model (green), and 4sXB model (red) at resting lattice spacing. The 1sXB model values
shown for comparison are derived from those of Daniel et al. (1998) and Tanner et al. (2007), [12,14], shifted axially so the resting location of the cross-
bridge head in each case is aligned with the resting locations of the 2sXB model and 4sXB model allowing easier comparison. The free energy of the
cross-bridges in state two is shown in (A), where the multi-spring cross-bridges’ shifts from a purely parabolic trajectory is visible. The explicit two-
dimensional thermal forcing of the multi-spring cross-bridge heads in (B) results in binding probabilities that are more distributed than those of the
single spring cross-bridge. The rate of power strokes (C) remains least changed between the single and the multi-spring cross-bridge models. The
energy-based kinetics of the multi-spring cross-bridges are unable to fully replicate the biased detachment rate of the 1sXB model in (D). (E) and (F)
show the 1sXB’s sharp discontinuities in axial force and lack of any radial force.
doi:10.1371/journal.pcbi.1001018.g002

Cross-Bridge Forces Depend on Lattice Spacing
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sive radial forces and larger axial forces are produced. An example

of increased forces with increased lattice spacing is seen in the

4sXB model which, at a 10 nm axial offset, produces half the

radial and half the axial force at 35 nm d10 as it does at 38 nm d10

(Figure 5A–B). Similarly with the 2sXB model at a 12 nm axial

offset, a lattice spacing of 35 nm d10 produces two thirds of the

axial and radial forces as does a lattice spacing of 38 nm d10

(Figure 5C–D). At large lattice spacings, this greater force per

cross-bridge competes with the decreased probability a cross-

bridge will bind and generate force, an interaction that requires a

model of the half-sarcomere using multi-spring cross-bridges to

fully evaluate [22].

The force landscapes of Figure 5 also show that no lattice

spacing is free of radial force at all axial offsets. The radial force

produced by a cross-bridge, even at rest lattice spacing, increases

in magnitude as the cross-bridge tip moves away from its

unstrained axial offset.

Step size varies with lattice spacing
The step size of both multi-spring models varies with lattice

spacing (Figure 6). We define step size at a given lattice spacing as

the axial distance between the pre- and post-power stroke positions

of the myosin head. Put another way, step size at one lattice

spacing is the distance from the axial offset with the lowest free

energy in the pre-power stroke state, to the axial offset with the

least amount of energy in the post-power stroke state. Both models

have a peak step size at a relatively uncompressed lattice spacing,

with decreasing step size as lattice spacing diverges from that

Figure 3. Energy and kinetics of the multi-spring cross-bridge models change with axial offset and lattice spacing. Axial offset is the
distance between the current axial location of the cross-bridge tip and the location where the cross-bridge attaches to the thick filament. Lattice
spacing (d10) is defined as in Millman (1998) [3], with an offset to account for filament thicknesses so the cross-bridge spans the filaments at a rest
lattice spacing of 34 nm. (A)–(H) The properties of the 4sXB model (A, C, E, and G) and the 2sXB model (B, D, F, and H) as they change with binding
site offset and lattice spacing. (A) depicts the free energy of the 4sXB model at various lattice spacings, with the head stretched to an axial offset from
the thick filament attachment point. The free energy of the 2sXB model is shown in (B). (C) and (D) show r12, the probability that the 4sXB and 2sXB
models will transition from an unbound state to a bound state. (E) and (F) show r23, the probability of transition from a pre-power stroke state to a
post-power stroke state, for the same cross-bridges, axes, and scales as (C) and (D) show r12. (G) and (H) show r31, the probability of unbinding from a
post-power stroke state. The reverse rate constants, r21, r32, and r13 are back-calculated from the forward rate constants.
doi:10.1371/journal.pcbi.1001018.g003

Cross-Bridge Forces Depend on Lattice Spacing
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value. The 4sXB model has a maximum step size of 5.0nm near

34nm lattice spacing and the 2sXB model has a maximum step

size of 6.1nm near 36nm lattice spacing.

Radial forces are of the same order of magnitude as axial
forces

The radial and axial components of force, produced by a 4sXB

model or 2sXB model moved from its rest position to an axial offset,

are of the same order of magnitude (Figures 2E–F and 4A–D). The

values of the axial and radial forces produced by the multiple-spring

cross-bridge models at rest lattice spacing are compared to those

produced by the single-spring cross-bridge model in Figure 2E–F.

The relative values of the radial and axial forces are visualized as the

angles of the force vectors in Figure 4A–D. Axial locations and

lattice spacings with balanced axial and radial forces produce force

vectors which are neither vertical nor horizontal, but in some

intermediate orientation. Most axial and radial offsets are populated

by such vectors, particularly regions a cross-bridge would be most

likely to occupy (unlikely regions are not shown in the vector plots).

The few regions dominated by one force, notably some small offset

positions in the 2sXB model (Figure 4D), are dominated by radial

forces. This presence of large radial forces suggests that, in all but

the least strained locations at the smallest axial offsets, radial forces

will be present in magnitudes comparable to those of axial forces.

Discussion

Our multi-spring cross-bridge models show how myofilament

lattice spacing influences cross-bridge properties, from axial and

radial forces to kinetics and step size. The 4sXB and 2sXB models

show two key features that differ significantly from prior models:

(1) the inclusion of torsional springs and lever-arm mechanisms

reveals a dependence of step size on lattice spacing and (2) this

lever-arm mechanism produces radial forces and axial forces of the

same magnitude, a ratio similar to that observed experimentally

[1,2,23]. The dependencies of step size, force production, and

kinetics on lattice spacing help explain measured changes in force

generation with changes in lattice spacing [3].

Force generated by a multi-spring cross-bridge depends
on lattice spacing

The lattice spacing of the filaments around an attached multi-

spring cross-bridge determine the energy landscape of the cross-

bridge and thus the force it can generate. The forces and strains a

cross-bridge produces at most axial offsets grow more positive as

lattice spacing increases (Figure 4E–H). While this increased cross-

bridge strain translates into greater axial and radial force per post-

power stroke cross-bridge, the probability that these cross-bridges

will bind decreases as lattice spacing increases (Figure 3C–D). The

decrease in attachment rate constants at extreme lattice spacings,

while power stroke rate constants remain unchanged (Figure 3E–

F), suggests lattice spacing influences muscle fiber force generation

by altering the rate of cross-bridge attachment rather than the

power stroke rate [22]. Spatially explicit effects in the compliant

sarcomere, such as cross-bridge induced realignment of binding

sites, may act to balance the decreased binding and increased

detachment at larger lattice spacings.

Figure 4. Overview and detail of the forces exerted by the 2sXB
and 4sXB models in the post-power stroke state. (A)–(D) show
the post-power stroke forces exerted by the 4sXB and the 2sXB models
as vector fields of reaction forces. The reaction force is that necessary to
retain the cross-bridge head in a given location, thus the vectors for a
compressed cross-bridge orient upwards and those for an extended
cross-bridge orient downwards. Positions in which the cross-bridge is
unlikely to generate force are omitted; these unlikely locations are
determined by the sum of r23 and the inverse of r31. (A) and (B) show
overviews of the forces exerted, respectively, by the 4sXB model and
the 2sXB model over lattice spacings and axial offsets that vary as in
Figure 2. The forces exerted by the two cross-bridges have radial
components which frequently equal or exceed their axial components.
A more detailed view of the region surrounding the rest position of the
cross-bridges is shown in (C) and (D), where the large radial
components of the cross-bridge forces, particularly for the 2sXB model,
is especially evident.
doi:10.1371/journal.pcbi.1001018.g004

Figure 5. Axial and radial post-power stroke forces as separate
components. (A)–(D) show, separated, the axial and radial compo-
nents of the forces produced by the 4sXB and the 2sXB models in the
post-power stroke state.
doi:10.1371/journal.pcbi.1001018.g005

Figure 6. Changes in step size with lattice spacing. Step size
varies as lattice spacing diverges from its rest value. Step size is defined
as the change in the rest axial offset between the pre- and post-power
stroke states. The step size of the 4sXB model and 2sXB model produce
different absolute step sizes as lattice spacing change. However, both
models exhibit a local maximum step size at a specific lattice spacing
with a decreasing step size as lattice spacing diverges from that point.
doi:10.1371/journal.pcbi.1001018.g006

Cross-Bridge Forces Depend on Lattice Spacing
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The 2sXB model approximates the 4sXB model
The energies, kinetics, and forces generated by the 2sXB model

are subject to the same governing trends as those of the 4sXB model,

and can be made similar by deliberate parameter choice (Table 1

and Figures 2, 3, 4, and 5). That the 2sXB model can replicate the

results of the 4sXB model indicates two things: first, the 2sXB can be

used in place of the 4sXB in larger simulations, enabling work that

would otherwise require prohibitive resources, and second, a feature

shared between our two models is responsible for the interesting

properties of our simulations, the use of a lever arm which undergoes

an angle change to generate force. While the energies, binding rate

constants, and power stroke rate constants of the multi-spring cross-

bridges are almost identical, there are some smaller differences

between the two models. The rate constant of detachment is rotated

by approximately 200 between the two systems due to differences in

the way the post-power stroke position is achieved (Figure 3). The

4sXB model and the 2sXB model generate somewhat different

forces; the axial force produced by each model increases with lattice

spacing, but that produced by the 4sXB does so more steeply

(Figure 5A, C). In a reversal of this pattern, the 2sXB model’s radial

force is more dependent on lattice spacing (Figure 5B, D). In each of

these cases, the forces generated by both multi-spring cross-bridges

are subject to the same trend. The close agreement between the

forces and other properties of the two cross-bridge representations

supports the position that the key feature of our multi-spring models

is the use of a lever arm to generate force, rather than a factor unique

to the 4sXB model, such as the simulation of interaction between the

lever arm and the S2 domain. Substituting the 2sXB model for the

4sXB model reduces the runtime of a simulation by two orders of

magnitude and puts multi-spring cross-bridge simulations of the half-

sarcomere within reach.

Cross-bridge step size depends on lattice spacing,
influences shortening velocity

The geometries of the multi-spring models require a change in

step size accompany a change in lattice spacing. This is because,

while the length of the lever arm changes as lattice spacing varies,

the pre- and post-power stroke angles do not. Step size varies more

in the 4sXB model as the 4sXB model’s spring configuration

causes the pre- and post-power stroke free energies to differ more

than in the 2sXB model. As the detachment rate constant is a

product of the post-power stroke free energy, the greater rotation

in the 4sXB’s post-power stroke free energy, relative to that of the

2sXB model, can be seen in Figure 3 G–H. Experimental

measurements of step size vary, and it has been postulated that this

is due to more than experimental error, but to our knowledge

these results are the first prediction of a step size that varies with

lattice spacing [24]. Experimental confirmation of these predic-

tions is not possible with current literature: existing in vivo

measurements of step size are from isolated myosin preparations

which are unable to simulate a change in muscle lattice spacing

[25,26].

While our single cross-bridge models lack the predictive power

of a multi-filament model, the dependence of step size on lattice

spacing offers insight into unloaded shortening velocity. Maximum

unloaded shortening velocity is commonly interpreted as a

function of both myosin’s step size and drag from attached post-

power stroke cross-bridges [27]. A decrease in unloaded

shortening velocity is observed when lattice spacing is compressed

via dextran [28,29]. This slower unloaded shortening is supported

by the multi-spring models: their step size exhibits a similar

decrease as lattice spacing shrinks (Figure 6). However, a moderate

increase in the rate of detachment at highly compressed lattice

spacings, seen in Figure 3 G–H, may balance smaller steps sizes.

This increased detachment rate is due to the greater post-power

stroke strain that is present with greater radial displacement of the

cross-bridge. Changes in modeled detachment rates and step size

are both likely to be needed, along with changes in filament

overlap, to explain the complicated dependence of unloaded

shortening velocity on sarcomere length [30].

Large radial component of forces may influence lattice
spacing in multi-filament models

The 4sXB and the 2sXB produce radial forces of the same order

of magnitude as the axial forces generated by a cross-bridge. These

forces range between 10% and 50% of the axial force at the least

strained axial and radial offsets where a cross-bridge is most likely

to enter the post-power stroke state (Figure 4). Muscle fibers

display these radial forces by resisting width changes as osmotic

pressure is applied [1]. Direct measurement of lattice spacing by

X-ray diffraction has confirmed fiber width estimates of radial

force [31]. Checchi et al. (1990) [2] observed large radial forces by

examining lattice spacing during redevelopment of tension

following length changes. A spatially explicit model, even one

using multiple thick and thin filaments arranged in a lattice, is

insensitive to lattice spacing if it uses a version of the 1sXB model.

Embedding multi-spring cross-bridges in a multi-filament model

allows the simulation of radial force regulation in a lattice of thick

and thin filaments. The inclusion of radial forces in a multi-

filament model permits examination of previously unavailable

kinds of cooperativity, ones where radial force can be transmitted

Table 1. Model parameters and their sources.

Model Spring Rest value k Source

4sXB a 400 100 pN/rad [42]

b 10.5 nm 10 pN/nm [42]

d 1250 40 pN/rad [37]

d’ 700 40 pN/rad [37]

c 9.6 nm 5 pN/nm [36]

2sXB h 470 40 pN/rad See caption

h’ 730 40 pN/rad See caption

r 20 nm 2 pN/nm See caption

r’ 16 nm 2 pN/nm See caption

1sXB k 5 nm 5 pN/rad [14]

k’ 0 nm 5 pN/rad [14]

Prime values, such as d’, represent post-power stroke state values. From Liu
et al. (2006) [42], which used insect flight muscle, the most frequently occurring
thick filament to S2 angle range is 51–600 . We assume that this range is being
distorted by the compressive radial force being generated by the rigor cross-
bridges in the swollen lattice spacings that Liu et al. used. As such, we choose a
rest angle for a at the low end of the still common range of 500 to 400 . We do
not change this angle between states one, two and three. In Taylor et al. (1999)
[37] (clearly explained in [43]) the angle between the LCD and the thick
filament’s axial axis goes from 1250 to 700 with the power stroke. The LCD rest
length generated by measurements made of structure 1DFK from Houdusse
et al. (2000) [36]. The rest values of the 2sXB model’s springs are determined by
those of the 4sXB model; they are calculated so that the rest position of the
2sXB’s head is the same as the rest position of the 4sXB’s head. The spring
constant, k, for the angular spring responsible for each cross-bridge’s power
stroke is determined by the change in angle over the power stroke and the
energy liberated by the hydrolysis of ATP [14]. Additional spring constants are
chosen to be consistent with previous work, and to provide sufficient flexibility
to enable diffusion. The parameters of the single spring cross-bridge, used for
comparison, are taken from [14].
doi:10.1371/journal.pcbi.1001018.t001
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through the backbone lattice to affect the kinetics of other cross-

bridges. Radial force is a potential regulator of lattice spacing and

of Ca2z sensitivity as lattice spacing and sarcomere length vary

[3]. A multi-filament model using the 4sXB or 2sXB can simulate

the interaction of radial force generated by a cross-bridge with

radial forces provided by other mechanisms, e.g. titin or electro-

static repulsion [3,22,32]. Thus multi-spring cross-bridges make it

possible to evaluate the influence of these radial forces, posited to

be regulators of lattice spacing, and processes which may depend

on lattice spacing or myosin head to thin filament distance, such as

the Frank-Starling mechanism; something not possible with a

1sXB model [33].

In future studies, these models will permit the investigation of

radial forces and lattice spacing in multi-filament models, and will

allow us to examine disease states that alter myosin compliance.

The inclusion of radial forces and lattice spacing in half-sarcomere

models will illuminate regulatory mechanisms of shortening

velocity and length-dependent axial force generation. Other

efforts may use existing studies of how disease-related mutations

alter myosin compliance to produce disease state mimicking cross-

bridge models [34]. Multi-filament simulations using these altered

cross-bridge models have the potential to explain how symptoms

of disease states such as hypertrophic cardiomyopathy arise from

myosin-level changes.

Models

Our two cross-bridge models, the 4sXB model and the 2sXB

model (Figure 1B–C), are designed to capture a range of

mechanical behaviors observed or posited by prior work, namely

radial force generation and the effects of lattice spacing on cross-

bridge binding and force generation. Both cross-bridge models are

an arrangement of linearly elastic torsional (angular or watch-like)

or Hookean (extensional) springs.

Geometry
Spring configurations. To enable comparison with previous

cross-bridge models, we implement a one-dimensional model in

addition to our multi-spring models. This one-dimensional model

uses a linearly elastic spring oriented parallel to the long axis of the

thick filament (Figures 1A and 7A). The resulting cross-bridge

forces are restricted to the direction of shortening, that is, axially

oriented. The one-dimensional 1sXB model cannot yield radial

forces. Moreover, this model’s geometry is unable to account for

changes in kinetics or forces at varying lattice spacing. This

reference model is identical to those used in recent spatially-

explicit computational analyses [12–14].

The 4sXB model uses two extensional and two torsional springs

to represent the myosin head (Figures 1C and 7C). This

arrangement of four springs corresponds closely to regions of the

cross-bridge believed to regulate and respond to strain or

deformation [9,35]. In particular, the four springs correspond to

the point where the S2 region attaches to the rod, the S2 region,

the point where the S2 region attaches to the light chain domain

(LCD), and the LCD. These points are labeled a, b, d, and c,

respectively (Figure 1C). Rest values, stiffnesses, and their sources

are detailed in Table 1.

The rest angle of d decreases to simulate the transition from a

pre-power stroke to a post-power stroke state (Figure 7C). This

method of force generation acts in two dimensions and thus allows

lattice spacing to influence forces and state transition rates. In the

4sXB, a change in the rest angle of d mimics myosin’s lever-arm

mechanism of force generation [9,36]. As the extensional spring c
does not bend and the angle at which the globular domain

attaches to actin remains unchanged, applying torque at one end

of c is equivalent to applying the opposite torque at the opposite

end. Thus a change in the rest angle of d produces a torque

equivalent to that which the converter domain applies to the LCD

during the power stroke.

The 2sXB model is a simplification of the 4sXB model, using

one extensional spring (r) and one torsional spring (h) to represent

the myosin head (Figures 1B and 7B). The 2sXB treats the power

stroke as a change in the rest angle of h (Figure 7B); like the 4sXB,

the 2sXB generates force by applying torque to a lever arm. The

parameters of the 2sXB are set so that the pre- and post-power

stroke tip location and kinetics of the 2sXB match those of the

4sXB model. In addition to the change in the rest angle of h
during the power stroke, we adjust the length of r so that the base-

to-tip distance of the 2sXB in both the pre- and post-power stroke

states is equal to the same measurement in the 4sXB model. The

result is computationally simpler than the 4sXB model, but retains

the 4sXB’s two-dimensional behavior.

The 2sXB presented here is contrasted to an alternative geometry

used by Schoenberg [10,18], where an extensional spring

representing the S2 domain is joined, via a torsional spring, to a

rigid rod representing the S1 domain. The use of this alternative

geometry requires the position of the torsional spring linking the S1

and S2 domains be found through iterative solution methods

whenever the cross-bridge tip position changes. This use of iterative

solution methods is similar to that required by our 4sXB and

imposes similarly large computational requirements when incorpo-

rated into larger spatially explicit models. Additionally, this

alternative geometry restrains the cross-bridge tip to an area within

one S1 length of the line in which the S2 segment is set.

Parameters used in both cross-bridge models are derived, where

possible, from existing experimental data, described below. Each

extensional spring (one in the 1sXB model, two in the 4sXB model

Figure 7. Changes in cross-bridge resting geometry with the
power stroke. (A)–(C) show, schematically, the change in the rest
lengths and angles of the single and multi-spring cross-bridges. The rest
length and angle of the 2sXB’s extensional and torsional springs are set,
in both the pre- and post-power stroke states so as to match the tip
position of the 2sXB in each condition to that of the 4sXB (in Table 1).
The change in the unstressed radial distance from the thick filament to
the tip of the multi-spring cross-bridges that occurs with the power
stroke is particularly visible in (B) and (C) when compared to the single
spring cross-bridge (A). The effects of the universal joint attaching the
springs of the 4sXB and the 2sXB to the globular domain, and the
globular domain’s own fixed angle to the thin filament, are shown by
the continued radial orientation of the globular domain after the power
stroke occurs.
doi:10.1371/journal.pcbi.1001018.g007
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and one in the 2sXB model) has a rest length and a spring

constant, while each torsional spring (two in the 4sXB model and

one in the 2sXB model) has a rest angle and a spring constant. The

lengths and angles of the springs used for the 4sXB are based on

tomographic reconstructions of in vivo S2 lengths and x-ray

crystallographic reconstructions of the S1 fragment [6,37]. The

rest length and angle of the springs used in the 2sXB model are set

so that the tips of both the 2sXB’s and 4sXB’s simulated myosin

heads are in the same location before and after the power stroke.

Calculation of lattice spacing. The multi-spring models use

an internal representation of lattice spacing that is analogous to the

in vivo distance from the surface of a thick filament to the surface of

an adjacent thin filament. However, since this surface-to-surface

lattice spacing (ssLS) is not commonly reported, we present lattice

spacing as the d10 measurement used in x-ray diffraction studies of

muscle [3]. The d10 value is the distance between the centers of

mass of adjacent thick filaments. We calculate the d10 value that

corresponds to a given ssLS using both the geometry of the cross-

bridge and the lattice spacing at which the cross-bridge generates

the least radial force. Specifically, d10 is found from

d10~1:5(ssLSzcf ) [3]. The correction factor (cf ) compensates

for the filament radii: the difference between the ssLS surface-

based measurement and the d10 center-of-mass-based measure-

ment. The correction factor offset also sets the relationship

between ssLS and d10 so that, at rest lattice spacing, the post-

power stroke cross-bridge generates neither compressive nor

tensile radial force. This offset becomes 6.90 nm when the rest

d10 spacing is 34 nm [23]. The ssLS that correspond to the d10

spacings of interest are then calculated and define the window of

lattice spacings we examine [3]. Thus the lattice spacing within the

model is bound by experimental lattice spacings and is a function

of both the geometry of the actomyosin lattice and the lattice

spacing at which radial forces are minimized.

Displacement and force generation. Each cross-bridge

undergoes a distortion as myosin hydrolyzes ATP to ADP:Pi; this

distortion is the basis of the power stroke [12,14,16]. The energy

liberated by the hydrolysis of ATP drives force generation by

inducing strain in the cross-bridge, appearing as a change in the

cross-bridge rest length [25]. For the 1sXB model, this distortion is

represented as a change in the rest length of the cross-bridge’s only

spring (Figure 7A). The 4sXB and 2sXB models use a process

which adheres more closely to the in vivo lever-arm mechanism;

they represent the power stroke as a change in the rest angle of a

torsional spring (Figures 7B,C) [38]. The force generated by this

process has both axial and radial components. The axial

component of the force vector is the portion that lies along the

long axes of the thick and thin filaments. The radial component of

this vector lies perpendicular to the thick and thin filaments,

orthogonal to the axial component. The relative values of the post-

power stroke axial and radial forces are determined by the

construction of the cross-bridge (number of springs and their

geometry), and the displacement of the cross-bridge tip from its

rest position.

Calculation of spring lengths and angles. To calculate the

force and energy a cross-bridge produces and stores as its tip is

displaced, we need to know the lengths and angles of the springs

that constitute the cross-bridge. When the 1sXB model is placed

under strain, the tip of its myosin head moves to a new axial offset.

Finding the length of the 1sXB model’s spring is simple, as it must

span the complete distance from the cross-bridge tip to the thick

filament attachment site. Finding the lengths and angles of springs

in the 4sXB and 2sXB models is a two-dimensional problem; they

must account for both the axial and radial distance from cross-

bridge tip to cross-bridge base. The values of the 2sXB model’s

springs are determined analytically, as both spring values are set

by the choice of a head location. The 2sXB model’s spring values,

r and h, are given by r(tx,ty)~(t2
xzt2

y)1=2 and h(tx,ty)~
arctan (ty=tx), for a cross-bridge tip location of (tx,ty)
(Figure 1B). The 4sXB model has a greater number of springs

and thus another point whose location must be defined: (dx,dy),
the S2/LCD linking point where the angular spring d is located

(Figure 1C). The coordinates of the d spring cannot be analytically

determined, they must be found through iterative optimization.

We use a modification of Powell’s ‘‘dog-leg’’ method (from the

SciPy computational package [39]) to locate the d spring such that

the 4sXB model is at its lowest energy state for the current cross-

bridge tip position. Once d’s location is known, its angle, the angle

of a and the lengths of b and c are determined analytically. The

angles and lengths for a given tip location (tx,ty) and d location

(dx,dy) are given by:

a(dx,dy)~ arctan (dy=dx)

b(dx,dy)~(d2
xzd2

y)1=2

d(dx,dy,tx,ty)~ arctan ((ty{dy)=(tx{dx))zp{a(dx,dy)

c(dx,dy,tx,ty)~((tx{dx)2z(ty{dy)2)1=2

Kinetics
To describe the kinetics we use a simplified three-state model of

the cross-bridge cycle originally described by Pate and Cooke

(1989) [16] and modified by Tanner et al. (2007) [14]. This

relatively simple scheme directly links the cross-bridge’s kinetics

and mechanics; the three kinetic states are directly comparable to

the myosin configurations described in Houdusse (2000) [36]. The

kinetic rates are independent of the number of springs used in a

model cross-bridge, allowing the 4sXB and the 2sXB models to

use the same system. The three states represented in the kinetic

scheme are (1) an unbound state: Myosin-ADP:Pi (2) a loosely-

bound state:Actin-Myosin-ADP:Pi and (3) a force-generating

post-power stroke state: Actin-Myosin-ADP (Figure 1D). These

kinetics replicate those of a generic cross-bridge, and are aimed at

reproducing properties shared between cardiac, skeletal, and

insect myosin types.

The kinetics of both the 4sXB and the 2sXB models are strain

dependent and are essentially transforms of the free energy

landscapes experienced by the cross-bridges in their different

states. These free energies are a function of the distortion necessary

to move the point representing the simulated myosin head’s tip to

the proposed binding site. Examples of these free energy

landscapes are shown in Figure 3A and B, with cuts through

them at the rest lattice spacing visible in Figure 2A. As the free

energies of the cross-bridges are functions of their spring rest

values and stiffnesses, changing the geometry and stiffness of the

springs used by the model also changes the kinetics of the model.

The binding probabilities of both the 4sXB and the 2sXB

models are determined by Monte-Carlo simulations of their

diffusion as a result of being perturbed by Boltzmann-derived

energy distributions [21]. After a new head location is found, a

binding probability is calculated which decreases exponentially

with distance from the potential binding site. This probability is

tested against a random number from a uniform distribution to

determine if binding occurs in our chosen time step of 1 ms.

Free energy in each state. The total free energy liberated by

the hydrolysis of the gamma Pi of ATP and available to the myosin
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head over the course of a cross-bridge cycle (DG) depends on both

the standard free energy of ATP hydrolysis (DG0,ATP) and the

concentrations of ATP, ADP and Pi. The free energy available to

the cross-bridge over its cycle is given by DG~{DG0,ATP{

ln
½ATP�
½ADP�½Pi�

. The free energy in the unbound state serves as a

reference for the other states and is set to 0. As the unbound cross-

bridge supports no strain, its free energy (U1) remains at 0 for all

axial offsets and lattice spacings. Only a portion of the liberated

free energy is available to the cross-bridge in a given state. The

limits on available DG are included in the free energy of each state

as an efficiency factor, as in Tanner et al. (2007) [14,16]. The

weakly bound state’s efficiency is 28%, represented with ae~0:28,

and the strongly bound state’s efficiency is 68%, represented with

ge~0:68. The free energy of a cross-bridge in each state also

depends on the strain the cross-bridge experiences from distortion

upon binding. Thus the free energy of the cross-bridge in state i
(Ui) is a linear combination of the strain-dependent and

phosphate-dependent energy of the cross-bridge. The free

energies of the 4sXB system are:

U1(a,b,d,c)~0

U2(a,b,d,c)~

aeDGz
ka(a{a0)2zkb(b{b0)2zkd(d{d0)2zkc(c{c0)2

2

U3(a,b,d,c)~

geDGz
ka(a{a0)2zkb(b{b0)2zkd(d{d1)2zkc(c{c0)2

2

ð1Þ

The free energies of the 2sXB system are:

U1(h,r)~0

U2(h,r)~aeDGz
kr(r{r0)2zkh(h{h0)2

2

U3(h,r)~geDGz
kr(r{r1)2zkh(h{h1)2

2

ð2Þ

Binding rate calculation. Our binding algorithm follows

Tanner et al. (2007) [14] but differs in two key ways: (1) we split

binding to the thin filament into two steps, and (2) our diffusion

step works with any number of springs. Previous models treated

binding rate constants as an exponential function of the distance

between a tethered diffusing spring and an available binding site

[12,14]. We produce binding rate constants in the same fashion,

but in adapting them for multi-spring cross-bridges, split the

process into two steps: diffusion of the myosin head to a new

location, followed by calculating binding probability at the new

location. The energy of a single spring undergoing thermally

forced diffusion is taken from a Boltzmann distribution of possible

energies [20,25]. With a single-spring cross-bridge, the cross-

bridge tip offset is easily found from the energy of the spring. A

thermally forced multi-spring cross-bridge likewise takes the

energy for each of its constituent springs from a Boltzmann

distribution of energies, but tip location must be separately

calculated (see the Geometry section above). It is this separation of

the calculation of cross-bridge tip location from binding

probability that splits our binding rate calculation into two steps.

In the diffusion step, each spring is offset from rest with

an energy taken from the probability density function:

P(x)~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=(2pkbT)

p
exp{(kx2)=(2kbT) where x is the offset, k is

the spring constant of the particular spring, kb is the Boltzmann

constant, and T is the system’s temperature in Kelvin [21,25]. The

new spring values are used to update the location of the cross-

bridge tip, which is used to calculate the post-diffusion distance,

ddiff , from the tip to the binding site of interest. As in previous

models, the probability that the cross-bridge will bind to a given

binding site decreases exponentially as ddiff increases. Thus the

probability a cross-bridge will bind to an available site is given by

p12(ddiff )~t exp{d2
diff , where t is a scale factor with a value of 12

for the 4sXB and 72 for the 2sXB, chosen to provide attachment

rates consistent between the multiple spring cross-bridge models.

Attachment occurs when p12 is greater, on a given 1 ms time step,

than a random number chosen from a uniform distribution in the

domain 0 to 1 [14]. This process is sufficient to determine if a

cross-bridge in simulation binds in a given time step, but binding

rate constants, as used in Figures 2 and 3 are calculated with an

ensemble of cross-bridges. Thus, for an ensemble of size n:

r12~

Pn
0 1 if t exp

{d2
diff wrand, else 0

� �

n
ð3Þ

This two step system, with diffusion followed by a chance of

attachment, is used for both the 4sXB and 2sXB models with only

a change in the number of thermally forced springs and the scaling

factor t.

Power stroke and detachment rates. The power stroke

and detachment rates are adaptations of prior models [14,16].

Unlike with binding, the power stroke and detachment rate

constants explicitly depend on the free energy of the cross-bridge.

This free energy is calculated from equations 1 and 2, with the tip

co-located at the relevant binding site. In the case of the 4sXB,

each calculation of a transition rate constant requires that the

location of the converter domain be optimized to relax the cross-

bridge into its lowest energy state. Of note, the unbound cross-

bridge supports no strain and so U1~0. These rate constants are

insensitive to the number of springs comprising each cross-bridge

and function similarly in one- and two-dimensional models. Both

the power stroke rate constant (r23) and the detachment rate

constant (r31) depend on the differences in free energy between the

current state and the one being considered for transition. This

dependence on the difference in free energies means transitions

are more likely when they are energetically favorable and less

likely in other circumstances, a natural scheme based in the

geometry of the cross-bridges. The particular rate constants for

both the 4sXB and the 2sXB models are:

r23(U2,U3)~100z100 tanh (4z0:4(U2{U3)) ð4Þ

r31(U3,U1)~20z100(U3{U1)1=2 ð5Þ

Calculation of reverse rates. The reverse transition rate

constant from state i to state j is given by the thermodynamically

balancing formula:

rij=rji~ expUi{Uj ð6Þ

where rji is the forward rate constant and rij is the reverse rate

constant [12,14,16]. The transition from a pre-power stroke state

to an unbound state requires the reverse transition again be
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treated as a fraction of an ensemble of transition opportunities,

using Equation 3 to provide r12. The remaining forward transition

rate constants, r23 and r31, are calculated from equations 4 and 5,

while all free energies are provided by equations 1 and 2.

Supporting Information

Figure S1 Model simulation protocol. The model simulation

process, as described throughout the paper, is displayed as a state

diagram. Entering the diagram at ‘‘Start’’, the states and actions

which change those states are depicted for a single cross-bridge.

Found at: doi:10.1371/journal.pcbi.1001018.s001 (0.06 MB PDF)

Figure S2 Cross-bridge free energy and kinetics at multiple

lattice spacings. (A)–(B) show the free energies of the 4sXB and the

2sXB models at lattice spacings between 30 and 38 nm. (C)–(H)

show the kinetic rate constants of the 4sXB and the 2sXB models

at lattice spacings between 30 and 38 nm. Each rate is a section

taken from the corresponding display in Figure 3.

Found at: doi:10.1371/journal.pcbi.1001018.s002 (0.24 MB PDF)

Author Contributions

Conceived and designed the experiments: CDW MR TLD. Performed the

experiments: CDW. Analyzed the data: CDW MR TLD. Contributed

reagents/materials/analysis tools: CDW. Wrote the paper: CDW MR

TLD.

References

1. Maughan DW, Godt RE (1981) Radial forces within muscle fibers in rigor. J Gen

Physiol 77: 49–64.
2. Cecchi G, Bagni MA, Griffiths PJ, Ashley CC, Maeda Y (1990) Detection of

radial crossbridge force by lattice spacing changes in intact single muscle fibers.

Science 250: 1409–11.
3. Millman BM (1998) The filament lattice of striated muscle. Physiol Rev 78:

359–91.
4. Bagni MA, Cecchi G, Griffiths PJ, Maeda Y, Rapp G, et al. (1994) Lattice

spacing changes accompanying isometric tension development in intact single

muscle fibers. Biophys J 67: 1965–1975.
5. Fuchs F, Martyn DA (2005) Length-dependent ca2+ activation in cardiac muscle:

some remaining questions. J Muscle Res Cell Motil 26: 199–212.
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35. Köhler J, Winkler G, Schulte I, Scholz T, McKenna W, et al. (2002) Mutation of
the myosin converter domain alters cross-bridge elasticity. Proc Natl Acad Sci

USA 99: 3557–62.

36. Houdusse A, Szent-Gyorgyi AG, Cohen C (2000) Three conformational states of
scallop myosin s1. Proc Natl Acad Sci USA 97: 11238–43.

37. Taylor KA, Schmitz H, Reedy MC, Goldman YE, Franzini-Armstrong C, et al.
(1999) Tomographic 3d reconstruction of quick-frozen, ca2+-activated contract-

ing insect flight muscle. Cell 99: 421–31.

38. Reedy MC (2000) Visualizing myosin’s power stroke in muscle contraction. J Cell
Sci 113: 3551–62.

39. Jones E, Oliphant T, Peterson P (2001) SciPy: Open source scientific tools for
Python. Available: http://www.scipy.org/.

40. Gourinath S, Himmel DM, Brown JH, Reshetnikova L, Szent-Gyorgyi AG,
et al. (2003) Crystal structure of scallop myosin s1 in the pre-power stroke state to

2.6 a resolution: flexibility and function in the head. Structure 11: 1621–7.

41. Delano WL (2008) The PyMOL Molecular Graphics System. Palo Alto, CA ,
USA: DeLano Scientific. Available: http://www.pymol.org.

42. Liu J, Wu S, Reedy MC, Winkler H, Lucaveche C, et al. (2006) Electron
tomography of swollen rigor fibers of insect flight muscle reveals a short and

variably angled s2 domain. J Mol Biol 362: 844–60.

43. Davis JS, Epstein ND (2009) Mechanistic role of movement and strain sensitivity
in muscle contraction. Proc Natl Acad Sci USA 106: 6140–5.

Cross-Bridge Forces Depend on Lattice Spacing

PLoS Computational Biology | www.ploscompbiol.org 10 December 2010 | Volume 6 | Issue 12 | e1001018


