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Abstract: Alcoholism is a chronic relapsing disorder with few therapeutic strategies that address the
core pathophysiology. Brain tissue loss and oxidative damage are key components of alcoholism,
such that reversal of these phenomena may help break the addictive cycle in alcohol use disorder
(AUD). The current review focuses on platelet endothelial cell adhesion molecule 1 (PECAM-1),
a key modulator of the cerebral endothelial integrity and neuroinflammation, and a targetable
transmembrane protein whose interaction within AUD has not been well explored. The current review
will elaborate on the function of PECAM-1 in physiology and pathology and infer its contribution
in AUD neuropathology. Recent research reveals that oligodendrocytes, whose primary function
is myelination of neurons in the brain, are a key component in new learning and adaptation to
environmental challenges. The current review briefly introduces the role of oligodendrocytes in
healthy physiology and neuropathology. Importantly, we will highlight the recent evidence of
dysregulation of oligodendrocytes in the context of AUD and then discuss their potential interaction
with PECAM-1 on the cerebral endothelium.
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1. Alcohol Use Disorder: Focus on Pathology Associated with the Disorder

Around 20 million people in the United States alone meet the criteria for alcoholism, diagnosed as
moderate-severe alcohol use disorder (AUD) [1,2] and alcohol contributes to more than 85,000 deaths
in the country each year [3,4]. Moreover, chronic alcohol use is associated with heart disease,
liver problems, and kidney dysfunctions, pulmonary dysfunction including pneumonia and chronic
obstructive pulmonary disease [1,5]. At its core, alcoholism is a chronic relapsing disorder associated
with loss of control over alcohol intake, leading to escalation of alcohol intake, and the emergence of
a negative emotional state when access to alcohol is removed [6]. The addictive cycle includes three
stages, namely binge intoxication, withdrawal/negative affect, and preoccupation and anticipation [7].
Neurochemical substrates associated with each stage have been discussed elegantly in the past [6,8],
and pharmacological targeting of some of these substrates have been the focus of development of
therapeutic strategies for alcoholism [2]. A major challenge to designing pharmacotherapy has been
the multigenetic and complex pathophysiology of AUD that includes neuroadaptations in several
areas of the brain [8].

Several pathologies associated with alcoholism are closely tied to the production of reactive
oxygen species (ROS) and to oxidative stress that results from the catalytic breakdown of alcohol [9].
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Several lines of research indicates such oxidative damage leads to cell death that may produce
lasting neuroadaptations that contribute to AUD [10–13]. For example, alcohol toxicity results
in a decrease in hippocampal neurogenesis, in frontal cortex cell loss, and in corpus callosum
shrinkage [11,14]. The simple endothelial function of glucose uptake was also disrupted by
alcohol [15]. Together, these changes may reduce function of critical neurocircuitry in the brain,
and therefore, impede learning and memory, impair executive function and decision-making
and reduced connectivity between key brain regions, and thereby contribute to the “relapsing”
characteristic of AUD. Clinical evidence for glial damage include MRI scans showing a significant
atrophy/decreases in white matter in individuals who have a history of chronic alcohol abuse [16].
This atrophy is exacerbated in individuals with alcohol-associated deficiency of thiamine, a natural
dietary antioxidant [16]. Converging evidence from clinical and preclinical research overwhelmingly
support oxidative stress as a key factor implicated in alcohol-mediated damage that affects neurons,
oligodendroglia, microglia, astroglia as well as cerebral vasculature [13,17–20]. In the context of
oxidative damage, alcohol exposure and experience produces glutamate excitotoxicity which is an
activator of ROS that occurs in a calcium dependent manner [21,22]. Notably, glutamate excitotoxicity
in an alcohol naïve environment produces cerebrovascular endothelial oxidative damage in a
glumatatergic NMDA-receptor dependent manner [23–25]. However, a direct evidence for glutamate
excitotoxicity in alcohol-induced damage of the cerebrovascular endothelium is not apparent, and this
effect of alcohol could contribute to alcohol-induced damage of the endothelium and blood-brain
barrier disruption [26]. Moreover, the impact of oxidative damage is too expansive to be justified
in a single review. Therefore, the current review narrowly focusses on alcohol and withdrawal
mediated adaptations specifically in the endothelial system including the blood-brain-barrier and
the oligodendroglia.

The blood-brain barrier is a multifaceted endothelial system that protects the sensitive
microenvironment of the central nervous system. This function is achieved through the collusion
of the several components that comprise the blood-brain barrier, which in vertebrates, consists
primarily of specialized unfenestrated endothelial cells supported by the endfeet of perivascular
astrocytes, in conjunction with pericytes embedded in the endothelial cell basement membranes [27,28].
The endothelial cells in the blood-brain barrier are connected via tight junctions and are surrounded by
a matrix of collagen-IV, laminin, fibronectin, and other matrix proteins [29]. Disruption of blood-brain
barrier integrity is a hallmark of numerous pathologies of the nervous system, including Alzheimer’s
disease, cerebral ischemia, encephalitis and multiple sclerosis [28,30,31].

The role of the blood-brain barrier in AUD is critical because of two key tenets. (1) Chronic alcohol
abuse damages the blood-brain barrier [26], and (2) leaky blood-brain barrier leads to an influx of
peripheral factors (cytokines, chemokines, toxins, leukocytes, etc.), that contribute to the gamut of
neuronal damage observed in alcohol toxicity [18,20,32]. For example, chronic ethanol exposure in
mice models resulted in decreased expression of the tight-junction proteins such as zona occludin-1 and
claudin-5 [15,33], thereby compromising the blood-brain barrier. This impaired vascular endothelial
integrity enables enhanced infiltration of leukocytes into the brain, leading to subsequent release of
more cytokines and proinflammatory agents that further contribute to a pathological inflammatory
phenotype in alcoholism [34]. The current review attempts to explain these blood-brain barrier
changes from the perspective of the platelet endothelial cell adhesion molecule 1 (PECAM-1), which is
a key component of the endothelial cells. For example, PECAM-1 has been implicated in several
other neuropathologies that involve blood-brain barrier damage [28,30,31]. PECAM-1 is essential in
regulating endothelial cell integrity, especially during an inflammatory challenge [30,35–37] and has
been identified and utilized as a marker of blood-brain barrier integrity [30]. The most important
reason for pursuing PECAM-1 in alcoholism is that PECAM-1 has been shown to mediate enhanced
transendothelial migration of monocytes in response to oxidative stress [38]. Since oxidative stress is
widely implicated in alcohol toxicity and in AUD [13,17,19,34], it can be hypothesized that PECAM-1
is involved in pathophysiology of AUD.
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2. Platelet Endothelial Cell Adhesion Molecule-1: Source and Function

2.1. Source of PECAM-1

Adhesion molecules allow the interaction between immune cells and endothelium. The adhesion
molecules belong to the mucin, selectin, cadherin, integrin and Ig superfamily [39,40]. PECAM-1 is a
type I transmembrane adhesion protein of 130 kDa, which belongs to a subgroup of the Ig superfamily,
characterized by the presence of immunoreceptor tyrosine-based inhibitory motifs. PECAM-1 is
encoded by a 65-kb gene allocated in the long arm of chromosome 17 in humans [41] and chromosome
10 in rats [42], and the region driving its transcription has been identified as a TATA-less promoter
containing relevant EGR-1 and GATA-2 cis-regulatory elements [43,44]. Structurally, the extracellular
domain of PECAM-1 contains 6-Ig homology domains capable of both homophilic and heterophilic
binding [45,46]. PECAM-1 has a single transmembrane domain, and a cytoplasmic domain
characterized by its dual immunoreceptor tyrosine-based inhibition motif (ITIMs), and eight exons that
are subjected to alternative splicing [46–48]. Detailed discussions about the significance of the structural
domains have been provided elsewhere [37,45,46,49–54]. Here structural components of PECAM-1 are
presented briefly in the context of its function in physiological and pathological conditions. PECAM-1
is also identified as cluster of differentiation 31 (CD31) as well as the endothelial cell junctional protein.
PECAM-1 is a glycosylated adhesion molecule abundantly expressed on the endothelial cells (blood
vessels and capillaries) and (to a lesser extent) on hematopoietic cells (platelets, monocytes, neurtophils)
and immune cells (B cells and T cells) [37,46,47,55]. Note, PECAM-1 is not known to be expressed on
neurons or glia [56]; in the brain PECAM-1 is exclusively expressed on cerebral endothelial cells that
make up the blood-brain barrier (Figure 1). PECAM-1 has several functions that are critical in healthy
physiology as well as in recovery following injury or other pathological conditions, and the following
sections will elaborate on the function of PECAM-1 on endothelial cells in the context of inflammation
and apoptosis [46,54].
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rat endothelial cell antigen (RECA); 1:500 mouse anti-RECA; cyanine 3 (CY3) and 4',6-diamidino-2-
phenylindole (DAPI); 1:2000). (a–d) Single slice confocal images of PECAM-1 (a), RECA (b) and merge 
(c); z-scan of the colabeling showing an orthogonal view along the xz and yz axis in (d). The 
orthogonal view demonstrates equal penetration of both the antibodies PECAM-1 and RECA, and 
confirms colabeling (MERGE) of PECAM-1 and RECA shown in panel (c). Scale bar in (c) is 20 μm, 
applies (a–g). (e–g) Epifluorescent images of PECAM-1 (e), RECA (f) and DAPI (g). (h) Confocal 
image of colabeling of PECAM-1 (CY2) and 28-day-old 5-Bromo-2´-Deoxyuridine (BrdU) cell (1:500 

Figure 1. (a–g) Photomicrographs of prefrontal cortex tissue from adult male Wistar rats
stained for platelet endothelial cell adhesion molecule 1 (PECAM-1); 1:500 rabbit anti-PECAM-1;
cyanine 2 (CY2), rat endothelial cell antigen (RECA); 1:500 mouse anti-RECA; cyanine 3 (CY3) and
4',6-diamidino-2-phenylindole (DAPI); 1:2000). (a–d) Single slice confocal images of PECAM-1 (a),
RECA (b) and merge (c); z-scan of the colabeling showing an orthogonal view along the xz and yz
axis in (d). The orthogonal view demonstrates equal penetration of both the antibodies PECAM-1
and RECA, and confirms colabeling (MERGE) of PECAM-1 and RECA shown in panel (c). Scale bar
in (c) is 20 µm, applies (a–g). (e–g) Epifluorescent images of PECAM-1 (e), RECA (f) and DAPI (g).
(h) Confocal image of colabeling of PECAM-1 (CY2) and 28-day-old 5-Bromo-2´-Deoxyuridine (BrdU)
cell (1:500 sheep anti-BrdU; CY3) in the prefrontal cortex of the adult male Wistar rat. Scale bar in
(c) is 30um in (h). Arrows point to BrdU cells. Panel (h) demonstrates location of BrdU (28-day-old
bromodeoxyuridine labeled) cells in close proximity to PECAM-1 cells in the prefrontal cortex of
the adult rat brain, and additional phenotypic analysis of BrdU cells shows that they develop into
premyelinating oligodendrocytes [26]. The later part of the review discusses the relationship between
oligodendrocytes and PECAM-1 and their potential role in alcohol use disorder (AUD).
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2.2. Function of PECAM-1 on the Endothelial Cells

PECAM-1 is expressed abundantly on the cell membrane and in the intercellular junction
between endothelial cells (Figure 2); this localization is mediated largely by PECAM-1/PECAM-1
homophilic binding via the first two Ig-domains [46,55,57]. Here PECAM-1 functions as a biosensor
that modulates vascular permeability in response to variations in blood-flow or to osmolarity
changes [55,58–60]. Homophilic binding between PECAM-1 receptors on endothelial cells and on
leukocytes is involved in transendothelial migration of leukocytes, a process involving transient
increase in vascular permeability [55,61–64]. Of note, PECAM-1 itself is not a component of the tight
junctions (claudins and occludins), or the adheren junctions (vascular endothelial (VE)-cadherin and
catenins) which bind to the actin cytoskeleton of endothelial cells to physically regulate vascular
permeability [46,55,65]. In contrast, PECAM-1 facilitates the activation of β-catenin, which then
associates with and supports the function of VE-cadherin [46,66]. Importantly, PECAM-1 deficient
mice exhibit no vascular abnormalities under normal conditions [65]. However, vascular resilience
in the presence of a physical stressor or an inflammatory challenge, as well as vascular recovery
after a barrier breach are severely impaired in PECAM-1 deficient mice [36,65,67–70]. Taken together,
PECAM-1 regulates vascular permeability (without direct interaction with junction proteins) by
modulating the structure and function of tight junction and adherens junction proteins, in response to
inflammation, injury or mechanical stress on vasculature.
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brackets in the endothelial cell. 

PECAM-1 signaling is typically initiated by phosphorylation of the ITIMs by Csk and Src 
families of protein tyrosine kinases (PTKs), followed by the recruitment of proteins that contain the 

Figure 2. Schematic of an endothelial cell in the periphery with expression of PECAM-1 and alterations
in signaling and expression of proteins by alcohol (EtOH) experience. Blue arrows indicate direct
actions of EtOH in the cell, red arrows indicate secondary actions of EtOH in the cell. Hypothetical
involvement of PECAM-1 in alcohol-induced inflammatory signals is indicated in brackets in the
endothelial cell.

PECAM-1 signaling is typically initiated by phosphorylation of the ITIMs by Csk and Src
families of protein tyrosine kinases (PTKs), followed by the recruitment of proteins that contain the
Src homology 2 (SH-2) domain (example, SH-2 domain-containing protein-tyrosine phosphatase
or SHP-2) [49,50,53,54]. This binding activates mitogen-activated protein kinase/extracellular-
signal-regulated kinase (MAPK/ERK) pathway to allow increased vascular permeability, and to
enable endothelial cell migration that is critical for angiogenesis [27,45,55]. As mentioned above, the
cytoplasmic domain of PECAM-1 is subjected to alternative splicing and splice variants of PECAM-1
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are hypothesized to be expressed in tissue selective and developmentally specific manner [27,47]. Of
interest, splice variants lacking a particular exon (exon 14) are incapable of binding SHP-2 rendering
the cells incapable of triggering the above pathway [27,71], and as such, are more predominant in
mature vasculature [72]. Overexpression of PECAM-1, observed during recovery from ischemic
damage [73,74] is hypothesized to transiently restore the angiogenic phenotype by “isoform switching”
to exon 14 containing PECAM-1.

2.3. Role in Inflammatory Responses

The role of PECAM-1 in inflammation is multifaceted, where studies have supported
the anti-inflammatory properties and pro-inflammatory characteristics of the molecule.
The anti-inflammatory roles of PECAM-1 include inhibition of leukocyte activation, dampening
cytokine production during inflammation, and providing resilience to endothelial barrier cells
against inflammatory challenges (for review, [64]). Furthermore, endothelial PECAM-1 (and not
leukocyte PECAM-1) was found to be protective against excessive inflammation in an animal model of
multiple sclerosis [68]. These anti-inflammatory properties are dependent on PECAM-1 signaling
mechanisms including, ITIM-phosphorylation and recruitment of SH-2 domain containing binding
partners [68,70,75], enhanced phosphorylation of signal transducer and activator of transcription-3
(STAT3) [70] and decreased translocation of nuclear factor kappa B (NF-kB) in the nuclei of
endothelial cells [76]. These findings suggest that the anti-inflammatory roles of PECAM-1 are
limited to certain physiological states, and conditions that do not involve severe oxidative stress and
vascular inflammation.

The most well characterized pro-inflammatory role of endothelial PECAM-1 is the contribution of
PECAM-1 to trans-endothelial migration of white blood cells (monocytes and neutrophils; [77,78]).
This function is dependent on PECAM-1 homophilic and hetereophilic binding with the leukocytes,
and is not contingent of ITIM-mediated signaling [52,64,79]. Interestingly, this response is triggered
by interleukin-1β (IL1β), but not other pro-inflammatory molecules such as tumor necrotic factor-α
(TNFα) or other chemokines (Figure 2; [37,61,62,80,81]. With respect to the inflammatory transcription
factor NF-kB, several interesting lines of evidence demonstrate that PECAM-1 could enhance
the expression of NF-kB, and NF-kB could increase the transcription of PECAM-1. For example,
it is important to note that PECAM-1 regulation of NF-kB occurs under conditions of oxidative
stress-induced inflammation in rodent models of blood-flow restriction and in ischemia/reperfusion
injury via tyrosine phosphorylation [58,82], and does not occur in in vitro conditions that involve sheer
overexpression of PECAM-1 [83]. Mechanistic studies show that NF-kB mediated pro-inflammatory
effects of PECAM-1 is hypothesized to be mediated via phosphoinositol-3-kinase/Akt (PI3K/Akt)
signaling pathway [58]. With respect to NF-kB regulation of PECAM-1, molecular studies have
identified two consensus sites for NF-kB within the promotor region of PECAM-1 gene [44],
and few studies have demonstrated functional relevance for this interaction, where NF-kB regulates
transcriptional activity of PECAM-1 [84], and vascular inflammation mediated by PECAM-1 is
dependent on NF-kB activity [85]. Given the extensive evidence that NF-kB is implicated in the
neuroinflammatory responses in AUDs [34,86] and the limited evidence that PECAM-1 could be
involved in the neuroinflammatory responses in AUD [26,87], mechanistic studies understanding the
relationship between PECAM-1 and NF-kB in the context of AUDs is an important future pursuit.

2.4. Role in Apoptosis

Cytoprotection of endothelial cells is another critical function of PECAM-1. In fact, the same
N-glycosylation of the Ig-domains that mediate localization of PECAM-1 at the endothelial cell-cell
junction, are also implicated in anti-apoptotic signaling that enhances endothelial cell survival
in culture [51,52,57]. Apoptotic cell death in endothelia as well as in neurons and glia can be
triggered by an extrinsic pathway or an intrinsic apoptotic pathway, or by a cross-talk of the two
pathways [88–91]. Briefly, the extrinsic pathway is triggered by the activation of ‘death receptors’



Brain Sci. 2017, 7, 131 6 of 18

that cause the activation of caspase 8 enzymes that ultimately cleaves and activates the effector
caspases such as caspase 3. The intrinsic pathway is mitochondria-dependent, whereby cellular
insults (via free-radicals, etc.) lead to activation of pro-apoptotic proteins of the B-cell lymphoma
2 family (Bcl2 family, for example Bax and Bak), releasing cytochrome C from the mitochondria,
and that finally converge onto activation of caspase 3. PECAM-1 exerts its anti-apoptotic function by
inhibiting components of both the intrinsic and the extrinsic pathways via activation of PI3K/Akt
signaling pathway [54,92]. Specifically, PECAM-1 mediated activation of PI3K/Akt pathway
upregulates NF-kB-mediated transcription to facilitate angiogenesis, cell survival/growth and recovery
of endothelial cell barrier [58,64,82]. In this manner, PECAM-1 is able to mediate protection
against extrinsic apoptotic pathways that are instigated TNFα signaling, or as a consequence of
endothelial barrier damage [71,90,92,93]. PECAM-1 dependent PI3K/Akt pathway activation has
been shown to upregulate expression of anti-apoptotic Bcl-2 family proteins (including Bcl-xL
and Bcl-2), thus preventing the intrinsic apoptosis [71,92]. Additionally, PECAM-1 may confer
its anti-apoptotic effects indirectly by modulating STAT-3 activity or by modulating intracellular
calcium signaling [35,70,94,95]. Taken together, PECAM-1 signaling is capable of cytoprotection
of the endothelial cells by supporting anti-apoptotic pathways. This has been shown to promote
tumorigenesis, especially by allowing vascularization of solid tumor [92]. Whether, such properties
enable PECAM-1 to support non-tumorigenic cell proliferation in non-endothelial brain cells is a topic
of interest, especially if such processes may help in the recovery of brain cells.

2.5. Role in AUD

Very few studies have directly investigated PECAM-1 in relation to alcohol, particularly as it
pertains to the ethanol toxicity and addiction. Most of PECAM-1’s role discussed here has been
inferred from PECAM-1 related signaling partners implicated in alcohol’s effects on the blood-brain
barrier. As discussed in the sections above, much of the endothelial damage produced by chronic
or high doses of alcohol are mediated by triggering pro-inflammatory processes [17,20], and have
been presented as such in a simple schematic (Figure 3). Briefly, alcohol readily diffuses across
the lipid bilayer of blood brain barrier and is metabolized into acetaldehyde by enzymes such as
cytochrome P450-2E1 and alcohol dehydrogenase [20]. Acetaldehyde can directly catalyze endothelial
cadherin-catenin complexes and occludins, which are critical components of the adherens junctions and
tight junctions, respectively, [66,96] to affect blood-brain barrier disruption. Alternatively, acetaldehyde
can facilitate the production of ROS through the activation of enzymes like NADPH oxidase and nitric
oxide synthase (NOS) in all types of cell (neurons, glia, and brain endothelial cells) [19,97,98]. High
doses of alcohol also activates other stress related pathways such as xanthine oxidase, and enhanced
xanthine oxidase by alcohol could be facilitated via alcohol-induced glutamate toxicity [99]. Enhanced
xanthine oxidase and other cellular mechanism (e.g., increased NADH/NAD+ ratio, glutathione (GSH)
depletion, enhanced cytrochrome-P450 expression) that contribute to enhanced ROS could contribute
to PECAM-1 activation (Figure 2). For example, ROS and NOS can trigger prolonged upregulation of
NF-kB signaling, thereby enhancing inflammatory and immune responses that further contribute to
the neuropathology associated with alcohol addiction [13,17,19]. These mechanisms may be linked
back to the transendothelial migration of leukocytes promoted by PECAM-1 [38] or to modulation
of VE-cadherin (in adherens junctions) by PECAM-1 [61,78]. Alternately, the above mechanism may
act synergistically or antagonistically with PECAM-1-mediated inflammatory signaling pathways.
Therefore, future mechanistic studies are needed to determine the role of PECAM-1 in mediating
neuroinflammatory responses in AUDs.
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mechanism. OPCs, oligodendrocyte progenitor cells; OLGs, oligodendrocytes; HMGB-1, high 
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was shown to inhibit angiogenesis during wound healing, which may be associated with the pro-
apoptotic effects of ethanol via the Bax/Bcl pathways [100,101]. Note, these acute intoxication related 
damages may be unavoidable as the mature brain typically expresses PECAM-1 isoforms lacking 
exon 14, which is essential for its anti-apoptotic function [47]. As observed during recovery from 
ischemic damage, isoform switching to reinstate the angiogenic, anti-apoptotic isoform may occur to 
enable repair and remodeling of the damaged blood-brain barrier [73,74]. Therefore, similar 
processes may be recruited during prolonged alcohol abstinence to enable the recovery of cerebral 
endothelium as well as other neural cells damaged by alcohol toxicity [71,92]. Evidence supporting 
such a time-line was provided by our laboratory, where increased PECAM-1 expression was 
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[87]. Whether such processes contribute to the recovery of neuronal function remains controversial. 
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headed arrows indicate the cell type; closed headed arrows indicate a mechanism followed by direction
of effect; red thick arrows indicate increases in protein expression or effect on the signaling mechanism.
OPCs, oligodendrocyte progenitor cells; OLGs, oligodendrocytes; HMGB-1, high mobility group box 1.

Given the angiogenic and anti-apoptotic roles of endothelial PECAM-1, recovery following alcohol
toxicity during abstinence may be closely linked to PECAM-1. For example, acute ethanol was shown
to inhibit angiogenesis during wound healing, which may be associated with the pro-apoptotic effects
of ethanol via the Bax/Bcl pathways [100,101]. Note, these acute intoxication related damages may
be unavoidable as the mature brain typically expresses PECAM-1 isoforms lacking exon 14, which is
essential for its anti-apoptotic function [47]. As observed during recovery from ischemic damage,
isoform switching to reinstate the angiogenic, anti-apoptotic isoform may occur to enable repair and
remodeling of the damaged blood-brain barrier [73,74]. Therefore, similar processes may be recruited
during prolonged alcohol abstinence to enable the recovery of cerebral endothelium as well as other
neural cells damaged by alcohol toxicity [71,92]. Evidence supporting such a time-line was provided
by our laboratory, where increased PECAM-1 expression was observed in the rodent neocortex during
protracted abstinence from chronic ethanol administration [87]. Whether such processes contribute
to the recovery of neuronal function remains controversial. The PECAM-1 upregulation during
protracted alcohol abstinence was associated with suppressed neuronal activation and enhanced
oligodendroglial proliferation in the prefrontal cortex (a brain region implicated in addiction) as well
as with maladaptive high-levels of ethanol seeking [87,102]. Recent data also found that the blood-brain
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barrier integrity, as measured by expression of endothelial barrier antigen, was not fully recuperated at
the same time-point [26]. In an in vivo experiment evaluating chronic ethanol administration in alcohol
preferring rats, brain endothelial cells of ethanol-drinking rodents exhibited permanent increase
in blood-brain barrier permeability post endotoxin challenge (i.e., lipopolysaccharide, LPS) [103].
This enhanced permeability was shown to correlate with decreased transcriptional expression of
critical tight junction proteins, and paradoxically, was associated with neuroprotection against LPS
mediated apoptosis. Others report that withdrawal from chronic ethanol usage is a dynamic state,
during which there is significant upregulation of pro-inflammatory signals, including elevated
cytokine production and enhanced transcriptional expression of mediators of toll-like receptor
(TLR)-4-dependent neuroimmune signaling [104–106]. Taken together, the upregulated PECAM-1
expression observed during protracted abstinence may explain, in part, the continued inflammation,
suppressed apoptosis and retarded recovery of the endothelial barrier [50], although further isoform
analyses and mechanistic studies are needed to test this hypothesis. Furthermore, effect of PECAM-1
modulation on suppression of neuronal activation in response to alcohol related cues is a topic of
interest as a potential therapeutic strategy for addressing the increased risk for relapse in AUD.

3. Oligodendrocytes and Oligodendrogenesis

In higher order mammals, almost all neuronal cells at birth are incapable of proliferation,
with the notable exceptions of neuronal progenitors in the subventricular zone of the olfactory
bulb and the subgranular zone of the hippocampal dentate gyrus [107]. In contrast, de novo
oligodendrocytes (OLGs), capable of maturing into myelinating OLGs, are produced throughout
the lifetime of adult mammals via a process known as oligodendrogenesis [108–111]. A detailed review
of specific markers for the various stages of oligodendrogenesis can be found elsewhere [112–114].
The best understood and widely utilized marker for OLGs is Oligodendrocyte transcription
factor (OLIG2), a helix-loop-helix transcription factor that is expressed through all the stages of
oligodendroglial maturation [115–120]. Knockdown and upregulation of OLIG2 led to a decrease
and increase, respectively of oligodendrocyte progenitor cells (OPCs) that are identified using the
neuron-glial 2 (NG2) marker [121,122]. Interestingly, although OPCs were found to be multipotent
in vitro, overwhelming evidence in vivo suggests that the neurogenic potential of OPCs is very
limited and OPCs predominantly differentiate into OLGs [110,123–126]. Additionally, neural stem
cells from the subventricular zone of the olfactory bulb are considered to be a continuous source
of OPCs in the adult brain [122,127–129]. Notably, OPCs are functional and contribute to several
neuron-glial interactions. For example, some OPCs have voltage gated Na+ channels which generate
action potentials and receive electrical inputs from neurons [130]. Additionally, OPCs express
receptors for several key neurotransmitters and neuromodulators, including but not limited to
glutamate, γ-aminobutyric acid and dopamine [131–135]. Under healthy, physiological conditions,
electrical and neurochemical inputs from neurons are shown to modulate oligodendrogenesis and
myelination [136–139]. Furthermore, growth factors released from neurons are also involved in
modulating proliferation, migration, differentiation and myelination by OLGs [139–142], suggesting
that neuronal plasticity modulates OLG and OPC plasticity. In addition to the neuroplasticity effects
on OPCs and OLGs, several recent studies support the involvement of the cerebrovascular system
in providing trophic support to the maintenance of OPCs and OLGs [143]. For example, interactions
between OLGs, myelin, endothelial cells and neuroinflammatory proteins have been demonstrated
in models of brain injury, including, stroke, ischemia and AUD [87,144,145]. Furthermore, OPCs are
positioned at close proximity to endothelial cells in the adult brain (Figure 1h; [26], and proliferation
and survival of OPCs is regulated by vascular endothelial cells, such that increase in endothelial
response enhances OPC proliferation and survival [146]. Therefore, a deeper understanding of the
mechanisms of endothelial-OLG and endothelial-OPC trophic coupling may lead to new therapeutic
approaches for myelin- and vascular inflammation-related diseases, such as stroke and AUDs.
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Role of OLGs and OPCs in AUD

While loss of white matter itself is a critical part of neuropathology of AUDs [147], this section
of the review is focused on OLGs and OPCs in the context of alcohol-induced neuropathology.
We recently reviewed the potential role for impaired oligodendroglial proliferation and abnormal
maturation in addictive disorders [111]. For example, OLG homeostasis was disrupted by both
psychostimulants like methamphetamine as well as sedative hypnotics, like alcohol [126,148–150].
With respect to alcohol, proliferation and survival of OPCs in the prefrontal cortex (PFC) were
suppressed by a chronic intermittent ethanol exposure paradigm (CIE) [149,150], a widely established
model of moderate to severe AUD. Furthermore, this suppression of proliferation was found to be
transient, and a proliferative burst was observed 72 h post CIE [87,102]. These hyperproliferating
OPCs in the PFC survived into protracted abstinence [87,102], differentiated into OLIG2-positive
OLGs [87,111,126,148,150], and matured into myelinating OLGs [87]. One may suggest that the
enhanced oligodendrogenesis in the PFC is a compensatory (neuroprotective) mechanism that
contributes to the recovery of the cortical tissue lost due to AUD [151]. Support for this hypothesis
is provided by the observation that myelin levels in the PFC are inversely linked to neuronal
activity in the PFC and to stress-induced relapse vulnerability [152]. Therefore, increase in
myelin basic protein observed during protracted abstinence from CIE may reduce propensity for
relapse [153]. Contradicting this hypothesis, we recently reported that increased myelin basic protein
and oligodendeogenesis during protracted abstinence from alcohol were associated with decreased
neuronal activation (FOS) in the PFC, and these changes were associated with increased relapse to
cue-mediated ethanol seeking [87]. Taken together these results suggest that the relation between OLG,
myelination and behavior is complex and several other factors may weigh in on accurate determination
of relapse risk. In that regard, we will now discuss the possible interaction of PECAM-1 in this relation
between OLG and AUD.

4. Interaction of Oligodendrogenesis and PECAM-1 in AUD

Very few studies have investigated the relationship between cerebral endothelial cells and
oligodendrogenesis in pathophysiology and one study as it pertains to AUDs [26]. For example,
rodent model of binge ethanol exposure demonstrate that ethanol-induced cytokine responses
disrupts myelin associated proteins [154], which is associated with reduced OPCs and with cognitive
deficits [149,155,156]. Given the role of PECAM-1 in mediating neuroinflammatory response by
endothelial cells [30,64,157,158], it is fairly intuitive that PECAM-1 may be involved in these
effects [106,159].

In this context, during prolonged abstinence from alcohol in an animal model of AUD, higher
PECAM-1 expression was associated with higher oligodendrogenesis and higher reinstatement
of cue-mediated alcohol seeking [87]. Access to running wheel reversed these effects such that
normalized PECAM-1 expression and oligodendrogenesis were associated with lower reinstatement
of ethanol seeking [87]. Notably, in the animal model of AUD and not in rats modeling low levels of
social-drinking like behaviors, increased oligodendrogenesis was observed juxtaposed with PECAM-1
labeled cells [26]. These and others studies report that OPCs are located close to cerebral endothelia,
and under pathological conditions may contribute towards weakening of the endothelial barrier
in a paracrine manner [160]. In contrast to the effects of alcohol toxicity during intoxication and
prolonged abstinence, exercise and access to running wheels have been shown to reduce NG2-OPCs
and increase differentiation of OPCs [126,161]. Exercise helped protect blood-brain barrier and
protect critical neuronal function in other diseases, such as cerebral ischemia, multiple sclerosis
as well as addiction [67,162–164]. Taken together, exercise may exert opposite effects on OPCs
depending on the pathological history of the subject, a phenomenon that is reminiscent of the effects of
cytokines IL-1β and TNF-α on oligodendrogenesis [109,165]. These neuroinflammatory and protective
effects may be mediated by PECAM-1-dependent leukocyte transendothelial migration as well as by
PECAM-1’s effects on apoptotic mechanisms [46,78,82,92,166]. As mentioned previously, all OPCs and
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myelination are not identical, and by extrapolation beneficial. Future studies should further investigate
potential differences in OPCs and OLGs generated during physiological and pathological conditions,
and whether history of drug-induced neurotoxicity alter the functional properties of these cells.

5. Conclusions

Chronic ethanol exposure induces oxidative stress and neuroinflammation, in part
mediated by endothelial PECAM-1, which may contribute to blood-brain barrier damage,
and reduced oligodendrogenesis and demyelination and cognitive deficits. Abstinence from
alcohol may not necessarily reverse the blood-brain barrier damage or reduce risk of relapse.
However, oligodendrogenesis and expression of myelin-related proteins are increased and some
aspects of cognitive deficits are ameliorated. These effects along with upregulation of PECAM-1 could
be physiological mechanisms of recovery from ethanol-induced oxidative damage or alternatively,
be evidence for vascular/endothelial inflammation driving maladaptive plasticity.
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