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Abstract

Background: Human African trypanosomiasis (HAT) caused by Trypanosoma brucei gambiense remains highly prevalent in
west and central Africa and is lethal if left untreated. The major problem is that the disease often evolves toward chronic or
asymptomatic forms with low and fluctuating parasitaemia producing apparently aparasitaemic serological suspects who
remain untreated because of the toxicity of the chemotherapy. Whether the different types of infections are due to host or
parasite factors has been difficult to address, since T. b. gambiense isolated from patients is often not infectious in rodents
thus limiting the variety of isolates.

Methodology/Principal findings: T. b. gambiense parasites were outgrown directly from the cerebrospinal fluid of infected
patients by in vitro culture and analyzed for their molecular polymorphisms. Experimental murine infections showed that
these isolates could be clustered into three groups with different characteristics regarding their in vivo infection properties,
immune response and capacity for brain invasion. The first isolate induced a classical chronic infection with a fluctuating
blood parasitaemia, an invasion of the central nervous system (CNS), a trypanosome specific-antibody response and death
of the animals within 6–8 months. The second group induced a sub-chronic infection resulting in a single wave of
parasitaemia after infection, followed by a low parasitaemia with no parasites detected by microscope observations of
blood but detected by PCR, and the presence of a specific antibody response. The third isolate induced a silent infection
characterised by the absence of microscopically detectable parasites throughout, but infection was detectable by PCR
during the whole course of infection. Additionally, specific antibodies were barely detectable when mice were infected with
a low number of this group of parasites. In both sub-chronic and chronic infections, most of the mice survived more than
one year without major clinical symptoms despite an early dissemination and growth of the parasites in different organs
including the CNS, as demonstrated by bioluminescent imaging.

Conclusions/Significance: Whereas trypanosome characterisation assigned all these isolates to the homogeneous Group I
of T. b. gambiense, they clearly induce very different infections in mice thus mimicking the broad clinical diversity observed
in HAT due to T. b. gambiense. Therefore, these murine models will be very useful for the understanding of different aspects
of the physiopathology of HAT and for the development of new diagnostic tools and drugs.
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Introduction

Human African Trypanosomiasis (HAT), also called sleeping

sickness, is a widespread fatal disease in many rural areas of sub-

Saharan Africa caused by protozoan parasites of the genus

Trypanosoma transmitted by tsetse flies. Trypanosoma brucei rhodesiense

is responsible for the acute form in East Africa and Trypanosoma

brucei gambiense induces a chronic form in West and Central Africa

[1–3]. Without treatment, death occurs from either massive

parasitaemia or severe neuropathogenesis. Accurate evaluation of

the disease stage in the early haemolymphatic stage or the late

encephalitic stage is critical as the treatment for both stages is

different. Late stage is often treated with melarsoprol, which

induces a fatal reactive encephalopathy in 5% of the cases. There

is no current consensus on the diagnostic criteria for CNS

involvement and the specific indications for second stage

treatments might differ [4–6]. Diagnosis relies on the Card

Agglutination Test for Trypanosomiasis (CATT) based on the

detection of host antibodies directed against conserved major

Variable Surface Glycoproteins (VSG) of the parasite coat [7,8]
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and on the direct microscopic detection of parasites in blood,

lymph nodes or cerebrospinal fluid (CSF). However T. b. gambiense

infections in humans are known for their low parasitaemia and

current diagnostics are prone to false negative results. PCR using

specific DNA probes [9–12] and loop-mediated isothermal

amplification (LAMP) [13,14] were introduced for the detection

of the parasites in infected humans or animals providing better

sensitivity and specificity compared to parasitological methods

[15]. However experiments performed in this study and by other

groups proved that even PCR methods may be limited in the case

of very low parasitaemia. Thus, new molecular and/or serological

methods, possibly based on invariant targets are needed in field

diagnosis. Importantly, experimental models for T. b. gambiense are

limited mainly to subacute or chronic infections since only a few T.

b. gambiense isolates could be propagated in rodents such as mice

[16,17], cyclophosphamide-immunosuppressed mice [18], severely

immunodeficient mice [19] or particular rodent species, Mastomys

natalensis [20]. Therefore, the variety of T. b. gambiense isolates that

might be characterised and studied for their in vivo behavior is

limited. In this study, we have isolated a range of different T. b.

gambiense stocks from HAT patients and adapted them to in vitro

culture conditions. These isolates were characterised by molecular

fingerprinting and tested for mice infectivity. As they induced

different types of infections in BALB/c mice, ranging from chronic

to silent infections, the presence and the localization of the

parasites, as well as the immune responses of infected mice were

addressed.

Materials and Methods

Isolation and in vitro culture of parasites
CSF samples were obtained from passively or actively HAT

detected patients admitted at the Projet de Recherches Cliniques

sur la Trypanosomiase (PRCT), Daloa Ivory Coast in 1991. As a

reference center from the Ministry of Health, this institution deals

with clinical management and research of HAT. Written informed

consent was obtained from all patients in this study. The Comite

de Protection des Personnes Sud-Ouest et Outre Mer III

(cpp.soom3@u-bordeaux2.fr) decided that these procedures did

not need approval. Trypanosomes were isolated from CSF and

cultured either by in vitro culture or by intraperitoneal (i.p.)

inoculation in BALB/c mice as described in results. Occasionally,

parasites were separated from mice blood cells by anion-exchange

chromatography on DEAE-cellulose (DE-52, Whatman Biochem-

ical) [21].

Mice infection and parasitemia estimation
BALB/c J mice were purchased from Elevage Janvier (5394 Le

Genest-St-Isle-France), NOG (NOD.Cg-Prkdescid Il2rgtm1 Wjl/

Szj) and NOD/SCID mice (NOD.CB17/ICRT-Prkdescid/J)

were bred locally in specific pathogen-free conditions and used

for experiments at five to six weeks of age. All animal studies

adhered to protocols approved by the University of Bordeaux 2

animal care and use committee and the Commission de Genie

Genetique (Direction Generale de la Recherche et de l’Innova-

tion). Groups of 4–6 mice were infected i.p. with either a high load

(1–56106) or a low load (103) of in vitro or in vivo (NOD/SCID

mice) expanded parasites in a 250 ml final volume of PBS

(phosphate-buffered saline : 137 mM NaCl, 10 mM Phosphate,

2.7 mM KCl, pH 7.4) containing 1% glucose. Trypanosomes

were also inoculated in BALB/c mice immunosuppressed 24 h

before infection with cyclophosphamide (200 mg/kg of body-

weight; Sigma-Aldrich, Saint-Quentin Fallavier, France). Mice

tail-blood was collected onto a slide and parasitaemia was

determined microscopically based on the observation of at least

200 fields at a 400 magnification. The limit of detection was

estimated at 104 parasites/ml. To convert the actual concentration

of parasites in the blood, a conversion table was made by diluting

known numbers of parasites in mouse blood. When parasitaemia

was higher than 106 parasites/ml, parasites were directly counted

in a haemacytometer by diluting the tail-blood in PBS.

Parasite DNA and total mRNA purification
Genomic DNA was isolated from the trypanosomes by standard

methods [22] and stored at 4uC until needed. Total RNA was

extracted from the trypanosomes using RNeasyH mRNA Mini Kit

(Qiagen, Hilden, Germany). mRNA was purified from total RNA

using OligotexH mRNA Minikit (Qiagen). The extracted mRNA

was kept frozen at 280uC until needed. For PCR detection, a

200 ml sample of whole blood was collected in heparinized

capillaries and DNA was extracted with the QIAamp DNA mini

kit (Qiagen) according to the manufacturer’s instructions and

stored at 220uC.

VSG analysis
To amplify only VSG-encoding transcripts, RT-PCR amplifica-

tion was performed using a forward primer designed to a conserved

nucleotide sequence of the mini-exon found at the 59 end of

trypanosome mRNAs and a reverse primer designed to a conserved

nucleotide sequence found at the 39 untranslated region of VSG

mRNAs of trypanosomes belonging to the Trypanozoon subgenus.

The forward primer used was IL07725 designed to contain a KpnI

site (59-CGG GTA CCT AGA ACA GTT TCT GTA CTA TAT

TG-39) and the reverse primer was IL07722 designed to contain a

BamHI site (59-CGG GAT CCA GGT GTT AAA ATA TA-39)

[23]. The reaction was carried out using Invitrogen One-Step RT-

PCR kit according to the protocol provided by the supplier. Briefly,

a 50 ml reaction mixture was prepared containing 0.1 mg mRNA,

0.2 mM of each primer, and 25 ml Reaction Mix 26 containing

dNTP, RT-PCR Enzyme and Buffer. RT-PCR amplification was

performed as follow: 45uC for 30 min, 94uC for 2 min, 5 touch-

down cycles (94 uC for 15 sec, from 55uC to 50uC for 30 sec, 70uC
for 2 min) and 34 cycles (94uC for 15 sec, 50uC for 30 sec and 70uC
for 2 min) and finally 70uC for 10 min. RT-PCR products were

Author Summary

Trypanosoma brucei gambiense is responsible for more
than 90% of reported cases of human African trypanoso-
mosis (HAT). Infection can last for months or even years
without major signs or symptoms of infection, but if left
untreated, sleeping sickness is always fatal. In the present
study, different T. b. gambiense field isolates from the
cerebrospinal fluid of patients with HAT were adapted to
growth in vitro. These isolates belong to the homogeneous
Group 1 of T. b. gambiense, which is known to induce a
chronic infection in humans. In spite of this, these isolates
induced infections ranging from chronic to silent in mice,
with variations in parasitaemia, mouse lifespan, their ability
to invade the CNS and to elicit specific immune responses.
In addition, during infection, an unexpected early tropism
for the brain as well as the spleen and lungs was observed
using bioluminescence analysis. The murine models
presented in this work provide new insights into our
understanding of HAT and allow further studies of parasite
tropism during infection, which will be very useful for the
treatment and the diagnosis of the disease.
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purified on SephacrylH S-300 column (GE Healthcare Life Sciences,

Orsay, France) and cloned into the pTopo vector (Invitrogen, Cergy

Pontoise, France). The plasmids were used to transform Escherichia

coli XL1 blue, which were subsequently plated on selective media for

the isolation of recombinants. Plasmids were purified from individual

bacterial colonies using the WizardH Plus SV Minipreps DNA

Purification System (Promega, Charbonnières, France). The size of

inserts was determined by PCR using vector primers and at least 10

clones of each isolate were sequenced. Similarity searches of

GenBank/NCBI database were performed with the program

BLAST (http://www.ncbi.nlm.nih.gov/BLAST/) using the default

matrix. Alignment of two sequences was performed using the

program FASTA (http://fasta.bioch.virginia.edu/fasta_www/cgi/

search_frm2.cgi).

Microsatellites and minisatellites analysis
Microsatellite analysis of the MORF2-CA, M6C8-CA,

MT3033-AC/TC and MEST19-AT/GT loci was performed as

previously described [24] except that the PCR products were

analysed on both an ABI 377 DNA and an ABI 3130 XL

sequencer (PE, Applied Biosystems). PCR and analysis of the

PARP minisatellite locus (PE procyclin repetition) [25] was

performed as described for the microsatellites using PARP-S

(GACGATACCAATGGCACTG) and PARP-AS-6-FAM� (TG-

CGAACGGAAGTGCAAC) primers.

PCR detection of parasites
In order to avoid loss of sensitivity due to blood contamination

with polymerase enzyme inhibitors [26], commercial columns for

blood DNA extraction ensuring reproducibility and a high degree

of purification were used for all samples (QIAamp DNA mini kit

from QIAGEN) [27]. As PCR detection based on a single target is

often doubtful for very low parasitaemia, three different targets

were used to validate the presence of trypanosome DNA in the

blood of infected mice: 1) KIN primer set (Kin1: 59-

GCGTTCAAAGATTGGGCAAT-39; Kin2: 59-CGCCCGA-

AAGTTCACC-39) designed by McLaughlin et al. [28] amplifying

a 360 bp product from a highly conserved and highly represented

region (100–200 copies per parasite) named ITS1 and located

between 18S and 5.8S rRNA genes, 2) TBR primer set (TBR1: 59-

CGAATATTAAACAATGCGCAG-39; TBR2: 59-AGAAC-

CATTTATTAGCTTTGTTGC-39) [29] shown to be highly

sensitive for HAT diagnosis [26,30] and targeting a 177 bp

repeated satellite DNA; and 3) the primers designed by

Deborggraeve et al., [27] and frequently used in diagnosis test

for HAT as they amplify a 106 bp sequence in conserved 18S

rRNA (18S-F: 59-CGCCAAGCTAATACATGAACCAA-39;

18S-R: 59-TAATTTCATTCATTCGCTGGACG-39). All PCR

were carried out in a final volume of 25 ml containing 0.8 mM of

each primer, 0.2 mM of each deoxyribonucleotide, 16 incubation

buffer with 2.5 mM MgCl2, 1 unit of HotStar Taq polymerase

(QIAGEN, Hilden, Germany) and 5 ml of extracted DNA. PCR

conditions with Kin, TBR and 18S primers were performed

according to the method previously described [27,31,32],

respectively. Kin1-2 primers anneal in the conserved regions of

the 18S and 5.8S rRNA genes to amplify the ITS1. TBR1-2

primers are specific for Trypanosoma brucei sensu lato [33]. 18S

primers amplify a sequence of the Trypanosomatidae 18S rRNA

gene. Briefly, PCR conditions with Kin primers were as follow: an

initial step of 15 min at 94uC to activate the HotStar Taq

polymerase; four cycles of amplification with 1 min denaturation

at 94uC, 1 min hybridization at 58uC and 1 min elongation steps

at 72uC; eight cycles of amplification with 1 min denaturation at

94uC, 1 min hybridization at 56uC and 1 min elongation steps at

72uC; 23 cycles of amplification with 1 min denaturation at 94uC,

1 min hybridization at 54uC and 1 min elongation steps at 72uC;

and a final extension step of 5 min at 72uC [31]. The amplification

conditions with TBR were an initial denaturation at 94uC for

15 min, 45 cycles of 94uC for 1 min, 56uC for 1 min and 72uC for

1 min and final extension was at 72uC for 5 min [32]. PCR

conditions with 18S primers were an initial denaturation step of

94uC for 15 min, 40 cycles of 94uC for 30 s, 60uC for 30 s, and

72uC for 30 s with a final extension at 72uC for 5 min [27]. PCR

amplification was performed in triplicate in three different assays.

Purified T. b .gambiense DNA was used as positive control and a

negative control without DNA was performed. 10 ml of reaction

samples or controls were tested on 1.5% agarose gel, stained with

0.5 mg/ml ethidium bromide. Results were positive when specific

size products were observed.

IgM quantification
Sandwich ELISA was used to quantify and to determine the

total IgM level in mice. Goat anti-mouse m-chain antibodies as a

capture antibody (Jackson ImmunoResearch, Baltimore) were

coated in a ninety-six-well microplate (Nalge Nunc International)

with 0.2 mg/well at 4uC overnight. After washing in PBS

containing 0.05% tween-20 (washing buffer) three times, the plate

was incubated with 100 ml/well of 3% BSA-PBS for 30 min at

37uC. The wells were then reacted with test samples which were

diluted in 1% BSA-PBS (100 ml/well) for 2 hours at 37uC followed

by reaction with 100 ml/well of goat anti-mouse IgM antibodies

conjugated with horseradish peroxidase (Southern Biotech Bir-

mingham, USA) diluted 1:8000 in PBS-Tween buffer for

1.5 hours at 37uC. The plate was washed in washing buffer three

times after each reaction. The development was performed by

using ABTS, 2,29-azino-di-(3-ethylbenzthiazoline sulfonic acid)

(Sigma-Aldrich Corp, Saint-Quentin Fallavier, France) and was

stopped by addition of 10 mM NaOH, 1 mM EDTA (100 ml/

well). The absorbance at 405 nm was measured. The level of

mouse IgM was normalized by mouse reference serum (Gentaur

Belgium).

Cloning, expression and purification of recombinant
proteins

The full length sequence for TgsGP was cloned into the pET-

28c(+) vector (Novagen) using specific primers (F: 59-GCTATTC-

CATGGGGATGTGGCAATTACTAGCAATAG-39 containing

NcoI site and R: 59-CCGGAATTCTTAATGGTGATGGTGA-

TGGTTGCTGTGGTGTTTGCCACTTC-39 containing EcoRI

site), expressed in E. coli BL21 bacteria according to the

manufacturer’s instructions and purified in the presence of 8 M

urea by immobilized metal ion Ni-affinity chromatography (His-

Trap, GE Healthcare). The full-length calflagin gene (Tbg17-

19576 corresponding to the 26 kDa protein isoform) was amplified

using primers containing KpnI and HindIII sites (F: 59-TCTA-

GAGGTACCAATGGGTTGCTCAGGATCCAAGAAC-39 and

R: 59-CTGCAGAAGCTTC TAGGCAGAACCCTCGGCCG-

CAGG-39) and the insert was cloned into the pMalE vector (New

England Biolabs). After expression in E. coli BL21 bacteria, the

soluble fusion protein was purified by maltose-affinity chromatog-

raphy according to the manufacturer’s instructions. The extracel-

lular domains of ISG64, ISG65 and ISG75 were amplified from

genomic DNA and cloned into pET21d. The ISG proteins were

expressed in E. coli BL21 (DE3) trxB bacteria as inclusion bodies.

After purification of the inclusion bodies the proteins were

solubilized in 6 M guanidinium hydrochloride and purified by

Ni-affinity chromatography, refolded by overnight dialysis in

20 mM Tris buffer (pH 8.0) and concentrated by Q-sepharose
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chromatography. Denatured PFR protein was kindly provided by

D. Robinson. The soluble recombinant antigens ISGs and

calflagin were used to coat ELISA plates (0.1 mg/well). The

antibody response to these antigens was measured in ELISA as

previously described [34] by using a 1:100 dilution of the infected

mice sera.

SDS-PAGE, immunoblotting and recombinant protein
strip test

Total protein preparations of bloodstream form trypanosomes

were obtained by lysis of live parasites with 2% (wt/v) SDS and

heating at 100uC in the presence of a protease inhibitor cocktail

(complete Mini, EDTA-free; Roche Diagnostics, GmbH). T. b.

brucei trypanosome fractions were obtained as described previously

[35]. Briefly, trypanosomes (about 1010 cells) were washed in

phosphate saline glucose (pH 8.0) at 4uC, centrifuged and

hypotonically lysed in 15 ml of 5 mM sodium phosphate,

pH 8.0 in the presence of a protease inhibitor cocktail. After

centrifugation (44,000 g for 8 minutes), the soluble proteins and

the cytoskeleton/membrane proteins contained in the pellet

(washed four times in lysis buffer and resuspended in an equal

volume of 100 mM Tris pH 8.0) were boiled in SDS-PAGE

loading buffer. Protein preparations of 107 parasites (from total

lysate or each purified fraction) were loaded per well and separated

by SDS-PAGE (12%) before transfer onto polyvinyl difluoride

(PVDF) membranes (Immobilon-P; Millipore) and processed for

Western blotting as described previously [34]. Trypanosome

specific antibodies were tested by incubating the blots with infected

mice sera (diluted 1:100). For identification of potential immuno-

reactive proteins, blots were incubated with dilutions of invariant

specific antibodies: mouse anti-PFR2 monoclonal antibody

(1:500), rabbit anti-IS64, ISG65 or ISG75 polyclonal antibodies

(1:100), or a mouse anti-calflagin monoclonal antibody (culture

supernatant diluted K).

A recombinant protein strip test was developed to analyse the

mice infected immune response. Briefly, all recombinant proteins

were further purified by electroelution after SDS-PAGE and

loaded sequentially on a wide PAGE (0.5–2 mg of each protein per

strip). ISGs, TgsGP and calflagin were first separated for

15 minutes at 150 V on a 12% SDS-PAGE before loading PFR

and finishing the migration at 180 V. After blotting, nitrocellulose

membranes were cut into strips and incubated with infected mice

sera (diluted 1:100). After being washed three times in 1 M NaCl,

blots were incubated for 1 h with diluted horseradish peroxidase-

conjugated anti-rabbit or anti-mouse immunoglobulin G (IgG)

(both from Sigma) (1:10,000). Diaminobenzidine (DAB, Sigma)

was used as chromogen.

Brain immunohistochemistry
Anaesthetized mice were transcardially perfused with 50 ml of

ice cold PBS, then with 50 ml of ice cold 2% paraformaldehyde,

0.2% glutaraldehyde in 0.1 M phosphate buffer, pH 7.4. The

brains were removed, post-fixed in fresh 2% paraformaldehyde for

5–6 hours at 4uC and cryoprotected overnight at 4uC in a 15%

sucrose 0.1 M PO4 buffer, pH 7.4. The brains were then frozen in

isopentane at 250uC on liquid nitrogen and stored at 280uC.

Sections of 12 mm were cut in cryostat and stored at 280uC [36].

The slides were thawed and dried at room temperature then fixed

again in 4% paraformaldehyde for 5 minutes. The endogenous

peroxidase activity was quenched with 3% H2O2 in PBS for

5 minutes. The slides were washed in water then in PBS. The

sections were permeabilized and saturated with blocking buffer

(1% BSA 0.3% Triton X-100 in PBS) for 30 minutes. The sections

were then incubated overnight at room temperature with

antibodies (used at a 1:10000 dilution in blocking buffer) obtained

from rabbits that were hyper immunized with a total T. b.

equiperdum protein extract. The slides were washed in PBS and

incubated with a secondary biotinylated anti-rabbit antibody

(1:200) in blocking buffer for 90 min at room temperature.

Thereafter the sections were incubated with avidin-biotin complex

reagent (Vectastain ABC peroxidase, Vector, ABCYS, Paris,

France) according to the manufacturer protocol. The immuno-

complex was visualized with a DAB kit (Vector). The sections were

dehydrated in graded alcohol, mounted with DePeX (SERVA,

Paris, France), and analyzed for the presence of trypanosomes

using a Zeiss light microscope. Control sections (without primary

antibodies) showed no specific immunostaining.

Transformation of T. b. gambiense with the Rluc-pHD309
plasmid

The Rluc-pHD309 plasmid designed for the integration of the

Renilla luciferase gene into the b-tubulin region of T. brucei Lister

427 bloodstream forms was kindly provided by F. Claes [37] . The

Amaxa NucleofectorH system (Lonza, Levallois-Perret, France)

was used. It is based upon a combination of free-set programs and

‘‘cell-type specific’’ solutions of unknown composition, which was

described for giving vastly improved transfection efficiencies for

the protozoan parasite Plasmodium. A pellet of 107 parasites was

resuspended in 100 ml of Basic Parasite NucleofectorH solution 2,

mixed with 15 mg of NotI linearized LucR-pHD309 plasmid and

subjected to nucleofection with program X-001. Stably transfected

trypanosomes were first cultured 24 h in supplemented IMDM

medium (Gibco) as described earlier [37] before selection by

adding increasing concentrations of hygromycin (starting and final

concentrations: 0.5 mg–3 mg/ml). Single clones, generated by

limiting dilution, were expanded and assessed by luciferase activity

quantification.

In vitro bioluminescence measuring
The Renilla Luciferase Assay System (Promega) was used to

measure in vitro luciferase activity as described by the manufac-

turer. Non-transformed Tgb1135 and Rluc-pHD309-transfected

clones were grown up to a total of 1–56106 parasites and

centrifuged at 1500 g for 10 min. The pellet was washed with

PBS, resuspended in 20 ml lysis buffer included in the Renilla

luciferase assay system (Promega) and subsequently added to

100 ml of the reaction mix. Renilla luciferase activity was monitored

over 5 min every 10 sec after substrate addition by using an

Optima microplate reader (BMG Labtech, Germany) and

expressed as relative light units (RLU) per mg protein.

In vivo and ex vivo real time bioluminescence imaging
At different time intervals after infection, mice were anaesthe-

tized with isofluorane and injected intravenously (retro-orbital i.v.)

or intraperitoneally (i.p.) with 20 mg of coelenterazine (Promega)

dissolved at 2 mg/ml in ethanol and subsequently 10 ml were

diluted in 90 ml of PBS. Light emission was recorded in real time

with a Biospace Imaging System (BIOSPACE lab, Paris, France).

Measurements started immediately after i.v. or i.p. substrate

injection and the results correspond to the values measured when

the signal is optimal and stable for at least 3 min. The signal was

integrated for 100 sec and values are expressed as p/s/sr

(photons/second/steradian) (maximum and minimum values are

fixed respectively at 100 and 10, smoothing = 2.5). For ex vivo

bioluminescence imaging, mice were sacrificed and organs

removed and soaked for 5 min in coelenterazine (20 mg/ml

PBS) before recording signals as described before. Quantification
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of BLI signals was performed on selected regions of interest (ROI).

For the comparison of signals from the same organ between

different mice, the signal was integrated for 100 sec, the area of the

ROI was kept constant and the intensity was given as p/s/cm2/sr

after subtracting the background photon emission values obtained

for each organ from non infected mice.

Results

Isolation and culture adaptation of T. b. gambiense field
isolates

Isolation and growth of T. b. gambiense from patients remains

difficult and is the limiting step in analysis. Here, we have adapted

an in vitro culture system based on fibroblast feeder cells [38,39].

CSF (6–8 ml) was collected aseptically by lumbar puncture from

37 patients who were already in the second stage of HAT. After

centrifugation, half of the sample was inoculated intraperitoneally

(i.p.) into BALB/c mice for in vivo amplification. The other half

was transferred to culture medium in 24-well plates containing a

confluent feeder layer of Microtus montanus embryonic fibroblasts.

The culture medium was MEM medium [40] supplemented with

3.5% fetal calf serum and 15.5% horse serum instead of goat

serum. Kanamycin (400 mg/ml) and nystatin (400 U/ml), were

added to avoid contamination. The plates were incubated at 37uC
in a 4% CO2/96% air incubator. These conditions were optimal

for in vitro culture of low CSF parasitaemia. Following 12 days of

culture, 34/37 isolates were successfully amplified in culture

whereas only 6/37 were infective in BALB/c mice (blood isolates)

and subsequently caused chronic infections.

From these, we focused on three cultured isolates which failed to

infect immunocompetent mice: Tbg1122c, Tbg1166c and

Tbg1135c (c representing culture isolate) and one derived from a

mouse infection, Tbg945b (b representing blood isolate). The

culture isolates were rapidly adapted to axenic culture conditions,

MEM medium supplemented with 10% fetal calf serum, as

described previously [40] and cloned for further characterisation.

These clones showed a normal in vitro expansion with similar

growth rates: 15.9, 15.8 and 14.6 hour doubling time for

Tbg1122c, Tbg1166c and Tbg1135c respectively (Fig. 1A). Despite

numerous attempts, Tbg945b could not be adapted to axenic

culture conditions.

Molecular characterisation of T. b. gambiense field
isolates

T. b. gambiense comprises of two different groups: Group 1 is

characterised by its low virulence in rodents and a chronic

infection in humans, whereas Group 2 is virulent in rodents and

humans [41]. Using mini- and micro-satellite analysis [24], we

could clearly identify the 4 isolates, reported above, as Group1 T.

b. gambiense (markers genotype: MORF2,16/16; MEST19,22/22;

PE procyclin All1,15), even though polymorphism was observed

with other mini- and micro-satellite markers such as MT3033 (30/

x) and M6C8 (13/x) (Table 1). Moreover, all four isolates

expressed the Group 1 T. b. gambiense specific glycoprotein TgsGP

mRNA [10,42] (data not shown). To further characterise these

isolates, their expressed VSGs were analyzed (data not shown).

The VSG expressed by these clones are very similar (68%–96%

identity) to VSG sequences identified in the T. b. gambiense and T.

b. brucei sequence data-base (www.genedb.org).

Mice infectivity properties of T. b. gambiense field isolates
To assess infectivity of these four isolates, different experimental

models of mice were used: immunocompetent BALB/c mice,

cyclophosphamide-immunosuppressed BALB/c mice and severely

immunodeficient NOD/SCID mice. Mice were infected i.p. with

either a high load (1–56106) or a low load (16103) of parasites and

animals were monitored for parasitaemia, paresis and survival.

Immunocompetent mice inoculated with either a high or a low

load of Tbg945b parasites always developed a classical chronic

infection with successive waves of parasitaemia (undulating

between 1.26106 and 1.26107 parasites/ml) and death within

6–8 months post-infection (PI) (Fig. 1B). However, mice inoculated

with a high load of Tbg1122c or Tbg1166c parasites developed a

sub-chronic infection characterised by a single wave of parasitae-

mia (,16105 parasites/ml) 3–4 days PI followed by the absence of

detectable parasites in the blood by direct microscopic observation

(limit of parasitaemia detection .104 parasites/ml). In contrast,

mice infected with Tbg1135c parasites developed a silent infection

devoid of any detectable parasite during the 12 months of

monitoring (data not shown). Identical results were obtained when

mice were infected with a low load (103 parasites) of any of the

culture isolates. No parasite could be detected by microscopic

observation and most of the mice survived more than 12 months

without any clinical signs of disease.

As resistance or susceptibility to trypanosomiasis is associated

with non-specific and specific immune responses, we investigated

the infectivity of the T. b. gambiense field isolates in NOD/SCID

mice which are lymphocyte deficient and have reduced NK,

complement and macrophage activities. A low dose (16103

parasites) of chronic Tbg945b (not shown) or sub-chronic Tbg1122c

and Tbg1166c induced an acute infection with high parasitaemia

(.16109 parasites/ml) and death of animals within 10–11 or 20

days PI respectively. The silent Tbg1135c isolate induced an

infection characterised by a low parasitaemia (,106 parasites/ml)

lasting 50 to 60 days, followed by relapse with high parasitaemia

and death of animals (Fig. 1C). As the relapse might result from a

host adaptation, we compared the infectivity of the parasites

isolated directly from the blood after relapse (Tbg1135b) with the

infectivity of the culture isolate (Tbg1135c). Infection of NOD/

SCID mice with Tbg1135b resulted in a relapse and death of the

animals within a shorter time (30–42 days PI) compared with

Tbg1135c (50–70 days). No difference was observed for Tbg1122

and Tbg1166 culture and blood isolates (data not shown).

Furthermore, we characterised the VSG genes expressed by the

parasites before infection (Tbg1135c) and during the relapse

(Tbg1135b). Comparison of cDNA sequences encoding VSG

showed that Tbg1135b and Tbg1135c expressed different VSGs

(data not shown). These results were confirmed by the absence of

cross-reactivity between Tbg1135b and Tbg1135c by using variant

specific anti-sera (data not shown).

In order to assess the influence of the early antibody response,

the infectivity of a high load of the different blood isolates

(Tbg1122b, Tbg1166b and Tbg1135b) was tested in BALB/c mice

with or without prior administration of a high dose of

cyclophosphamide (200 mg/kg). Similar parasitaemia profiles,

characterised by an early and transient parasitaemia followed by

the absence of detectable parasites in the blood by direct

microscope observation, were observed in immunocompetent

and cyclophosphamide-treated mice (Fig. 1D). Nevertheless, the

peak of parasitaemia was higher in intensity and duration in

immunosuppressed (107–108 parasites/ml and 5 to 9 days)

compared to untreated mice (106 parasites/ml and 2 to 5 days).

Moreover, when BALB/c mice were treated with cyclophospha-

mide before the infection, 20% (7 out of 34 mice) of the infected

animals developed a hind leg paresis within 6–10 months PI

compared to 6% of the immunocompetent infected mice (6 out of

104 mice infected during the whole study). Parasitaemia of

cyclophosphamide-treated mice inoculated with the Tbg1135c
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isolate remained cryptic despite immunosuppression. Further-

more, when mice infected with Tbg1122b, Tbg1166b, Tbg1135b

and Tbg1135c were treated with cyclophosphamide during their

cryptic phase of parasitaemia, no parasite burst could be observed.

In mice infected with the chronic isolate Tbg945b, however, a

rapid relapse of the parasitaemia is always observed (data not

shown).

As low parasitaemia escapes detection by direct tail-blood

observation, we addressed the presence of parasites in blood by

specific PCR. In order to gain better specificity and sensitivity,

three different multi-copy genes present in the Trypanozoon

subgenus were targeted [27–29]. When triplicate PCR gave three

positive or three negative results for at least two of the three PCR

targets, the sample was considered as + or 2 respectively.

However, for discordant results (with only one positive PCR), the

sample was considered as doubtful (6). Parasite PCR detection

was positive until 12 months PI in all immunocompetent infected

mice irrespective of the field isolate, the parasite load and the

amplification of the parasites before inoculation (culture or blood

isolates). Nevertheless, the presence of parasites in the blood might

fluctuate during infection as some samples were found negative

during the 12 months of monitoring. Table 2 illustrates the results

obtained with mice infected with 16103 parasites of the silent

Tbg1135c isolate.

Non-specific and specific humoral immune response of
BALB/c mice infected with T. b. gambiense field isolates

As chronic experimental T. b. gambiense infections are charac-

terized by macroglobulinemia [43,44], we investigated the serum

immunoglobulin M (IgM) level in different infection models: mice

infected with either 16103 or 16106 trypanosomes of the chronic

(Tbg945b), sub-chronic (Tbg1122b, Tbg1135b) or silent (Tbg1135c)

isolates. Whereas Tbg945b induced a 5 to 7 fold increase in total

IgM level in BALB/c mice compared to non-infected mice, as

Figure 1. In vitro and in vivo growth characteristics of T. b. gambiense field isolates. A. In vitro culture of Tbg1122, Tbg1166 and Tbg1135
isolates after adaptation to axenic culture conditions. Cultures were seeded with adapted trypanosomes (5.104/ml) in supplemented MEM medium
and enumerated every 24 h. The mean trypanosome densities6standard error of the mean of 4 independent cultures is presented. Similar doubling
times were obtained with the three isolates (15.9 h, 15.8 h and 14.6 h respectively). B–D. Parasitaemia levels in immunocompetent (BALB/c),
immunodeficient (NOD/SCID and cyclophosphamide-treated BALB/c) mice infected with the different field isolates. Parasitaemia was measured from
tail-blood either by direct observation of the wet films under the microscope or by using a haemacytometer. The limit of detection was estimated at
about 104 parasites/ml. B. Represents the results of one representative BALB/c mouse (n = 6) infected i.p. with 106 of the Tbg945 blood isolate. All
infected mice showed successive waves of parasitaemia and died within 6–8 months PI. C. Represents the mean parasitaemia in NOD/SCID mice
infected with 103 Tbg1122c (n = 4), Tbg1166c (n = 6), Tbg1135c (n = 9) or Tbg1135b (n = 10) isolates. D. Represents the results of one representative
BALB/c mouse infected with 1–56106 Tbg1122b, Tbg1166b (n = 10) or Tbg1135b blood (n = 6) isolates with (+cyclo) or without (2cyclo) prior
administration (24 h before infection) of cyclophosphamide (200 mg/kg). Solid symbols indicate culture isolates, open symbols indicate blood
isolates of Tbg1166 (m , n), Tbg1122 (& , %) and Tbg1135 (N , #).
doi:10.1371/journal.pntd.0000509.g001
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soon as one month PI, the total IgM level in sub-chronic or silent

infections was only slightly (less than 2 fold) increased (Fig. 2).

The capacity of trypanosome infections to induce a specific

immune response was tested by Western blotting against total

parasite extracts subjected to SDS-PAGE (whole lysates of T. b.

gambiense Tbg1122 or T. b. brucei Tbb427). The sera of mice infected

with 16103 parasites of Tbg945b or Tbg1122b strongly recognised

a large panel of proteins with MW ranging from 20 to 100 kDa as

soon as one month PI (Fig. 3A) and during the entire time course

of infection (identical profiles were observed 9 and 12 months PI,

data not shown). The additional specific band strongly recognised

by the sera of mice infected with Tbg1122 is most likely to

correspond to the VSG expressed by Tbg1122. The response was

less intense with the sub-chronic Tbg1135b isolate (16103

parasites) and no reactivity was observed with the sera of mice

infected with the silent Tbg1135c isolate (16103 parasites) with the

exception of one serum out of four which recognised a single band

migrating at 70 kDa at 9 months PI (data not shown). Since

identical Western blot profiles were obtained with whole cell

protein extracts of Tbb427 (T), the sera were tested against two

Tbb427 trypanosome lysate fractions (Fig. 3B): a soluble protein

fraction (F1) and a cytoskeleton/membrane fraction (F2). As

shown in Figure 3B and C, most of the proteins recognised by the

sera belong to the cytoskeleton/membrane fraction.

Characterisation of trypanosome antigens recognised
during infection

In order to further identify the antigens recognized by immune

sera, we compared the Western blot profiles obtained with the sera

of infected mice with those obtained with specific antibodies

directed against already known immunogenic proteins belonging

to the cytoskeleton/membrane fraction: the invariant surface

glycoproteins, ISGs (MW 64, 65 or 75 kDa) [45–47], the

Table 1. Minisatellites and microsatellites analyses.

Identification Focus Year Host Microsatellites (Repetition number or size)

MORF2-CA M6C8-CA MT3033-AC/TC MEST19-TA/CA PE procyclin repetition number

All. 1-2 All. 1-2 All. 1-2 All. 1-2 All. 1-2-3-4-5

Trypanosoma brucei gambiense Type I

27/7 Ivory Coast Human 16 - 16 13 - 53 30 - 48 22 - 22 15 – 20 – 21 - 24

Zakaria Ivory Coast Human 16 - 16 13 - 53 30 - 49 22 - 22 15 – 20 – 21 - 24

LiTat-1/1 Ivory Coast 1952 Human 16 - 16 13 - 44 30 - 43 22 - 22 15 – 19 – 20 - 21

1122 Ivory Coast 1991 Human 16 - 16 13 - 44 30 - 44 22 - 22 15 – 20 - 21

1166 Ivory Coast 1991 Human 16 - 16 13 - 44 30 - 43 22 - 22 15 – 20 - 21

1135 Ivory Coast 1991 Human 16 - 16 13 - 43 30 - 43 22 - 22 15 – 20 - 21

945 Ivory Coast 1991 Human 16 - 16 13 - 43 30 - 30 22 - 22 15 – 20 - 21

Trypanosoma brucei gambiense Type II (Bouaflé)

HTAG/107-1 Ivory Coast 1986 Human 13 - 48 23 - 37 14 - 14 24 - 25 21 – 22 – 23 – 26 - 28

TH2 (78E) Ivory Coast 1978 Human 13 - 49 38 - 48 19 - 22 31 - 40 22 – 23 – 26 - 28

The genotype of each isolate (Tbg945, Tbg1122, Tbg1166 and Tbg1135) was analyzed as described earlier [24] by determining the number of repeats per allele and
compared to group 1 and 2 genotypes.
doi:10.1371/journal.pntd.0000509.t001

Table 2. PCR detection of Trypanosomes in the blood of
BALB/c mice infected with 103 parasites of the silent Tbg1135c
isolate.

BALB/c mice Months post-infection

2 4 9

a + + 6

b + + +

c 6 + +

d + 6 +

e + + +

Detection is based on the amplification of 3 Trypanosoma brucei specific gene
targets. The + sign represents a positive result (2–3 out of 3 targets
amplification). 6 represents a doubtful result (1 out of 3 targets amplification).
doi:10.1371/journal.pntd.0000509.t002

Figure 2. Time course of total serum IgM levels in BALB/c mice
infected with different T. b. gambiense field isolates. Four mice
were infected with either a low (103) or a high (106) load of Tbg945b,
Tbg1122b, Tbg1135b or Tbg1135c isolates then IgM levels were
quantified by ELISA test 1 month (black bars), 3 months (white bars),
5 months (gray bars) and 12 months (hatched bars) after infection. IgM
levels are expressed as a multiple (mean6standard error) of the level
before infection.
doi:10.1371/journal.pntd.0000509.g002
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paraflagellar rod protein PFR (MW 70 kDa) [48,49] and a

calflagin isoform (MW 26 kDa) [50] (Fig. 3D). Indeed, ISGs and

PFR-specific antibodies recognised proteins from whole cell lysates

(Fig. 3D) or the cytoskeleton/membrane fraction (data not shown)

with the same molecular weight of those recognised by the sera of

infected mice. Furthermore, a calflagin-specific monoclonal

antibody (T. Baltz; unpublished results) recognised the three

members of the calflagin family (44, 26 and 23 kDa) as did the sera

of mice infected with trypanosomes (indicated by arrows in

Fig. 3B). These results led us to test these antigens as recombinant

proteins by immunoblotting after separation by SDS-PAGE. The

recombinant T. b. gambiense specific glycoprotein, TgsGP (MW

47 kDa) [42] was included in the test (Fig. 4). All infected mice

strongly reacted as soon as one month PI independently of the

parasite load inoculated, with the exception of the silent Tbg1135c

for which a high load was necessary to elicit a significant antibody

response. No response was observed in mice infected with a low

number of Tbg1135c except in one animal (out of 4) for which only

PFR was detected. The three antigens ISG65, ISG75 and calflagin

were more consistently and strongly recognised, compared to PFR

and TgsGP. Interestingly, sera of mice infected with blood isolates

always recognised the recombinant proteins earlier and more

strongly than the sera of mice infected with culture isolates. To

further assess the antibody responses during infection, relative

antibody titers were evaluated by ELISA against the native soluble

recombinant proteins (ISGs and calflagin). Figure 5 illustrates the

results obtained with the sera of mice infected with a low number

(16103) of parasites except for the silent Tbg1135c isolate for

which the data obtained with a high cell number was included. As

observed by Western blotting, all isolates except Tbg1135c (even at

high load) elicited a significant antibody response against the

recombinant proteins. ISG64, ISG65 and calflagin were some of

the major immunogenic antigens detected in mice infected with

the chronic Tbg945 isolate and the sub-chronic Tbg1122b,

Tbg1122c (Fig. 5) and Tbg1166c (data not shown) isolates. Low

titers of ISG64, ISG65 and calflagin antibodies were detected in

mice infected with a low load of Tbg1135b.

Parasite tissue localisation in BALB/c mice infected with
T. b. gambiense field isolates

In order to address CNS invasion in the different models, the

presence of parasites in the brain tissues was initially investigated

by immunohistochemistry from microtome derived brain sections.

In the chronic model (BALB/c mice infected with 16106 Tbg945b

parasites, n = 2), parasitic invasion of the brain parenchyma was

observed as soon as 4 months PI without any sign of paresis of the

mice. Numerous parasites were observed in the olfactory bulb, and

in the forebrain where they were widely spread in cerebral cortex,

hippocampus and hypothalamus but absent from the myelinated

fiber tracts (optic chiasma or corpus callosum). Fewer parasites

were present in the brain stem (Fig. 6 A1, A2 and A3). However,

no parasites could be detected in the brain of BALB/c mice

(n = 2), 9 months after infection with sub-chronic Tbg1166c and

without clinical signs of disease. In contrast, when mice were

cyclophosphamide-immunosuppressed before infection with the

sub-chronic isolates, histological examination of the brain of two of

the four mice with hind feet paresis (Tbg1166c and Tbg1122c 6 and

10 months after infection respectively) clearly showed a significant

brain invasion by the parasite, restricted to the olfactory bulb and

mainly to the brain stem, where they are localised in fiber tracts

such as the spinal trigeminal tract (Fig. 6 A4 and A5). In one

animal (Tbg1122c infected), clusters of parasites could be detected

in the cerebellum near a blood vessel (Fig. 6 A6). The limited

sensitivity of histological examination due to the fact that only the

presence of labelled whole trypanosomes was considered as

positive led us to verify the absence of parasites in the brain of

mice infected with the sub-chronic isolates (Tbg1135b, Tbg1122b)

by PCR. Nine out of 10 mice tested 5 to 10 months PI, were

Figure 3. Immunoblotting analysis of the trypanosome antigens recognised during BALB/c mice infections and identification of
potential immunoreactive proteins. Different trypanosome protein extracts: (3A,D) Tbg1122b total lysate, (3B) Tbb427 total lysate (T) and
Tbb427 fractions containing the soluble proteins (F1) or cytoskeleton/membrane proteins (F2), (3C) Tbb427 cytoskeleton/membrane fraction (F2)
were subjected to SDS-PAGE and tested by Western blotting against different sera from BALB/c (n = 4) mice infected with (103) parasites, (3A–C): sera
from Tbg945b (1), Tbg1122b (2), Tbg1135b (3), Tbg1135c (4); non-infected control mice (5) or (3D) antibodies specific for cytoskeleton or membrane
proteins: rabbit polyclonal antibodies directed against ISG64 (6), ISG65 (7), ISG75 (8), mouse monoclonal antibodies recognizing PFR2 (9) or calflagin
(10). A–C represents the results of one representative immunoblot out of 4 mice tested.
doi:10.1371/journal.pntd.0000509.g003

Murine Models for Sleeping Sickness

www.plosntds.org 8 September 2009 | Volume 3 | Issue 9 | e509



positive clearly suggesting that brain invasion probably occurs in

all models but with differing levels of severity.

The development of an in vivo luminescent imaging for T. b. brucei

using Renilla Luciferase-tagged trypanosomes [37] allowed us to apply

this method to T. b. gambiense. The Tbg1135c isolate was transfected

with the Renilla Luciferase (LucR) vector using the Amaxa

Nucleofector system. Stable transfectants (LucR-Tbg1135c) were

selected, clonally expanded and tested for in vitro luciferase activity

(807659 RLU/mg protein) as described in Material and Methods.

LucR-Tbg1135b parasites were obtained by infecting NOG mice with

106 LucR-Tbg1135c and 15–20 days after infection R-Luc activity

was measured to assess that they constitutively express R-Luc.

In order to identify the spatio-temporal localisation of parasites in

sub-chronic and silent infections, 16106 trypanosomes derived from

Figure 4. Reactivity patterns of immunoreactive invariant trypanosome proteins during BALB/c mice infections. Four mice were infected
with either a low (103) or a high (106) load of Tbg945b, Tbg1122b, Tbg1166b, Tbg1135b or Tbg1135c isolates and their sera collected at different time
points were tested by Western blotting (1/100 dilution) against a strip loaded with recombinant protein: 0.5 mg PFR and ISG75, 1 mg ISG65, ISG64 and
TgsGP and 2 mg calflagin. The data are representative of one immunoblot out of 4 mice tested. NI represents the control sera before infection.
doi:10.1371/journal.pntd.0000509.g004

Figure 5. Kinetics of antibody responses to native ISGs and calflagin in BALB/c mice infected with T. b. gambiense field isolates. Sera
from mice infected with 103 parasites of Tbg945b (no symbol), Tbg1122c (&), Tbg1122b (%), Tbg1135c (x), Tbg1135b (#) or with 106 parasites of
Tbg1135c (N) were collected at different time points PI and tested by ELISA for their reactivity against native ISG64, ISG65, ISG75 and calflagin. Results
in Tbg1166b (data not shown) and Tbg1122b infections were similar. All isolates elicited an antibody response against the recombinant proteins,
except the silent Tbg1135c (even with a high load of parasites). Each point represents the mean6standard error of 5 mice.
doi:10.1371/journal.pntd.0000509.g005
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LucR-Tbg1135b or LucR-Tbg1135c isolates were inoculated in

BALB/c mice treated with cyclophosphamide, (n = 2 for each

isolate) or untreated (n = 6 and n = 2 respectively). The temporal

course of invasion and the tissue tropism of the parasite were

monitored using real-time in vivo bioluminescence imaging (BLI)

with coelenterazine as substrate. The BLI signals, either after an i.v.

or i.p. injection, of the substrate were analyzed in the untreated mice

at different weeks PI. BLI signals were detected as soon as 2 weeks

PI in the vicinity of the peritoneum (2 out of 6 mice) and in the front

region of the head (4 out of 6 mice) in mice infected with LucR-

Tbg1135b while no parasite could be detected in the blood. Both

mice infected with the silent LucR-Tbg1135c gave BLI signals 4

weeks PI. Despite the heterogeneity of the individual values when

comparing the data, BLI signals either remained steady or increased

slightly during the time course of infection and a BLI signal was

detected in all mice 8–13 weeks PI (Fig. 6B). As described previously

[51] higher signals were recorded in the head when the substrate

was injected i.v rather than i.p. probably due to a better local

availability of the substrate. When the dorsal face of the mouse was

exposed, the signal was higher in the front region of the head. In

cyclophosphamide-treated mice, BLI signals were only recorded

long after infection (8 and 9 weeks PI for Tbg1135c and Tbg1135b

respectively) due to the fact that mice become very sensitive to

anaesthesia and often die spontaneously. The BLI signals and their

increase over time were much higher in the Tbg1135b-infected mice

than in those infected with Tbg1135c (Fig. 6B).

Figure 6. Analysis of T. b. gambiense organs and central nervous system invasion in BALB/c-infected mice. A. Immunohistochemical
detection of trypanosomes in the brains of mice (n = 2, only results from one mouse are shown) infected for 4 months with 106 parasites of the
Tbg945b isolate (1, 2, 3) and of paralyzed mice (n = 2) treated with cyclophosphamide before infection with either 56106 parasites of subchronic
Tbg1122c or Tbg1166c isolates. Paralysis occurred 10 and 6 months PI with Tbg1122c and Tbg1166c isolates respectively. Only results from Tbg1122c
are shown (4, 5, 6). A1 and A4 correspond to an olfactory bulb coronal section, A2 to a forebrain section, A3 and A5 to brain stem sections and A6 to
a cerebellum section. Whole brain invasion was observed with the chronic isolate at an advanced stage of the disease (4 months PI, death within 6–8
months). Invasion was restricted to the olfactory bulb and the brain stem (including the cerebellum for Tbg1122c) in paralyzed mice infected with the
sub-chronic isolates after treatment with cyclophosphamide. No invasion was observed in mice (n = 2) infected for 9 months with 56106 parasites of
subchronic Tbg1166c isolate (data not shown). B. Spatial distribution of R-Luc activity in animals developing a sub-chronic or a silent infection and
treated with or without cyclophosphamide (+/2cyclo). BALB/c mice were either directly infected with 106 LucR-Tbg1135b (n = 6) or LucR-Tbg1135c
(n = 2) or treated 24 h before infection with cyclophosphamide (n = 2). At different time PI, mice were anaesthetized and injected intravenously (i.v.,
retro-orbital) or intraperitoneally (i.p.) with coelenterazine and BLI signals were recorded in real time with a Biospace Imaging System. The panels
show dorsal and ventral images of 2 representative mice infected for 8–11 weeks: LucR-Tbg1135b (11 weeks), LucR-Tbg1135c (10 weeks), LucR-
Tbg1135b+cyclo (9 weeks), LucR-Tbg1135+cyclo (8 weeks). C. Spatial distribution of R-Luc activity in organs removed from LucR-Tbg1135 infected
BALB/c mice. The different organs shown in this figure were isolated from mice: (1) non infected (control) (2) infected for 18 weeks with 106 LucR-
Tbg1135b, (3) infected for 18 weeks with 106 LucR-Tbg1135c, (4) pre-treated with cyclophosphamide and infected for 16 weeks with 106 LucR-
Tbg1135c. Quantification data of light emission signals for ROI delimitating each organ are given in photons/second/cm2/steradian (p/sec/cm2/sr).
doi:10.1371/journal.pntd.0000509.g006
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These results prompted us to refine the localisation by recording

ex vivo BLI on individual organs (brain, lung, spleen, stomach,

kidneys, heart, liver and intestines). One animal per group (16–18

weeks PI with Tbg1135b, Tbg1135c, or Tbg1135c after cyclophos-

phamide treatment) was sacrificed and the dissected organs

incubated with coelenterazine and analysed for photon emission.

In all animals marked BLI signals (.7 000 photon/s/cm2/sr)

were observed in the brain, lung and spleen. The other organs

displayed no signal or a background signal when properly

dissected from the adipose tissue which always gave a positive

signal (data not shown). Further histology analyses are needed to

characterize the tissue. In the brain, the signal distribution either

covered the whole organ (mouse infected with Tbg1135b fig. 6C)

or was restricted mainly to the olfactory bulb and the cerebellum

region (mouse infected with Tbg1135c fig. 6C). The distribution

was independent of cyclophosphamide treatment.

Discussion

The successful aim of this study was to provide a murine model

based on T. b. gambiense isolates to further the understanding of

chronic HAT and its epidemiology. So far, most of the host-

parasite model systems have been developed with the livestock

pathogen Trypanosoma brucei brucei, which often induces high

parasitaemia that requires treatment with drugs such as suramin

or berenil (diminazene aceturate). Since these drugs do not cross

the blood-brain barrier (BBB), parasites are cleared from the

vascular compartment but not the CNS thereby inducing a

chronic infection that could reflect HAT [6,52–54]. As most of the

T. b. gambiense isolates are not infectious in mice, T. b. gambiense

models relied on a few rodent adapted isolates producing subacute

or chronic infections [16–20] characterized by short animal

survival time. The major challenge for the development of a long

lasting chronic model relied on the adaptation of T. b. gambiense

directly isolated from the CSF of HAT patients to axenic culture

conditions. The presence of fibroblasts as feeder cells and the

origin of the sera supplementing the culture medium were the

main factors for success in the isolation of 34 (out of 37) field stocks

[40]. After rapid adaptation to axenic culture, to avoid growth

selection, 3 field isolates were cloned and tested for their infectivity

in immunocompetent and immunodeficient mice. These isolates

induced infections ranging from chronic to silent in immunocom-

petent BALB/c mice. In the chronic infection (Tbg945), successive

waves of parasitaemia were observed and all infected mice died

within 8 months. The sub-chronic (Tbg1122, Tbg1166 and

Tbg1135b) and silent (Tbg1135c) isolates induced longer lasting

infections (more than 12 months) without, in most mice, any

clinical sign of disease. In addition, parasitaemia was undetectable

by microscopy, except for the sub-chronic isolates in which a single

low peak of parasitaemia was observed soon after infection.

Nevertheless, we clearly provide evidence for the persistence of

parasites in all infected mice by PCR and by in vivo biolumines-

cence imaging. Whether the different types of infections are due to

host or parasite factors has been addressed by molecular

characterisation of the isolates and by analysing the antibody

immune responses elicited during the infections. The character-

isation of the isolates by micro and mini-satellite analysis showed

that all three isolates belonged to the homogeneous group I

although some genetic polymorphism was observed despite their

common origin from the same endemic area (Daloa, Ivory Coast).

These minor genotype differences could explain the differences in

infectivity of the isolates. Infection of immunodeficient NOD/

SCID mice demonstrated that the innate immune response was

not sufficient to contain an infection with T. b. gambiense isolates,

except for the silent Tbg1135c for which the level of parasitaemia

was controlled during 1–2 months before fatal parasitaemia

involving a new trypanosome variant Tbg1135b. Furthermore,

parasite host-adaptation occurred, because Tbg1135b is more

virulent than Tbg1135c. These results demonstrate that mice

infectivity properties are not only the result of isolate specificities

but may change during adaptation to a new host. Table 3

summarizes the different biological properties of the T. b. gambiense

field isolates.

HAT resulting from T. b. gambiense infection and experimental

chronic trypanosomiasis induce a non-specific immune response

resulting in high blood IgM levels, which is one of the criteria used

for diagnosis [44,55,56]. In our mice models we clearly

demonstrate that the level of macroglobulinemia is linked with

the parasite load. Whereas total IgM level increased significantly

in the chronic Tbg945 infection compared to non-immune mice,

sub-chronic or silent isolates did not induce a significant increase

of total IgM. Therefore in HAT, absence of macroglobulinemia

cannot be considered as a parameter of absence of infection.

Additionally, specific antibody responses were induced in the

three infection models as demonstrated by Western blotting

against total trypanosome lysates, except in mice infected with a

low load of the silent isolate, Tbg1135c. We identified several

immunogenic antigens belonging to the cytoskeleton/membrane

fraction, which are recognised by the infected mice in a similar

fashion as the total lysate. By analyzing the banding pattern of the

purified recombinant protein strips, ISG65, ISG75 and calflagin

always gave a positive reaction. Analyzing the kinetics of antibody

responses by ELISA showed that ISG64, ISG65 and calflagin were

some of the major invariant antigens which stimulated antibodies

in all infections except the silent Tbg1135c, even with a high load

of parasites. Taken together, specific antibody responses could be

clearly detected along the time course of all experimental T. b.

gambiense infections except when mice were infected with a low

load of the silent Tbg1135c isolate. These markers may provide

Table 3. Biological properties of type 1 T. b. gambiense field isolates.

In vitro culture Mice infection

BALB/c NOD/SCID

Virulence survival Total IgM level Antibody response Brain Invasion Virulence survival

945 2 Chronic,8 months + +++ High Acute

1122, 1166 + Subchronic.12 months 2 ++ Low Acute

1135c + Silent.12 months 2 6 Low Acute after controlled
infection

doi:10.1371/journal.pntd.0000509.t003
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new tools for the development of HAT serodiagnosis based on

trypanosome invariant antigens. Currently, serological diagnosis of

HAT relies on the use of selected highly immunogenic VSGs

expressed early in infection by all T. b. gambiense isolates (CATT or

LATEX/T. b. gambiense tests). However, HAT with a parasitaemia

that is undetectable by microscopy, as well as the absence of

trypanosome-specific antibodies, remains a major concern in the

field. Only PCR will be sensitive enough for diagnosis if performed

at least twice during the course of infection.

Recently, innovation in imaging technology and the discovery

of new bioluminescent markers such as the Renilla luciferase

facilitated the development of bioluminescent-transfected patho-

gens thereby allowing the in vivo spatio-temporal course of

infection to be followed [57]. The development of in vivo

luminescent imaging for T. b. brucei using Renilla Luciferase-tagged

trypanosomes [37] and the transfection conditions for T. b.

gambiense, allowed us to obtain stable LucR-transfected trypano-

somes. These are LucR-1135b, which behaves as a sub-chronic

isolate and Tbg1135c, which remains cryptic during the whole

course of infection. BLI monitoring of infected BALB/c mice

revealed a rapid spread and expansion of parasites (2–4 weeks after

inoculation) at two important anatomical sites: the front of the

head and the abdomen. We showed that early after infection (16–

20 weeks), during the cryptic phase of parasitaemia, trypanosomes

are found in a privileged site such as the brain and in other organs

such as the spleen and lungs. No specific signal was detected in the

heart, liver or kidneys. The maintenance or slight increase over

time of the photon emission could only result from active parasite

proliferation involving new antigenic variants escaping the

immune response of the host but we cannot exclude that parasites

may also accumulate in small capillaries (lungs) after proliferation.

It is clear that trypanosome proliferation takes place in a limited

space where the parasites probably find the proper growth

conditions such as endothelial cell attachment [58], a reducing

environment [40], nutrients, absence of trypanolytic compounds

which might be present in the peripheral blood etc. At that stage of

the study it was not possible to precisely localise the parasites

within the spleen and lungs. In the brain, however, photon

emission was always localised in the olfactory lobes and the

cerebellum, the signal was spread over the whole organ in the case

of the mouse infected with Tbg1135b. The signal distribution

reflects both the parasites present in the vascular compartment

and those, which could have already infiltrated the brain

parenchyma. Nevertheless, the pattern obtained by BLI with the

mice infected with Tbg1135c after cyclophosphamide treatment is

similar to that obtained by immunohistochemistry revealing that

parasite brain invasion is mainly restricted to the olfactory bulb,

brain stem and cerebellum, a location which might be linked to

mouse hind-leg paralysis.

One can speculate that parasites grow attached to specific

microvascular endothelial cells [58] present in the brain, spleen or

lungs where they undergo antigenic variation and induce variant-

specific antibodies. This stimulated immune response may result in

trypanolytic activity inducing the release of parasite proteins. In

particular, cysteine proteases may be released, which have been

shown to induce the activation of brain microvascular endothelial

cells allowing the transendothelial migration of T. b. rhodesiense in

vitro [59,60]. Furthermore, the continuous lysis of trypanosomes

will generate immune complexes, which will elicit a complement-

mediated local inflammation establishing the conditions for the

parasite to progressively invade the brain through the BBB

[60,61]. Once the parasites have crossed the BBB, they are

protected from the immune response and most of the trypanocidal

drugs. It is clear from this study that T. b. gambiense spreads rapidly

(within weeks) to organs such as the brain, lungs and spleen where

they multiply and can invade the parenchyma. The severity of the

disease and brain invasion clearly depends on the isolate. A

Tbg945 induced chronic infection, with waves of parasitaemia, will

elicit a more severe inflammation in the blood vessels than the sub-

chronic or silent isolates, which will result in a more severe

invasion of the brain parenchyma as observed by immunohisto-

chemistry and additionally, the rapid death of the animals. Studies

defining parasite virulence and host determinants for the disease

have been essentially based on T. b. brucei mouse infections, in

which the course of the disease is rather acute. Furthermore, it has

been shown on a human in vitro model that T. b. rhodesiense is able to

cross the BBB more efficiently than T. b. brucei [58]. This

peculiarity defines T. b. rhodesiense as a typical CNS tropic organism

whose capacity to invade the brain parenchyma in vivo will be

highly enhanced depending on the severity of the immune

response. Our preliminary results on T. b. gambiense brain invasion

in mice indicate a major tropism for the olfactory bulb for all

isolates, which has not been observed for T. b. brucei. The early

tropism of the silent Tbg1135c isolate and the long lasting,

asymptomatic phase in mice are in favour of either, a slow

invasion of the organs and/or a slow progression within the

organs. Compared to T. b. brucei infections, murine infections of T.

b. gambiense field isolates better mimic the different progressions of

gambiense sleeping sickness. In particular, the asymptomatic

phase raises the question of ‘‘trypano-tolerance’’ not only in

humans but also in animals, which might constitute the natural

reservoir for the disease. Indeed, numerous studies suggest that

asymptomatic and/or fluctuating carriers with undetectable

parasitaemia may occur in the field associated with epidemiolog-

ical incidences [3,12,62,63]. Furthermore, even if studies have

been dedicated to identify markers for the determination of disease

stage [64,65], the duration of the stages, the parasite progression at

different stages within the organs, their accessibility to current

therapeutic treatments and the outcome of treatment [66,67] are

still elusive. These questions will be addressed [3] by combining

different experimental approaches: treatment of infected animals

with drugs such as suramin or berenil (diminazene aceturate)

which do not cross the BBB and therefore clear the parasites from

the vascular compartment and non sedated (to avoid anaesthesia

which might kill infected animals) animal BLI analysis, BLI and

immunohistochemical analysis of dissected organs, infection of

mice with T. b. gambiense isolates expressing GFP and optical

fluorescence analysis on tissue sections etc.

In conclusion, a method has been developed for a reliable

adaptation of T. b. gambiense isolated from patients to growth in

mice. Previous protocols for the adaptation of T. b. gambiense to

growth in mice were limited. The progression of three different

isolates grown in mice were characterised and each produced

different outcomes that mirror the different types of human

disease: chronic, sub-chronic and silent. The availability of mouse

models with a range of disease states will greatly benefit further

investigation of disease progression. The murine infections were

characterised by measuring parasite growth and the hosts’

antibody response. In addition, the distribution of the parasites

in the host was determined for one trypanosome isolate by

introducing a R-Luc transgene so that it could be visualised in the

host. Early in the infection, there was an unexpected tropism not

only for the brain but also for other organs such as the spleen and

lungs. Using the mouse model we have developed, we can address

important questions regarding the molecular mechanisms involved

in virulence, sequestration and tropism of T. b. gambiense in a more

focused manner. This has implications in understanding parasite

biology, chemotaxis, blood brain barrier, immune response,
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pathogenesis and the development of new tools for stage

determination during disease progression, and more efficient and

less toxic trypanocidal compounds.
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