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The tRNA modification field has a rich literature covering
biochemical analysis going back more than 40 years, but
many of the corresponding genes were only identified in the
last decade. In recent years, comparative genomic-driven
analysis has allowed for the identification of the genes and
subsequent characterization of the enzymes responsible
for N6-threonylcarbamoyladenosine (t6A). This universal
modification, located in the anticodon stem-loop at position
37 adjacent to the anticodon of tRNAs, is found in nearly all
tRNAs that decode ANN codons. The t6A biosynthesis
enzymes and synthesis pathways have now been identified,
revealing both a core set of enzymes and kingdom-specific
variations. This review focuses on the elucidation of the
pathway, diversity of the synthesis genes, and proposes a
new nomenclature for t6A synthesis enzymes.

Introduction

tRNAs (tRNAs) are the central adaptors in the translation
process responsible for decoding mRNAs. tRNAs harbor numer-
ous post-transcriptional modifications that fine-tune their func-
tion. To date, more than 90 modifications1 have been identified
in tRNA, and most organisms devote more genetic information
to modifying tRNAs than to the tRNAs themselves.2 While mod-
ifications have been shown to affect different aspects of tRNA
metabolism and shape interactions of tRNA molecules with the
rest of the translation apparatus,3-5 most modifications to the
anticodon-stem-loop (ASL) are required for accurate decoding.6,7

The diversity of tRNA modifications and how modifications
affect function has been the topic of recent reviews,8-10 and for a
summary of modifications to the ASL in Escherichia coli see the
recent review by Helm and Alfonzo11 and Table 4 in de Cr�ecy-
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Lagard, et al.10 In this review, we address the enzymes responsi-
ble for the formation of N6-threonyl-carbamoyl-adenosine (t6A)
and its derivatives. This complex modification of adenosine is
located at position 37, next to the anticodon (t6A37), and is one
of the few universal modifications of the ASL.12

The hypermodified base t6A is present in nearly all ANN
decoding tRNAs and has been studied in vitro and in vivo for
more than 40 y.13-19 Since the first discovery of the modification
by Schweizer, et al. in 1969,18 sporadic studies established the
basic requirements for the synthesis of this universal modifica-
tion, identifying the requirement for ATP, threonine and carbon-
ate,15,17,20-22 but fell short of elucidating the multi-step path
to its formation. Subsequent studies in which native E. coli
tRNAfMet (harboring an unmodified A37) and yeast tRNAiMet

transcripts were converted to t6A37 after microinjection into Xen-
opus laevis oocytes demonstrated that the formation of t6A
occurred in the oocyte cytoplasm and used a conserved machin-
ery.13,14 These studies also demonstrated that A37 and U36 were
strict determinants for t6A formation, and that A38 enhances the
efficiency of modification of A37 to t6A37.

13 Finally, structural
studies showed that t6A enhances anticodon-codon base-pairing
by cross-strand base-stacking of the t6A base with the first posi-
tion of the codon,23 and influences the structure of the ASL by
preventing across the loop base-pairing between U33-A37, as
well as stacking of bases A37 and A38.

23-27

Only in the last 5 y have the t6A biosynthesis enzymes and the
pathways been elucidated, revealing both a core set of enzymes
and kingdom-specific variations (Fig. 1).28-33 Elucidation of this
multi-step pathway, which requires the formation of an activated
carbon dioxide intermediate, and the diversity of the enzymes
required for synthesis are the focus of this review.

Discovery of the First t6A Synthesis Genes

The first enzyme of the t6A pathway was discovered in 2009
when it was found that a universal protein family, YrdC/Sua5
(COG0009), was involved in t6A modification.31 Based on the
assumption that because t6A was universally conserved the t6A
biosynthetic enzymes would also be universally conserved, this
work used comparative genomic analysis to focus on universally
conserved protein families of unknown function. At the time of
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this study, 9 universally
conserved protein families
were of unknown function.
Of these, the YrdC/Sua5
family was judged the most
likely candidate for involve-
ment in t6A biosynthesis
due to: 1) its similarity to
HypF, which catalyzes a car-
bamoylation reaction34 simi-
lar to a putative step in t6A
biosynthesis proposed in
1974 by both Elkins and
Keller15 and K€orner and
S€oll;17 2) mutations in the
yeast yrdC ortholog SUA5
led to translation defects
(initiation at non-AUG
codons);35 and 3) E. coli
YrdC was found to bind
RNA and tRNA.36 The
involvement of the YrdC/
Sua5 family in t6A synthesis
was experimentally validated
using E. coli and Saccharo-
myces cerevisiae.31

In E. coli, yrdC is essen-
tial, but SUA5 can be
deleted from S. cerevisiae,
although the growth of the
mutant is severely compro-
mised. tRNAs analyzed
from this mutant were
devoid of t6A. The levels of
t6A could be restored
through complementation
with SUA5Sc, yrdCEc, ywlCBs

(Bacillus subtilis SUA5
homolog), and yrdCMm

(Methanococcus maripaludis,
an archaeal yrdC homolog).
The essentiality phenotype
of a E. coli yrdC deletion
could be complemented by
expressing orthologs from
yeast, B. subtilis, and M.
maripaludis in trans.31

Analysis of tRNAs in the
complemented strains con-
firmed the presence of
t6A.31 This work identified
the first gene family
involved in t6A synthesis,
established that its function
is universally conserved,
and that members of the

Figure 1. Diversity in the synthesis of the universal tRNA modification t6A. Two types of enzymes families, TsaC
(YrdC) and TsaC2 (Sua5) in Bacteria and Tcs1 (YrdC) and Tcs2 (Sua5) in Eukarya and Archaea, catalyze the formation
of TC-AMP. TsaC2 and Tcs2 contain a TsaC-domain plus an additional C-terminal Sua5-domain. To transfer threonyl-
carbamoyl (TC) to tRNA, Bacteria require TsaBDE, while Archaea and Eukarya use the KEOPS complex composed of
Tcs3 (Kae1), Tcs5 (Bud32), Tcs6 (Pcc1) and Tcs7 (Cgi121) proteins. Tcs8 (Gon7) is found exclusively in Fungi. Mito-
chondria use the nuclear encoded Tcs4 (Qri7) for transfer of the TC to tRNA. Colors represent homology and corre-
spond with Figure 2.
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family could bind ATP, but because purified YrdC alone was not
sufficient to produce t6A in tRNA transcripts in vitro, it also sug-
gested that additional enzymes were needed for t6A synthesis, or
that the role of YrdC/Sua5 family was indirect.

A second protein family involved with t6A synthesis,
YgjD/Kae1/Qri7 (COG0533), was discovered in 2011.30

Like YrdC/Sua5, the YgjD/Kae1/Qri7 family of proteins is
universally conserved, and also exhibited similarity to HypF,
which harbors a fusion of YrdC-like and YgjD-like domains.
Kae1 had first been described as a member of the KEOPS
complex (Kinase, putative Endopeptidase and Other Proteins
of Small size)37 also known as EKC (Endopeptidase-like
Kinase Chromatin-associated complex),38 and had been pro-
posed to be involved in a variety of phenomena unrelated to
RNA modification.37,38 A phylogeny of this family revealed
that yeast harbored 2 members of the family.39 The first,
Kae1 had homologs in other eukaryotes and archaea, and the
second, Qri7 was targeted to the mitochondria and was part
of the bacterial YgjD clade.39

The hypothesis that the YgjD/Kae1/Qri7 family was involved
in t6A synthesis was confirmed by extracting tRNAs from S. cere-
visiae kae1D and showing they were devoid of t6A and that t6A
levels could be restored by complementation with either ygjDEc

or a version of QRI7Sc designed to remain in the cytoplasm.
These results also indicated that members of the YgjD/Kae1/
Qri7 family were isofunctional for t6A synthesis, at least in yeast.
To test if YgjD/Kae1/Qri7 were isofunctional in E. coli, a PTET::
ygjD strain was constructed (ygjD is only expressed when anhy-
drotetracycline, aTc, is added). Only the expression of the ygjD
gene from E. coli allowed complementation of the essentiality
phenotype in the absence of aTc. In contrast to the YrdC/Sua5
complementation results, expression of the KAE1Sc and QRI7Sc
genes from yeast, the PRPKMm from Methanococcus maripaludis
(PRPK is a fusion of Kae1-Bud32 in Archaea) or the B. subtilis
ygjDBs did not complement the essentiality phenotype of the
absence of ygjD.

While the protein families TsaC/Sua5 and Kae1/Qri7/TsaD
were found to be strictly required for the biosynthesis of t6A, and
a homolog of at least one member of each family is found in all
domains of life (Fig. 2),30,31 YrdC and YgjD failed to produce
t6A in vitro with transcript or t6A-deficient tRNA purified from
yeast sua5D,30 suggesting that the biosynthetic machinery for t6A
biosynthesis required more than these 2 proteins. Over the last
2 years, a flurry of papers have reported the identification of these
missing proteins, and elucidated the complete bacterial,28,33

eukaryotic/archaeal,29,40-42 and mitochondrial32,43,44 biosyn-
thetic pathways to t6A.

Synthesis of t6A Varies With Domains of Life

The observation that the YrdC/Sua5 family members were
functionally interchangeable between domains31 while YgjD/
Kae1/Qri7 were not30 lead to a model in which t6A biosynthesis
occurred in 2 steps with kingdom, species, or organelles specific
partners for the second step.

Figure 2. Distribution of genes for biosynthesis of t6A and derivatives.
Representative organisms from each domain of life were used to build a
taxonomic tree in iToL (http://itol.embl.de).73,74 Filled circles indicate
presence of genes. Genes for formation of ct6A are collapsed into a
single column.
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Bacteria
The identity of the remaining enzymes in bacterial t6A synthe-

sis was predicted from 3 pieces of evidence. First, YgjD was
shown to form an association network with YeaZ (a paralog of
YgjD) and YjeE, based on physical interaction between the pro-
teins and physical clustering of the genes;30,45 second, like YrdC
and YgjD, YeaZ and YjeE were essential in E. coli;46 and third,
complementation of the E. coli yjgD- essentiality phenotype
required expression of both B. subtilis ygjD and yeaZ genes, sug-
gesting that a YgjD/YeaZ interaction was necessary for t6A syn-
thesis.30 Notably, it’s been shown that only YeaZ-YgjD pairs
from closely related organisms form complexes in vitro.47 The
final evidence that YeaZ and YjeE were the missing proteins in
t6A bacterial synthesis was provided by in vitro reconstitution
experiments,28 which demonstrated that recombinant YrdC,
YgjD, YeaZ, and YjeE proteins from E. coli28 were collectively
both necessary and sufficient to generate t6A in reactions with
threonine, bicarbonate, ATP, and either E. coli tRNAThr or
tRNALys transcripts, or unfractionated tRNA from yeast sua5D.
Notably, t6A formation was not observed when a tRNA tran-
script corresponding to tRNAGln from Methanothermaobacter
thermautotrophicus, which does not naturally contain t6A, or a
17-mer corresponding to an unmodified ASL of E. coli tRNALys

were used as a substrates.28 While the former was consistent with
the natural lack of t6A in this tRNA, the latter was surprising
since this ASL had previously been show to bind specifically to E.
coli YrdC.28 The t6A synthesis pathway was subsequently recon-
stituted using the B. subtilis enzymes YwlC (an ortholog of yeast
Sua5), and YdiBCE (orthologs of E. coli YjeE, YeaZ, and YgjD,
respectively),33 demonstrating the universality of these enzymes
in bacteria. With the newly established enzymatic role for YeaZ,
YrdC, YgjD, and YjeE (and their orthologs) in the biosynthesis
of threonylcarbamoyl-6-adenosine (t6A), these enzymes were
renamed TsaB, TsaC, TsaD, and TsaE, respectively (Fig. 1).28

Archaea and Eukarya
The TsaE and TsaB proteins in Bacteria have no homologs in

Eukarya or Archaea. The identification of the additional compo-
nents of t6A biosynthesis in these last 2 kingdoms came from the
fact that Kae1 was part of the KEOPS/EKC complex. The other
subunits of the KEOPS/EKC complex (Bud32, Cgi121, Pcc1,
plus the fungal specific Gon7) were tested for a potential role in
t6A synthesis, first genetically then in vitro. Mutation of PCC1
and BUD32, but not in CGI121, in yeast eliminated t6A on
tRNAIle reportedly by a primer extension assay.41 However, the
primer extension method reported by the Sternglanz laboratory
has not been repeated by others. (de Cr�ecy-Lagard laboratory,
Goldberg laboratory, and Glavic laboratory, personal communi-
cation). Indeed, as recently shown by the Alfonzo laboratory,
reverse-transcriptase bypassed t6A to stop downstream at
m3C32.

48 Analysis of bulk tRNA from a pcc1–4 allele by LC-
MS/MS found t6A was reduced 30%.42 HPLC and LC-MS/MS
analysis of bulk tRNAs purified from whole gene deletions in S.
cerevisiae found that the bud32D and gon7D strains were devoid
of t6A, while t6A levels in the pcc1D and cgi121D strains were
reduced 30% and 60%, respectively, versus wild-type (Thiaville

and de Cr�ecy-Lagard, unpublished data). In the halophilic
Archaea Haloferax volcanii, the kae1‑bud32 (gene fusion) and
cgi121 are essential, precluding a direct genetic test of their role
in t6A biosynthesis, and deletion of pcc1 had only a small decrease
(»16%) in total t6A content.40,49

Confirmation that the KEOPS/EKC complex was responsible
for t6A formation came with in vitro reconstitution experiments.
It was shown that both the KEOPS/EKC complex from Pyrococ-
cus abyssi (Kae1, Bud32, Pcc1, and Cgi121), reconstituted from
the individual genes expressed in E. coli, as well as the S. cerevisiae
KEOPS complex (Kae1, Bud32, Pcc1, Cgi121, and Gon7),
genes expressed in E. coli as a synthetic operon,50 can form t6A in
vitro, when combined with Sua5 from yeast or Archaea.29

Mitochondria
Yeast mitochondrial tRNAs contain t6A,51 and while none the

subunits of the KEOPS/EKC complex or Sua5 have paralogs tar-
geted to the mitochondria,52,53 the Kae1 homolog Qri7 was
found to be targeted to the mitochondria in yeast,39,53 Caeno-
rhabditis elegans,39 human,54 rat,54 and Arabidopsis thaliana.54 It
was subsequently demonstrated that the nuclear encoded Sua5
can localize to both the cytoplasm and to the mitochondria in
yeast through the use of alternative translation initiation at 2, in-
frame AUG sites.44 Translation from the first AUG encoded a
mitochondrial signal peptide, and Sua5 was localized to the mito-
chondria. Sua5 translated from the second AUG remained in the
cytoplasm.44 Co-expression of both Sua5 and Qri7 in E. coli
complemented the TsaD essentiality when the expression of
Qri7 alone did not,44 suggesting that Qri7 could substitute for
the KEOPS complex or the TsaBDE proteins. In addition,
expression of QRI7 in the cytoplasm of a bud32D yeast strain
restored growth defects.32 This was confirmed when it was dem-
onstrated that a minimal system comprised of only Sua5 and
Qri7 is sufficient to synthesize t6A in vitro.32,44

Thus, the enzyme families TsaC/Sua5 and TsaD/Kae1/Qri7
are shared in all organisms, and Bacteria additionally require
TsaBE, while Archaea and Eukarya use the other components of
the KEOPS complex. Interestingly, although TsaBDE, KEOPS,
and Qri7 are functional analogs, only the TsaD/Kae1/Qri7 pro-
tein is shared among the 3 systems (Fig. 2), suggesting that this
protein family along with the TsaC/Sua5 family were part of the
ancestral t6A synthesis core present in the last universal common
ancestor (LUCA).39

Mechanistic Analysis of the t6A Synthesis
Machineries

Experiments probing the role of ATP in bacterial t6A forma-
tion demonstrated that both AMP and ADP were products, and
that ATP consumption could be uncoupled from RNA modifica-
tion, with TsaC being the source of AMP (in a threonine depen-
dent process) and TsaD/TsaB/TsaE together producing ADP.28

These observations were consistent with earlier mechanistic
hypotheses30 in which the ATP requirement in t6A biosynthesis
was rationalized on the presumed need for 2 activated acyl
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intermediates during the
course of t6A formation
(i.e. acyl-phosphate and/or
acyl-adenylate), the first a
phosphocarboxy species (e.g.
carboxyphosphate or carbox-
yadenylate; Fig. 3, interme-
diate I) activated for transfer
to the nitrogen of either
threonine or adenosine-37,
and the second an N-car-
boxyphospho species acti-
vated for transfer to the
remaining component (thre-
onine or adenosine-37;
Fig. 3, intermediate III).
However, closer scrutiny of
the TsaC reaction in the B.
subtilis system revealed
that the product was threo-
nylcarbamoyl-adenylate
(TC-AMP, Fig. 1),33 an
intermediate already activated for condensation with adenosine-37
of tRNA, thus obviating ADP formation as part of the activation
steps proposed to be necessary in the biosynthesis of t6A. Further-
more, AMP formation by TsaC was shown to arise exclusively
from hydrolysis of TC-AMP,33 and that PPi was the other prod-
uct of the TsaC reaction, implying that formation of TC-AMP
itself proceeds through an unusual direct carboxylation of threo-
nine by CO2 or HCO3

- (Fig. 4).
The role of ADP production in t6A biosynthesis remains cryp-

tic; in the bacterial system, t6A can be generated without forma-
tion of ADP by supplying purified TC-AMP to a reaction
containing TsaD/TsaB/TsaE in the absence of ATP,33 while in
Archaea and Eukarya formation of t6A appears to require the
reaction of ATP to ADP,55

although it does not appear
to serve a direct role in the
reaction. In Archaea, Pcc1,
Kae1, and Bud32 are mini-
mally required to produce
t6A in vitro,55 with Kae1
comprising the catalytic
subunit responsible for con-
densing TC-AMP with
tRNA. Bud32 was shown
to be an ATPase in the pres-
ence of Kae1, while it auto-
phosphorylates when it is in
complex with Cgi121.
Thus, Kae1 apparently
modifies the phosphotrans-
ferase activity of Bud32 and
switches it from a kinase to
an ATPase.55 It’s unclear
what the specific role of this

ATPase activity is, as neither Bud32 or Cgi121 participate
directly in the t6A reaction. Cgi1321 appears to regulate activity
by acting as an effector, where it’s binding significantly changes
the conformation of Bud32.55

Overall, the chemistry of t6A formation bears similarities to
the TobZ system,56 an O-carbamoyltransferase comprised of a
TsaC-like domain fused to a Kae1-like domain that carries out
the carbamoylation of tobramycin to form nebramycin-50. In
the TobZ reaction, the TsaC domain catalyzes the conversion
of carbamoylphosphate to carbamoyladenylate, while the Kae1
domain condenses the latter with tobramycin. Likewise, in t6A
formation the TsaC/Sua5 homologs generate an adenylated
intermediate, which then is condensed with tRNA by the

Figure 3. Early mechanistic proposal for the formation of t6A. P* refers to an activated acylphosphate species, either
a simple acyl monophosphate or an acyl AMP.

Figure 4. Stepwise formation of t6A illustrating the intermediates in the pathway.
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TsaD/Kae1/Qri7 proteins. A notable difference in the systems
is that in TobZ the initial substrate is carbamoyl phosphate,
which undergoes a phosphotransfer reaction to generate carba-
moyl adenylate. This interchange of phosphoryl moieties is
chemically not necessary for the subsequent condensation of
the carbamoyl group with tobramycin, as both species are acti-
vated for the coupling reaction. In t6A biosynthesis, the initial
substrates for TsaC/Sua5 are threonine and CO2/HCO3

-,
which react first to form N-carboxythreonine followed by reac-
tion with ATP to form TC-AMP.

Structural Organization of t6A Biosynthetic Proteins

The highly reactive nature of TC-AMP is not compatible with
a freely diffusible intermediate in the biosynthesis of t6A, and
argues for the evolution of systems in which this intermediate is
instead channeled, as in TobZ,56 from its site of production in
TsaC/Sua5 to a second active-site (presumably in TsaD/Kae1/
Qri7) where it undergoes reaction with tRNA. A number of
observations are consistent with this proposal. First is the fact
that the KEOPS complex from both Eukarya and Archaea is
known to be a stable quaternary complex.29 Second, while the
bacterial proteins do not form an isolable complex analogous to
KEOPS, they do interact with one another as demonstrated by
the analysis of the E. coli proteins in pull-down experiments,
which demonstrated binding of TsaC to both TsaB and TsaD,28

and binding of TsaB to both TsaE and TsaD.28,45 Furthermore,
the ability of B. subtilis YdiD (TsaD homolog) to complement
the DtsaD essentiality phenotype in E. coli was dependent on co-
expression of YdiB (TsaB homolog),30 while the ability of Qri7
to complement this phenotype was dependent on co-expression
of Sua5.44 These observations are consistent with the require-
ment for specific physical interactions between these proteins
necessary for function.

Additionally, crystallographic analysis has shown that protein-
protein associations are conserved across the systems. For exam-
ple, the crystal structure of Qri7 shows that dimerization is
required for Qri7 function, and the dimerization surfaces for
Qri7 are used by the archaeal/eukaryotic Kae1 binding to Pcc1
and the bacterial TsaD binding to TsaB.32 Interestingly,
although the Pcc1 subunit of KEOPS/EKC shares no sequence
similarity to Qri7 or TsaD, Pcc1 engages Kae1 in a manner sur-
prisingly similar to dimerization of Qri7 and TsaD-TsaB.32

Thus, in all 3 systems the ability of the constituent proteins to
physically interact with one another appears to be a requirement
for t6A biosynthesis.

Naming Convention

The literature is polluted with a variety of names for each t6A
synthesis protein and even for the complexes. With the defined
enzymatic and biological function now established it is appropri-
ate to unify the t6A nomenclature. For all Bacteria, we recom-
mend the following suggestions, in agreement with Ken Rudd
(Curator of EcoGene, U. of Miami) and published in Deutsch,

et al., of TsaB, TsaC, TsaD and TsaE, to replace YeaZ, YrdC,
YgjD, and YjeE, respectively. Additionally, Sua5 in bacteria
should be renamed TsaC2. TsaC2 is defined as a protein contain-
ing both a TsaC and the additional C-terminal Sua5 domain. For
Eukarya and Archaea, the use of Tcs (threonyl-carbamoyl synthe-
sis) is recommended (in yeast, TSA1 and TSA2 are in use in yeast
for thioredoxin). We recommend the following nomenclature:
Tcs1 (YrdC), Tcs2 (Sua5), Tcs3 (Kae1), Tcs4 (Qri7), Tcs5
(Bud32), Tcs6 (Pcc1), Tcs7 (Cgi121), and Tcs8 (Gon7). A sum-
mary of the new and old names, as well as recommended func-
tional descriptions can be found inTable 1. Additionally, we
recommend naming the bacterial TsaBDE complex as well as the
archeal/eukaryotic KEOPS/EKC complex to Threonyl-carbam-
oly Transferase Complex (TCTC), which will be in keeping with
nomenclature of other members of the carbamoyl transferase
family. The TCTC family can be further subdivided into bacte-
rial (bTCTC), archaeal (aTCTC), and eukaryal (eTCTC).

Distribution of the t6A Synthesis Genes Vary
in Different Organisms

Annotation for the first enzyme of t6A synthesis, in bacteria, is
complicated by the fact that 2 forms are found (the TsaC or
TsaC2) and that 50% of the genomes analyzed harbor a TsaC
paralog, YciO, that does not have the same function and does
not contain the conserved KRSN tetrad.31,57 We reannotated all
members of the COG0009 family (in 9176 bacterial genomes
and all contained a TsaC or a TsaC2: 6745 contain TsaC (73%),
2846 contain TsaC2 (31%), and 859 (9%) contained both. In
addition, 54% contained YciO (Fig. 2, and http://tinyurl.com/
t6A-bacteria). To date, no clear pattern (phylogenetic or lifestyle)
has emerged in terms of presence of TsaC or TsaC2, in any given
genome and the functional differences between the 2 are not
understood. Most bacteria contain both TsaB and TsaE; how-
ever, TsaE can be lost in symbiotic or intracellular bacteria, such
as Wolbachia or Mycoplasmas (e.g., Mycoplasma genitalium and
Mycoplasma pneumoniae). To date only 2 bacteria, Mycoplasma
haemofelis and Mycoplasma suis strain Illinois, are missing both
TsaB and TsaE58 (Fig. 2 and Table 2). It seems these organisms
harbor a mitochondrial like minimal t6A synthesis system (unless
another unidentified protein has been recruited).

Like Bacteria, all Eukarya and Archaea contain either a homo-
log of Tcs1 (TsaC/YrdC) or Tcs2 (TsaC2/Sua5). We have found
one organism that has both, the fungi Pseudocercospora fijiensis
CIRAD86, also known as Mycosphaerella fijiensis CIRAD86
(NCBI Taxonomic ID: 383855). As with bacteria, there is not a
clear phylogenetic inheritance between organisms with Tcs1 or
Tcs2 in Archaea or Eukarya, but a taxonomic relationship does
exists in eukaryotes. Fungi exclusively contain Tcs2 (with P.
fijiensis as an exception), while all Plants (including Chlamydomo-
nas reinhardtii) and all Metazoans exclusively contain Tcs1. Of
the 53 Archaea analyzed, 25 contain Tcs1 and 28 contain Tcs2.
The only taxonomic relationship found is in the order Halobac-
teriales that exclusively contain Tcs1, Figure 2 and Table 3
(http://tinyurl.com/t6A-Arc-Euk).
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All Archaea contain a single Tcs3 (Kae1) homolog, while
Eukarya also contain a single Tcs3 homolog and also have a Tcs4
(Qri7) homolog (evolutionarily related to the bacterial TsaD),
which will function in the organelles. In all genomes analyzed,
both Tcs3 and Tcs4 were found in the nuclear genome and not
in the organelle. Specifically, the human nuclear genome contains
Tcs3 (OSGEP) for cytoplasmic t6A synthesis and Tcs4
(OSGEPL1) was shown to target to the mitochondria.54 Note to
the reader, the Oberto, et al. paper incorrectly referred to
OSGEPL as the Tcs4 homolog (instead of OSGEPL1), the
human mitochondrial targeting protein. As an example for
plants, Arabidopsis thaliana contains nuclear encoded Tcs3
(AT4G22720) and Tcs4 (AT2G45270). Tcs4At contains a strong
chloroplast targeting signal, but has only been detected in the
mitochondria.54 The human pathogen Plasmodium falciparum
(causative agent of malaria) presents an interesting case for t6A
synthesis, as the mitochondria utilize fully modified cytoplasmic
tRNAs for mitochondrial translation (requirement for t6A
machinery is unknown), and P. falciparum contains an apicoplast
originating from secondary endosymbiosis of an alage.59 P.

falciparum contains 2 nuclear encoded homologs of Tcs3
(Table 3): a Tcs3 that is similar to the yeast Tcs3, and an apico-
plast-targeting Tcs3b, that is similar to Tcs3,60 but is phylogenet-
ically distant from all known Tcs3 and from the bacterial TsaD
(Thiaville and de Cr�ecy-Lagard, unpublished). Tcs3 interacts
with both Tcs5 (Bud32) and Tcs7 (Cgi121), and Tcs3b interacts
with multiple proteins associated with the apicoplast ribosome
(Mallari and Goldberg, personal communication). Tcs2 has not
been detected in the apicoplast, and it is currently unknown how
the first step in t6A synthesis occurs. (Mallari and Goldberg, per-
sonal communication).

Tcs5 (Bud32) is found in all Eukarya and Archaea sequenced
to date. In the 53 Archaea analyzed, Tcs5 and Tcs3 are adjacent
ORFs in 13 genomes and are fused in 25 genomes, demonstrat-
ing a strong functional linkage between the proteins of these
genes. Tcs6 (Pcc1) and Tcs7 (Cgi121) are found in nearly all
Archaea and Eukarya. Notable exceptions are the absence of
Tcs6 in P. falciparum and the absence of Tcs7 in Drosophila mela-
nogaster. Tcs8 (Gon7) is a fungal specific protein. Tcs8 is
required for t6A formation in yeast (Thiaville and de Cr�ecy-

Table 1. Proposed names and functional roles for t6A synthesis genes.

New Name Old Names Function

Bacteria
TsaB YeaZ / YdiC tRNA adenosine(37) threonylcarbamoyltransferase complex, dimerization subunit type 1
TsaC YrdC L-threonylcarbamoyladenylate synthase (EC 2.7.7.87) type 1
TsaC2 Sua5 / YwlC L-threonylcarbamoyladenylate synthase (EC 2.7.7.87) type 2
TsaD YgjD / YdiE tRNA adenosine(37) threonylcarbamoyltransferase complex, transferase subunit
TsaE YgjE / YdiB tRNA adenosine(37) threonylcarbamoyltransferase complex, ATPase subunit type 1
Archaea / Eukaryotes
Tcs1 YrdC L-threonylcarbamoyladenylate synthase (EC 2.7.7.87) type 1
Tcs2 Sua5 L-threonylcarbamoyladenylate synthase (EC 2.7.7.87) type 2
Tcs3 Kae1 / gcp / OSGEP tRNA adenosine(37) threonylcarbamoyltransferase complex, transferase subunit
Tcs4 Qri7 / OSGEPL1 tRNA adenosine(37) threonylcarbamoyltransferase, mitochondrial
Tcs5 Bud32 tRNA adenosine(37) threonylcarbamoyltransferase complex, ATPase subunit type 2
Tcs6 Pcc1 tRNA adenosine(37) threonylcarbamoyltransferase complex, dimerization subunit type 2
Tcs7 Cgi121 tRNA adenosine(37) threonylcarbamoyltransferase complex, regulator subunit
Tcs8 Gon7 tRNA adenosine(37) threonylcarbamoyltransferase complex, fungal specific subunit

Table 2. Homologs of t6A biosynthetic genes in Bacteria.

Organism TsaC TsaC2 (Sua5) TsaB TsaD TsaE

E. coli K12 b3282 b1807 b3064 b4168
Vibrio cholerae O1 El Tor VC0054 VC1079 VC1989 VC0521 VC0343
Caulobacter crescentus NA1000 CCNA_03501 CCNA_00057 CCNA_00069 CCNA_03648
Mycoplasm gentialium G37 MG259* MG208 MG046 N.P.
Mycoplasm pulmonis MYPU_6130# MYPU_1190 MYPU_1180 MYPU_1200
Bacillus subtilis subsp. subtilis str. 168 BSU36950 BSU05920 BSU05940 BSU05910
Haemophilus influenzae Rd HI0656 HI0388 HI0530 HI0065
Acinetobacter baylyi APD1 ACIAD0208 ACIAD0677 ACIAD1332 ACIAD2376
Salmonella Typhii TY2 STY4395 STY1950 STY3387 STY4714
Francisella novisida U112 FTN_0158 FTN_1148 FTN_1565 FTN_0274
Pseudomonas aeruginosa PA01 PA0022 PA3685 PA0580 PA4948
Burkholderia thailandensis E264 BTH_I0669 BTH_I2001 BTH_II0616 BTH_I0723
Stapholcoccus aureus subsp aureusMW2 MW0860 MW2040 MW1975 MW1973 MW1976

*M. gentialiumMG259 is a TsaC/HemK fusion.
#M. pulmonis TsaC (MYPU_6130) and HemK (MYPU_1060).
N.P.: Not Present.
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Lagard, unpublished), but the function of Tcs8 is currently
unknown.

Derivatives of t6A

Currently, there are 3 known derivatives of t6A: ct6A (cyclic
t6A), m6t6A (N6-methyl-N6-threonycarbamoyladenosine), and
ms2t6A (2-methylthio-N6-threonycarbamoyladenosine).1

A new twist in the t6A field was recently discovered with the
identification of cyclic form of t6A (ct6A), a cyclized active ester
of t6A with an oxazolone ring.61 Renumber starting here
throughout the end of the manuscript. TcdA (previously CsdL in
E. coli) catalyzes an ATP-dependent dehydration of t6A to ct6A;
this reaction is performed by Tcd1 (YHR003c) and by Tcd2
(YKL027w) in yeast.61 The harsh treatment for preparing tRNAs
for LC-MS/MS analysis had masked the presence of the true
arrangement of t6A, and ct6A appears to help tRNALys decode
the noncognate codons AGA and UAG.61 At least for E. coli,
ct6A appears to occur on all t6A-modified tRNAs.61 Unlike
TsaB, C, D, and E, TcdA is not essential for E. coli (minor
growth defect), and is not universally conserved in bacteria
(Fig. 2).61 Whether this represents the final functional form of
t6A, or if this a species-specific solution for a particular problem
has not been addressed. Additionally, Tcd1 and Tcd2 localize to
the outer membrane, not to the surface of yeast mitochondria,62

and mutations in either render cells mitochondrial deficient.61

How yeast cytoplasmic tRNAs would be converted to ct6A is cur-
rently unknown. Also, neither ct6A nor homologs of TcdA have
been found in Archaea, and ct6A does not occur in humans61

(Fig. 2).
The second known derivative of t6A, m6t6A, was initially

thought to only occur in E. coli on the 2 tRNAThr
(GGU) species

that decode ACC and ACU.63 The limited distribution of m6t6A
is confounded by the small number of organisms in which
tRNAs have been sequenced.7 m6t6A is formed by TsaA (E. coli
YaeB was recently identified as the gene responsible for TsaA
activity, and renamed TrmO)64 by transferring a methyl group
from S-adenosylmethionine (AdoMet) to tRNAThr

(GGU)

containing t6A.63 TrmO has a unique single-sheeted b-barrel
structure and does not belong to any known classes of methyl-
transferases, representing a novel category of AdoMet-dependent
methyltransferase (Class VIII). Interestingly, t6A is required for
the formation of the m6 moiety at position 37 of tRNAThr

(GGU),
and in DtrmO, tRNAThr

(GGU) A37 will be modified to ct6A, sug-
gesting that t6A is a common precursor to both m6t6A and
ct6A.64 m6t6A slightly improves translational efficiency at the
codon ACY.63,64 TrmO is widely distributed throughout life and
cross-kingdom functional analysis was performed to show the
activity was conserved.64 (Fig. 2)

The third known derivative of t6A, ms2t6A, is found only on
tRNALys

(UUU) in a subset of organisms.1 Particularly, ms2t6A is
found in B. subtilis, some Archaea, and in human, but not in E.
coli. YqeV (MtaB) in B. subtilis and Cdkal1 in humans are
responsible for the insertion of the sulfur moiety and methylation
at position 2 of the adenosine containing t6A.65-66 MtaB has been
shown to increase the accuracy of decoding lysine codons.66,67

Loss of the Cdkal1 homolog in mice is correlated to increase
Type 2 diabetes.67,68 It is not clear if ct6A is the base to form
ms2t6A, or like m6t6A, ms2t6A is formed from t6A. (Fig. 2).

Concluding Remarks

The biosynthesis of t6A is just one example of a “rediscovery”
of tRNA modifications in the genomic era, which has allowed for
the discovery of globally unknown genes for enzyme reactions
that were discovered more than 40 y earlier. In Bacteria, the 4
genes involved in t6A biosynthesis, due to their prokaryotic-spe-
cific essentiality and because tsaB and tsaE are found only in bac-
teria, had been identified as potential antibacterial and inhibitor
targets prior to the discovery of their role in t6A synthesis was
even established.45,69-72 The unique Tcs3b found in P. falcipa-
rum also presents itself as an attractive anti-malarial target. For
these proteins to be viable targets, it is critical to understand their
distribution profile and potential range of action as well as the
mechanisms underlying the essentiality phenotypes to predict
resistance mechanisms. Clearly, one should use caution in

Table 3. Homologs of t6A biosynthetic genes in Archaea and Eukarya.

Organism Tcs1 YrdC) Tcs2 (Sua5) Tcs3 (Kae1) Tcs4 (Qri7) Tcs5 (Bud32) Tcs6 (Pcc1) Tcs7 (Cgi121) Tcs8 (Gon7)

Haloferax volcanii DS2 HVO_0253 HVO_1895C HVO_1895 C HVO_0652 HVO_0013
Homo sapiens 1p34.3 14q11.2 2q32.2 20q13.2 Xq28 2p24.3-p24.1
Drosophila melanogaster CG10438 CG4933 CG14231 CG10673 CG42498 N.P.
Plasmodium falciparum PFL0175c PF3D7_1030600

PF3D7_0408900.1z
N.P. MAL7P1.26 N.P. PFE0580w

Saccharomyces cerevisiae
S228C

YGL169w YKR038c YDL104c YGR262c YKR095w-A YML036w YJL184w

Schizosaccharomyces
pombe

SPCC895.03c SPBC16D10.03 SPCC1259.10 SPAP27G11.07c SPAC4H3.13 SPCC24B10.12 SPAC6B12.18

Arabidopsis thaliana AT5G60590 AT4G22720 AT2G45270 AT5G26110 AT5G53045 AT4G34412

CH. volcanii Tcs3 and Tcs5 occur as a gene fusion (HVO_1895).
zP. falciparum PF3D7_0408900.1 (Tcs3b) targets to the apicoplast and is similar to Tcs3.
N.P.: Not Present.
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designing drugs targeting TsaB and TsaE in Mycoplasmas
spp. since the genes are absent. Caution would also be
needed for drugs targeting TsaC, due to the possibility of
cross reactivity in humans, although TsaC2 and TsaD may
be viable options.

The discovery of the t6A pathways now allows us to
address more systematically the causes of the pleiotropic phe-
notypes caused by the absence of t6A synthesis enzymes. Are
these due to mistranslation of target proteins, to a role of t6A
as a determinant for other components of the translation
apparatus, or to a role of t6A or of t6A synthesis proteins in
other processes than translation? Indeed, the recent discovery
of a molecule similar to the t6A nucleoside in dauer signaling
in nematodes73 opens an unforeseen role for t6A derivatives
in biology.
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