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How cooperation emerges in human societies is both an evolu-
tionary enigma and a practical problem with tangible implications
for societal health. Population structure has long been recognized
as a catalyst for cooperation because local interactions facilitate
reciprocity. Analysis of population structure typically assumes
bidirectional social interactions. But human social interactions are
often unidirectional—where one individual has the opportunity
to contribute altruistically to another, but not conversely—as the
result of organizational hierarchies, social stratification, popular-
ity effects, and endogenous mechanisms of network growth. Here
we expand the theory of cooperation in structured populations to
account for both uni- and bidirectional social interactions. Even
though unidirectional interactions remove the opportunity for
reciprocity, we find that cooperation can nonetheless be favored
in directed social networks and that cooperation is provably
maximized for networks with an intermediate proportion of uni-
directional interactions, as observed in many empirical settings.
We also identify two simple structural motifs that allow efficient
modification of interaction directions to promote cooperation by
orders of magnitude. We discuss how our results relate to the
concepts of generalized and indirect reciprocity.

cooperation | evolutionary game theory | asymmetric relationships |
directed graphs

The past year has crystallized the real-life importance of a long-
standing enigma: When will individuals incur personal costs

for the benefit of others? Confronted with a global pandemic,
some individuals and societies have responded with prosocial be-
havior, such as volunteering as frontline workers, donating pro-
tective materials and supplies, and adhering to strict quarantine
policies (1, 2). Whereas in other groups or at other times defec-
tion has dominated, as individuals chose to forgo face masks, to
refuse readily available vaccination, or to flaunt travel restrictions
and other measures for public health. Understanding the spread
and maintenance of cooperation is now widely recognized as an
important practical problem with tangible benefits, especially as
we tackle global problems of collective action in public health,
resource management, and climate change (3).

The last few decades have seen a proliferation of theoretical
research into the evolutionary origins of cooperation and the
dynamics of its spread. The literature has revealed several key
insights into this enigma (4). Population structure is perhaps the
most widely discussed mechanism that can promote cooperation
(5, 6), and it has been studied by computer simulation (7–9),
mathematical analysis (10–21), and experiments with human
subjects (22). In structured populations individuals interact only
with their neighbors—through either physical or social ties—
and behaviors also spread locally. Population structure has
the potential to favor the evolution of cooperative behaviors
that would otherwise be disfavored in well-mixed populations
(5–7, 11, 16, 17). In network-structured populations, for example,
nodes represent individuals and edges typically represent social
interactions between connected individuals (9–12, 14–19); in set-
structured populations, each individual is located in one or more
social circles (23); and in multilayer-structured populations,

social interactions occur in multiple different domains, such as
online and offline interactions, and payoffs to an individual are
summed across domains (20, 24).

Despite different approaches to describing population struc-
ture, nearly all research on this topic has assumed that social
interactions and behavioral spread are bidirectional (7–20, 22).
That is, if Alice provides a benefit to Bob when behaving al-
truistically, Bob is presumed to provide a benefit to Alice when
behaving altruistically; moreover, if Alice has a chance to imitate
Bob’s behavior, then so too can Bob imitate Alice’s behavior.
The assumption of bidirectionality simplifies analysis and enables
simple intuitions for how population structure permits the spread
of cooperation (11).

But bidirectional models neglect the prevalence of asymmetric
relationships in human social interactions (25). An asymmetric
relationship arises when one individual has the opportunity to
act altruistically toward another, but there is no opportunity
for any reciprocal action. Asymmetric relationships also con-
strain the spread of behavior: One individual has the opportunity
to copy the strategic behavior of another, but not conversely.
Such asymmetries are commonly found across diverse domains
of human social interactions, arising from social stratification,
organizational hierarchies, popularity effects, and endogenous
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mechanisms of network growth (26–40). For example, in the em-
pirical friendship network of an Australian National University
campus, more than half of the relationships are unidirectional:
One student regards another as a friend, but not conversely
(41). In the network of Twitter followers (based on a snowball
sample crawl across “quality” users in 2009), more than 99% of
follower relationships are unidirectional (42). Other examples
include email networks (34) and trust and advice networks (35,
43)—which all exhibit a high proportion of unidirectional social
interactions. Asymmetric interactions are also widespread out-
side of the human social domain, in systems such as international
trade (trade volumes and tariffs between countries) (25) and river
and stream flow (movement of microorganisms, nutrients, and
organic matter) (44–46).

Recent advances in network science have established that edge
directionality can qualitatively alter dynamics across a range of
systems, including in disease spread (47) and synchronization
(48). The empirical prevalence of directed social interactions,
and its remarkable impact on dynamics in other settings, leaves
an open question: How does directionality affect the evolution of
cooperation?

Asymmetric relationships are likely to fundamentally alter the
evolution of cooperation, compared to the classic case of bidirec-
tional relationships. A bidirectional relationship allows for (but
does not guarantee) reciprocal cooperation between a pair of
individuals, which occurs when both individuals choose an al-
truistic behavior. Moreover, a bidirectional relationship enables
the spread of cooperative behavior: If one individual imitates
a neighbor’s altruistic behavior, then the neighbor will subse-
quently experience reciprocity—so that two altruistic neighbors
help each other, and two defecting neighbors harm each other.
This phenomenon of “network reciprocity” (4) along bidirec-
tional edges is known to facilitate the local spread of cooperation
and retard the spread of defection. But prosocial spread and
reciprocity cannot occur along a unidirectional edge, because
only one individual has the opportunity to contribute toward
another, and not conversely. Since reciprocity is disrupted, uni-
directional interactions may make it difficult, or even impossible,
for cooperation to emerge in structured populations.

Here we study the evolution of cooperation in structured pop-
ulations with directed interactions. We uncover a surprising and
general result: Directionality can actually facilitate cooperation,
even though it disrupts reciprocity. We prove analytically that co-
operation can evolve in populations with directional interactions
and that an intermediate level of directionality is most beneficial
for cooperation. In fact, converting a portion of links to be
unidirectional can even promote cooperation on a bidirectional
network whose topology otherwise disfavors the emergence of
cooperation. Furthermore, we identify two simple network motifs
that are critical to determining the evolution of cooperation and
that provide insights into how best to optimize edge directions
to stimulate cooperation, by orders of magnitude. Our analysis
reveals a profound effect of asymmetric social interactions for
the evolution of behavior in structured populations.

Model
We model a population of N individuals engaged in pairwise
social interactions with their neighbors. Each player engages
with each of the player’s neighbors in a simple social dilemma
called the donation game (49), choosing either to cooperate
(C) or defect (D). A cooperative act means paying a cost c
to provide the player’s opponent with a benefit b. In general,
selection can favor cooperation in structured populations pro-
vided the benefit-to-cost ratio b/c is sufficiently large (11, 16).
Here, we analyze how the critical benefit-to-cost ratio required
to support cooperation depends upon directionality in the struc-
ture of social interactions. Although we focus on the donation
game as a well-established model for a social dilemma (49),
our method of analysis provides general conditions for the evo-

lution of cooperation for arbitrary asymmetric pairwise games
(SI Appendix, section 2A).

We describe population structure by a directed network with
N nodes, labeled N = {1, 2, · · · ,N }, and edges {wij}i,j∈N ∈
{0, 1}. Here wij = 1 means there is a directed edge originating
from source node i and pointing to target node j, whereas wij = 0
means no such edge. An edge between i and j is unidirectional
if wij = 1 and wji = 0 or if wij = 0 and wji = 1. The edge is
bidirectional if wij = wji = 1, which is equivalent to having two
unidirectional edges in opposite directions. We call a network
“directed” if it contains any mixture of uni- and bidirectional
edges. And if all edges are unidirectional (bidirectional), we say
the network is strictly unidirectional (bidirectional).

Each node represents an individual whose strategy, at any time,
is either cooperate or defect. Let si denote player i’s strategy
(si = 1 means C and si = 0 means D). In each generation, a
donation game is played along each directed edge. If the player
at a source node cooperates, the player pays cost c to provide
a benefit b to the player at the target node; while a defector
at the source node pays no cost and provides no benefit. If a
bidirectional edge connects nodes i and j, then the donation game
is played twice along the edge, with each node assuming the role
of potential donor and potential recipient. After games have been
played along all directed edges, each player accumulates payoffs
summed across all interactions, so that the total payoff to i is
given by

πi =−c
∑
j∈N

wij si + b
∑
j∈N

wjisj . [1]

The payoff is then transformed to a “reproductive” rate Fi =
1 + δπi , where δ denotes the selection intensity (50). Our anal-
ysis assumes weak selection, 0< δ � 1, meaning that payoff
differences have small effects on the evolutionary dynamics (50,
51). This assumption has a long history in population genetics
(52) and evolutionary biology (53), and it has also been used
to formulate predictions for behavioral experiments with human
subjects (54). In addition to our mathematical analysis under
weak selection, we also simulate stronger selection strengths, and
we find that our predictions are qualitatively unchanged and even
quantitatively accurate when the selection strength is moderate.

After receiving payoffs based on their current strategies, indi-
viduals have the opportunity to update their strategies by payoff-
biased imitation of other players. In general, the network along
which strategies spread (or disperse) may not be the same as
the network of pairwise game interactions. In particular, at the
end of each generation, a random player i is selected uniformly
at random to “die” (or, equivalently, selected to update the
player’s strategy), and the player imitates the strategy of one of
the player’s neighbors in the directed dispersal network, selected
proportional to the neighbor’s reproductive rate.

Although our analysis applies to an arbitrary strategy dispersal
network (SI Appendix, section 2B), we focus on two specific cases
of dispersal networks, termed “downstream” and “upstream”
dispersal. The dispersal edges in both the upstream and down-
stream cases are the same, and they agree with the edges in the
pairwise game interaction network. However, in the downstream
case, the edge directions in the dispersal network are identical
to those of the interaction network; and in the upstream case
the edge directions for strategy dispersal are reversed relative to
the directions of the interaction network (Fig. 1). And so, in the
downstream case, player j successfully disperses player j’s strategy
to i with probability

ej→i =
1

N

wjiFj∑
�∈N w�iF�

. [2]

Whereas in the upstream case, player j successfully disperses
player j’s strategy to i with probability

ej→i =
1

N

wijFj∑
�∈N wi�F�

. [3]
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Fig. 1. Evolutionary games with asymmetric interactions. (A) A population
structure is described by a directed network. (B) Individuals (nodes) engage
in pairwise social interactions along directive edges. A cooperative individual
at a source node pays a cost c to generate a benefit b to a recipient at
a target node; whereas a defector pays no cost and generates no benefit.
Each player i accumulates a total payoff, summed over all pairwise directed
interactions (two examples are indicated). (C) After accumulating payoffs,
a random individual i (denoted by a question mark) is chosen to update
the individual’s strategy according to payoff-biased imitation. All neighbors
pointing to i in the dispersal network compete to spread their strategies to i,
with a probability proportional to their reproductive rate. We consider two
cases of strategy dispersal: In the downstream case strategies disperse in the
same direction as social interactions occur; in the upstream case strategies
disperse in the opposite direction.

The two types of dispersal we study originate from classical
notions of generalized reciprocity and indirect reciprocity in evo-
lutionary game theory (55, 56). For example, when considering
a sequence of interactions i → j → �, generalized reciprocity
describes the situation when individual j receives a donation
from the cooperative individual i, and subsequently j imitates
i’s behavior (strategy C) and applies it to benefit a third party,
individual �. In this process, the donation in the game i → j and
the dispersal of strategy i → j occur along the same direction,
corresponding to downstream dispersal. By contrast, indirect
reciprocity describes the situation when individual i observes
individual j making a donation to a third party, �, and then
individual i imitates the cooperative behavior of j (strategy C)
and makes a donation to j. In this case, the donation in the
game (i → j ) and the dispersal of strategy (j to i) occur in the
opposite directions, corresponding to upstream dispersal. And so
the downstream and upstream cases correspond to two different
modes of social imitation: where individuals choose to copy
prosocial behavior when it benefits a third party (upstream) or
where they choose to copy prosocial behavior when it benefits
them directly (downstream). When all edges are bidirectional,
game play and strategic spread are the same in both upstream
and downstream cases, and they coincide with classical models
of structured populations (11, 16, 21).

Results
We study the evolution of cooperation by quantifying the chance
that a single mutant type, introduced at a random node, will
eventually spread and overtake the entire population. We assume
that the population structure for strategy dispersal is connected,
meaning that for any pair of individuals i , j ∈N there is a series
of directed edges connecting i to j in the network of strategy
dispersal. We let ρC (respectively ρD ) denote the probability that
a single mutant cooperator in an otherwise defector population
(respectively, a mutant defector in an otherwise cooperator pop-
ulation) eventually spreads to the entire population and reaches
an absorbing state of all cooperators (respectively defectors).
We say that selection favors cooperation over defection provided
ρC > ρD (50), meaning that novel cooperative behavior is more
likely to overtake defection than conversely.

Cooperation Can Evolve in Strictly Unidirectional Networks. We start
by studying whether cooperation can be favored on strictly uni-
directional networks, which contain no bidirectional edges. To
consider this problem we first recall the key intuition used in
prior studies to explain why bidirectional population structures
can favor cooperation. In that setting, once a cooperator dis-
perses a strategy to a neighbor, the cooperator will benefit from
reciprocity in the next generation, receiving donations from the
neighbor. By contrast, if a defector disperses a strategy to a
neighbor, the defector will suffer in the next generation and
receive nothing from the neighbor. Thus, the formation of “co-
operator clusters” and “defector clusters” favors the evolution of
cooperation in bidirectional networks (7), which is an example of
the more general phenomena of inclusive fitness (5, 6, 57) and
reciprocal altruism (58).

This intuition for the effect of population structure on cooper-
ation relies on reciprocity; and so it does not apply in the setting
of directed edges, and especially not in the strictly unidirectional
setting. For example, in the downstream case, if a cooperative
player i disperses a strategy along edge wij to player j, then player
j is unable to reciprocate by donating to i, because there is no edge
from j to i. Likewise, a defector who spreads a strategy will not be
retaliated against by defection. And so, lacking the mechanism of
network reciprocity, we might expect that directed graphs cannot
favor the evolution of cooperation.

Despite the simple intuition above, it turns out that strictly uni-
directional graphs can indeed favor cooperation. To see this, we
start by studying random regular networks as a special case, which
facilitates intuition and enables simple analytic equations for the
likelihood of alternative evolutionary outcomes. [Our method of
analysis can also be applied to arbitrary directed networks, as de-
scribed in SI Appendix, section 2B, although solutions for fixation
probabilities in general require solving a system of O(N 2) linear
equations.] We prove that in a strictly unidirectional random
regular network, where each node has k/2 incoming edges and
k/2 outgoing edges, selection favors the evolution of cooperation
if (SI Appendix, section 2A)

b

c
> k − 1 [4]

in the downstream case and

b

c
>

k(k − 1)

k − 2
[5]

in the upstream case, provided the number of nodes N is suffi-
ciently large. For finite regular networks we also provide a finite-
population correction for the benefit-to-cost ratio that promotes
cooperation (SI Appendix, section 2C).

Fig. 2 illustrates a simple intuition for this surprising result,
by considering how a single mutant cooperator can spread in
a population of defectors. Initially, the cooperator has a lower

Su et al.
Evolution of cooperation with asymmetric social interactions

PNAS 3 of 11
https://doi.org/10.1073/pnas.2113468118

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2113468118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2113468118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2113468118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2113468118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2113468118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2113468118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2113468118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2113468118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2113468118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2113468118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2113468118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2113468118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2113468118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2113468118/-/DCSupplemental
https://doi.org/10.1073/pnas.2113468118


Initial state Assortment by drift Expansion by selection

D
ow

ns
tr

ea
m

U
ps

tr
ea

m

A B C

D E F

Fig. 2. The spread of cooperation on unidirectional networks. Shown is how evolution can favor cooperation on a strictly unidirectional graph, initially by
positive assortment of cooperative types followed by selective spread of cooperation. In the case of downstream dispersal (A–C), a single mutant cooperator
(blue circle) occurs in a population of defectors (red circles). Initially, cooperation spreads locally due to stochastic drift, from node i5 to its downstream
neighbor node i6 (A and B). After drift establishes a set of assorted cooperative nodes, selection then favors subsequent spread of cooperation. In particular,
the donation from node i5 increases the fitness of i6 relative to i6’s competitors vying to spread to downstream neighbor i9, so that selection favors the
spread of cooperation from i6 (C). Under upstream dispersal, assortment is established by drift when i5 spreads i5’s strategy to the upstream neighbor i4 (D
and E). The donation from node i4 increases the fitness of cooperator i5 relative to i5’s competitors, so that selection favors the spread of cooperation from
i5 (F). This example illustrates a strictly unidirectional random regular graph of incoming degree 2 and outgoing degree 2, with some nodes not depicted.

reproductive rate than the cooperator’s competitors, and coop-
eration can spread only by stochastic drift. In the case of down-
stream dispersal, stochastic drift of cooperation to a downstream
neighbor serves to increase the neighbor’s fitness, which then pro-
motes further downstream spread favored by selection. Whereas
for upstream dispersal, cooperation drifts from the initial mutant
to an upstream neighbor, which serves to increase the mutant’s
own fitness so that selection then favors spread to a different
upstream neighbor. In both cases, cooperation initially spreads by
stochastic drift, causing positive assortment of cooperative nodes,
which then favors further spread of cooperation by selection. But
the pattern of spread, and the identity of which nodes benefit
from early stochastic events, differs in the case of upstream versus
downstream dispersal.

We can add quantitative detail to this intuition by considering
an individual’s expected payoff over the long-term evolutionary
process. When an individual dies (or, equivalently, is chosen to
update the individual’s strategy), all the individual’s incoming
neighbors in the dispersal network compete to reproduce and
spread their strategy to the vacancy (Fig. 3A). Cooperation is fa-
vored to spread by selection if an incoming cooperative neighbor,
such as node i, has a higher expected payoff than an incoming
defecting neighbor, j. Our analysis shows that such a cooperative
node i has k/(2(k − 1)) more incoming cooperative neighbors,
in a random regular graph, than a defecting competitor j does
(SI Appendix, Eq. 22); and so i receives bk/(2(k − 1)) greater
benefit than does j. At the same time, though, the cooperator i
pays a cost ck/2 along k/2 interactions, whereas the defector j
avoids these costs. And so the cooperator i’s payoff exceeds j’s
if the net benefit exceeds the cost; i.e., bk/(2(k − 1))> ck/2,
leading to the condition b/c > k − 1. We can analyze the up-
stream case in an analogous way. The slight difference is that in
the upstream case, the cooperator i has (k − 2)/(2(k − 1)) more
incoming cooperative neighbors than a defector competitor j has,
and so the evolution of cooperation requires a slightly higher
benefit-to-cost ratio, b/c > k(k − 1)/(k − 2).

Cooperation Thrives When Directionality Is Intermediate. Many em-
pirical networks of social interaction exhibit an intermediate pro-
portion of unidirectional edges (32, 34, 35, 37–39). Prior studies
on such empirical networks retained only the topology of nodes

and edges and assumed that all interactions are bidirectional
(59). A natural question is how a mixture of uni- and bidirectional
interactions influences behavioral evolution.

Let p denote the proportion of edges that are unidirectional.
In a random regular network with degree k, each node then has
kp/2 unidirectional incoming edges, kp/2 unidirectional outgo-
ing edges, and k(1− p) bidirectional edges. For the sufficiently
large network size N and large node degree k, for both down-
stream and upstream dispersal, we prove that selection favors
cooperation over defection provided (SI Appendix, section 2A)

b

c
>

(2− p)2

4− 3p
k . [6]

When p = 0 (a strictly bidirectional network), we recover the
well-known condition b/c > k (11). When p = 1 (a strictly unidi-
rectional network), we have b/c > k , which approximates Eqs. 4
and 5 for large k. In general, though, an intermediate proportion
of unidirectional edges, namely p = 2/3, minimizes the benefit-
to-cost ratio required for selection to favor cooperation (Fig. 4).
And so not only is the evolution of cooperation possible on k-
regular networks whose edges are all unidirectional, but also in
fact cooperation is made easier when an intermediate portion of
edges is unidirectional. This finding suggests that prior studies,
which assume all interactions are bidirectional, underestimate
the capacity for realistic population structures to catalyze coop-
eration.

Fig. 3B provides the key intuition to explain why an intermedi-
ate proportion of unidirectional edges is optimal for cooperation.
We focus on the downstream case, as the upstream case can be
analyzed analogously. Players receive benefits not only from the
incoming neighbors connected by unidirectional edges (marked
by I), but also from neighbors connected by bidirectional edges
(marked by U). Our analysis (SI Appendix, Eqs. 46 and 47) shows
1) the difference p

(I )
C |C − p

(I )
C |D exceeds zero and is monotoni-

cally increasing with the proportion of directed edges, p, and
2) this probability difference is twice as large for bidirectional
edges than it is for unidirectional incoming edges; i.e., p(U )

C |C −
p
(U )
C |D = 2(p

(I )
C |C − p

(I )
C |D). Starting from a strictly bidirectional
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Fig. 3. Conditions that favor cooperation on directed networks. When an individual updates a strategy, the individual’s neighbors such as cooperator i and
defector j compete to disperse their strategy into the vacant space (denoted ?). Cooperation is favored to spread only if the payoff to i exceeds the payoff
to j, πi > πj. Our analysis shows that a cooperator i has a greater chance of having an incoming cooperative neighbor than a defector does: q(I)

C|C > q(I)
C|D

(SI Appendix, Eqs. 22 and 46). (A) In a strictly unidirectional network, cooperator i receives benefits from k/2 incoming neighbors and pays costs c to each
of k/2 outgoing neighbors; whereas defector j receives benefits from k/2 incoming neighbors, but pays no costs—which yields expressions for πi and πj .
Selection then favors cooperation provided b/c > k − 1. (B) In networks with a proportion p of directed edges, i and j each receive potential benefits from
kp/2 incoming neighbors connected by unidirectional edges (I) and from k(1 − p) neighbors connected by bidirectional edges (U); and cooperator i pays
costs to k(1 − p/2) neighbors. Selection favors cooperation provided b/c > (2 − p)2k/(4 − 3p). Shown are payoff expectations in the downstream case,
for large k.

graph (p = 0), converting some edges to unidirectional (p >

0) increases p
(U )
C |C − p

(U )
C |D , thereby increasing the benefit that

a cooperator obtains from bidirectional neighbors. But as the
proportion of unidirectional edges increases yet further, the total
number of bidirectional edges decreases and this reduces the net
benefit that the cooperator receives from cooperative neighbors.
As a result of these two opposing effects, an intermediate pro-

portion of unidirectional edges is optimal: p > 0 increases the
chance that a cooperator’s neighbors are cooperators, whereas
p < 1 maintains a sufficient number of bidirectional neighbors.

Our analysis of k-regular graphs shows that directed interac-
tions can stimulate cooperation, but these results do not account
for population heterogeneity, which is common in human social
networks. To address this, we proceed to investigate four classes

A BDownstream Upstream

Fig. 4. An intermediate proportion of unidirectional edges is optimal for cooperation. We consider random regular networks with a proportion p of
unidirectional edges. Each node has kp/2 incoming edges, kp/2 outgoing edges, and k(1 − p) bidirectional edges. A and B display the critical benefit-to-
cost ratio (b/c)∗ required to favor cooperation, as a function of the unidirected edge proportion p and scaled by node degree k. Colored squares represent
numerical results for arbitrary k (see SI Appendix, Eq. 37 for the downstream case and SI Appendix, Eq. 41 for the upstream case). The black line plots a
simple analytic expression (Eq. 6) that holds in the limit of large k, where cooperation is easiest to evolve for p = 2/3. The red line indicates the critical ratio
for a strictly bidirectional network (11), (b/c)∗ = k.
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of heterogeneous networks: random regular networks in which
nodes can have different numbers of incoming, outgoing, and
bidirectional edges; random networks; small-world networks;
and scale-free networks (SI Appendix, Fig. S1). For each class, we
generate bidirectional networks of various average node degree
k̄ , and then we randomly convert a proportion p of edges to be
unidirectional. For all four classes of heterogeneous networks, we
find that an intermediate proportion of directed edges is most
beneficial to cooperation, for both downstream and upstream
strategy dispersal (see SI Appendix, section 2B for the calculation
of benefit-to-cost ratios on any directed network). For exam-
ple, on a strictly bidirectional network (p = 0), if cooperation
is favored for some benefit-to-cost ratio, increasing p will de-
crease the ratio required for the evolution of cooperation. Some
strictly bidirectional networks disfavor cooperation altogether,
regardless of the benefit-to-cost ratio, or they may even favor
the evolution of spite, a kind of antisocial behavior in which
an individual pays a cost to hurt others. Even on strictly bidi-
rectional networks that disfavor cooperation altogether, we find
that converting some bidirectional edges to unidirectional can
rescue cooperation. Overall, for all four classes of heterogeneous
networks we study, the optimal proportion of directed edges to
facilitate cooperation is close to 2/3, as in the case of random
regular networks.

Edge Orientation Matters. Our analyses of random regular net-
works have assumed a homogeneous distribution of directional
edges pointing toward or away from each node. Under this
assumption, as Eq. 6 indicates, the benefit-to-cost ratio required
to promote cooperation depends only on the node degree (k) and
the proportion of edges that are unidirectional (p). In general,
though, some nodes may have a larger proportion of incom-
ing edges than other nodes, and the local structure of edge
orientations may determine the evolutionary outcome. In this
section we explore the strategic assignment of edge orientations,
to understand how this feature of network topology influences
the evolution of cooperation. In particular, we identify two key
network motifs—one relevant in the upstream case and one in the
downstream case—that depend on edge orientation and strongly
influence the fate of cooperation on directed networks.

We focus our analysis on strictly unidirectional networks, pay-
ing attention now to the orientation of each edge. Let ki denote
node i’s degree, including k

(I )
i incoming edges and k

(O)
i outgo-

ing edges; i.e., ki = k
(I )
i + k

(O)
i . In the downstream case, where

strategies spread in the same direction as game interactions, we
consider the motif of “triangular cycles,” such as i → j → �→
i (Fig. 5A). For node i, the number of such triangular cycles
is

∑
j ,� wijwj�w�i . We normalize the number of such triangles

through node i by its maximal value, given the node’s in-degree
and out-degree, and define the quantity

C1 =

∑
i,j ,� wijwj�w�i∑

i k
(I )
i k

(O)
i

[7]

to measure the (normalized) frequency of triangular cycles in
the directed network. A large value of C1 means there is a large
frequency of triangular cycles, given the incoming and outgoing
node degrees.

In the upstream case, where strategies spread in the opposite
direction to game interactions, we consider the motif of “in-in
pairs,” such as j → i and �→ i for node i in Fig. 5D. For node
i, the number of in-in pairs is k (I )

i

(
k
(I )
i − 1

)
. We normalize the

number of such in-in pairs by the total number of edge pairs for
node i and define the quantity

C2 =

∑
i k

(I )
i

(
k
(I )
i − 1

)
∑

i ki (ki − 1)
[8]

to measure the global frequency of in-in pairs in the directed
network. A large value of C2 means there is a large frequency
of in-in pairs, given the incoming and outgoing node degrees.

For downstream dispersal, edge orientations that produce a
large proportion of triangular cycles are beneficial to the evolu-
tion of cooperation (Fig. 5 B and C). Whereas a directed network
with random orientations may require a very high benefit-to-
cost ratio for cooperation, adjusting only edge directions (re-
versing orientations of existing directed edges) to increase the
frequency of triangular cycles (C1) can markedly decrease the
benefits required for cooperation (Fig. 5B). Furthermore, even
when a directed network with random orientations disfavors co-
operation altogether, for any benefit-to-cost ratio, adjusting edge
orientations to increase triangular cycles can rescue cooperation
(Fig. 5C).

In-in pairs have analogous, beneficial effects on cooperation
in the case of upstream strategy dispersal (Fig. 5 E and F).
Moreover, the effects of triangular cycles and in-in pairs, in the
downstream and upstream contexts, respectively, persist across
a large sample of regular, random, and directed networks with
a mixture of uni- and bidirectional edges and even when con-
nections are sparse (SI Appendix, section 3 and Figs. S2–S4). The
only counterexample occurs when heterogeneity in node degree
is extremely large (such as a heavy-tailed degree distribution),
which mitigates the cooperation-promoting effects of triangular
cycles in the downstream setting.

There is a simple intuition for why triangular cycles promote
cooperation in the downstream setting and in-in pairs promote
cooperation in the upstream setting. Although immediate reci-
procity is impossible on a strictly unidirectional network, in the
downstream case the triangular cycle i → j → �→ i allows co-
operator i to receive reciprocity via two-step strategy dispersal:
Cooperation spreads from i to downstream neighbor j, and then
i’s donation to j supports further spread of cooperation to j’s
downstream neighbor �, who in turn reciprocates i’s coopera-
tive behavior. This effect is second best to pairwise reciprocity,
and orienting edges to produce triangular cycles proves to be
efficient for promoting cooperation. In the upstream case, by
contrast, the triangular cycle does not favor cooperation: After
cooperation spreads from i to an upstream neighbor �, � gains
no fitness advantage to facilitate further spread. Instead, node i
benefits from the newly cooperative neighbor �, which serves to
attract other incoming neighbors of i to imitate i’s cooperative
trait. Therefore, a larger number of incoming neighbors to a
cooperative node, corresponding to more in-in pairs, facilitates
the spread of cooperation under upstream dispersal.

The two motifs, triangular cycles and in-in pairs, are often mu-
tually exclusive. Reorienting edge directions to increase the fre-
quency of triangular cycles, C1, tends to decrease the frequency of
in-in pairs, C2, and vice versa (Fig. 6A and SI Appendix, Fig. S5).
Fig. 6 B–D illustrates three directed networks with various fre-
quencies of these motifs, while also showing each node’s in-
degree relative to its total degree k

(I )
i /ki (SI Appendix, Fig. S5).

As these examples illustrate, when edge orientations are opti-
mized to increase the frequency of triangular cycles (Fig. 6C),
this has the effect of homogenizing the in-degree and out-degree
across the network. Whereas optimizing the frequency of in-
in pairs (Fig. 6D) leads to extreme heterogeneity in the in-
degree/total-degree ratios across nodes—so that a few nodes
serve primarily as sources, and a few nodes serve primarily as
sinks. These qualitative observations provide some intuition into
what features of degree heterogeneity across a directed network
are likely to stimulate cooperation, for the downstream case of
strategy imitation (homogeneous in-degrees) or the upstream
case (heterogeneous in-degrees).

Aside from the two extreme cases of strictly upstream or
strictly downstream strategy dispersal, we have also investigated
their combination: bidirectional dispersal. Directed social
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Fig. 5. Network motifs that facilitate cooperation. We study two network motifs: the triangular cycle in the case of downstream behavioral dispersal (A)
and the in-in pair in the case of upstream dispersal (D). We plot the critical benefit-to-cost ratio required to favor the evolution of cooperation as a function
of the frequency of these motifs, C1 (B and C) and C2 (E and F). In each case, we start with a strictly bidirectional Watts–Strogatz small-world network (60)
generated with rewiring probability 0.1, and we plot the critical ratio in red. We convert all edges to unidirectional, assigning random orientations, and
plot the resulting frequency of motifs (vertical dashed lines). By systematically adjusting edge orientations we can either increase or decrease the motif
frequencies, C1 and C2. A high frequency of triangular cycles facilitates cooperation in the downstream case; and a high frequency of in-in pairs facilitates
cooperation in the upstream case. In some cases the network favors the evolution of spite, as indicated by a negative value of (b/c)∗; adjusting edge
directions to increase motif frequency can often rescue cooperation in such cases. Shown are results for 100 sampled Watts–Strogatz networks, each with
N = 100 nodes. For each network, we explore 10,000 motif frequencies by adjusting edge orientations.

interactions (that is, directed game play) still promote coopera-
tion in this setting (SI Appendix, Fig. S6), and we find that, here,
the in-in pair motif is more important than the triangular cycle:
Increasing the number of in-in pairs reduces the benefit-to-cost
ratio for cooperative spread and it can even rescue cooperation
from spite.

In addition to triangular cycles and in-in pairs, we find another
simple motif called an “acyclic triangle” that can strongly influ-
ence the evolution of cooperation. An acyclic triangle refers to
the structure i → j → �← i (SI Appendix, Fig. S7A). Unlike tri-
angular cycles or in-in pairs, a high frequency of acyclic triangles
inhibits cooperation, for both downstream and upstream strategy
dispersal (SI Appendix, Fig. S7 B and C)—a phenomenon that is
predicted by our approximate condition on finite regular net-
works (SI Appendix, section 2C). This result is also intuitive, be-
cause, if a cooperator i and defector j compete for a vacant node
�, i’s donation to j weakens i’s advantage over i’s competitor j.

Finally, we investigated directionality and strategic evolution
on 14 empirical social networks (SI Appendix, section 4). These
networks were assembled from social surveys on friendship

nominations among high school students in the National
Longitudinal Study of Adolescent Health (32), data on physical
visitations among families in a Costa Rican town (61), surveys
of friendship ratings on a university campus (41), the referral
network among a sample of physicians in Illinois (35), and
the follower network among a sample of Twitter users (42).
The proportion of unidirectional edges is substantial in these
empirical networks of social interactions—ranging from p = 45%
to p = 80%. Moreover, as a result of the topology of these
empirical networks, cooperation in the donation game would
evolve more readily on such networks, for either upstream or
downstream strategic spread, compared to a process that ignores
directionality and treats all edges as bidirectional.

Discussion
Population structure has long been recognized as a catalyst
for cooperation that cannot otherwise spread in a well-mixed
society. And yet most theoretical analysis of this effect has
assumed bidirectional social interactions, even though actual
human interactions are often unidirectional. Directionality arises
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A B

C D

Fig. 6. Motif frequency and node degrees. We generated 100 Watts–Strogatz small-world networks (60) with size N = 100, average degree k̄ = 40, and
rewiring probability 0.1. (A) After making all edges unidirectional and assigning random orientations, we measured the frequency of triangular cycles and
in-in pairs (vertical and horizontal dashed lines). We then modified edge directions either to increase C1 (teal) or to increase C2 (orange), recording both
C1 and C2, which are anticorrelated. B–D illustrate three example networks with intermediate, high, and low frequency of triangular cycles, as indicated on
the network of A. For each example network, the displayed size of each node i is proportional to its in-degree relative to its total degree, k(I)

i /ki . In each
network, the connections of two representative nodes (green circle) are highlighted, with red circles denoting incoming neighbors and blue circles outgoing
neighbors. A large frequency of triangular cycles is associated with homogeneity of in-degree/out-degree (C), and this tends to promote cooperation under
downstream behavioral dispersal (Fig. 5 A–C). Whereas a large frequency of in-in pairs is associated with heterogeneity of in-degree/out-degree (D), and
this tends to promote cooperation in the case of upstream dispersal (Fig. 5 D–F).

in real-life settings as the result of organizational hierarchy,
social stratification, and popularity effects, as well as endogenous
mechanisms of network growth in, e.g., online social networks.
But the impact of directed interactions for cooperation has
not been thoroughly studied, by either theoretical analysis or
empirical experimentation. One reason why directionality may
have been neglected is that, a priori, unidirectional interactions

would seem to only impede cooperation, because they remove
the possibility of pairwise reciprocity (5–7).

Our results contravene the simple intuition that directionality
should impede cooperation. Even though it disrupts reciprocity,
we have proved analytically that cooperation can be favored to
evolve in populations with strictly unidirectional social interac-
tions and directional spread of behavior. This analysis is based
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on the same theoretical framework and assumptions that have
been widely applied to study the emergence of cooperation in
bidirectional social structures (11, 62). The intuitive explanation
for our results rests on the initial spread of an altruistic mutant by
stochastic drift, which produces assortative pairs of cooperators
who then facilitate further spread by selection. The pattern of
spread, however, and whether early stochastic events benefit
the initial mutant or the mutant’s one-step neighbor depend
on whether strategy dispersal is upstream or downstream. The
same basic intuition explains why prosocial spread is optimized
for an intermediate proportion of unidirectional edges. And so
our analysis reflects, in a directed setting, how the algebra of
assortativity drives the evolution of cooperation (63).

Our analysis is based on the assumption of weak selection,
where payoffs derived from game interactions have only a small
effect on imitation dynamics and strategic spread. Weak selec-
tion increases the relative strength of stochastic drift, which
is beneficial during the initial stage of cooperative spread. A
sole cooperator has a lower payoff than nearby defectors, and
therefore spread relies on drift at the initial stage (Fig. 3 A and
B). However, once positive assortment among cooperators is
established by drift, further cooperative expansion is favored by
selection (Fig. 3 B and C), and stronger selection would favor
it more readily. And so, in total, the long-term prospects for
cooperation depend on the balance of these two opposing effects.
Our simulations under moderate selection show that analytic
predictions derived under weak selection are accurate, including
both the critical benefit-to-cost ratio and the fixation proba-
bility of cooperators (SI Appendix, Fig. S8). And the qualitative
prediction that asymmetric interactions favor cooperation holds
even under yet stronger selection (SI Appendix, Fig. S8). Our
analysis offers a fairly complete understanding of how directed
network structures influence the chance of absorption in either
all cooperation or all defection. The time required to reach this
absorbing state, however, remains a difficult mathematical prob-
lem, even in the limit of weak selection. Although we conjecture
that downstream dispersal will lead to more rapid absorption, this
topic remains an open question for future research. Likewise, the
dynamics under alternative imitation processes, such as birth–
death or pairwise comparison, remain open areas for future
study.

Recent, systematic study of bidirectional networks has found
that cooperation will be disfavored, regardless of the benefit-to-
cost ratio, for roughly 60% of networks of size N = 6 nodes (16)
and likewise for large portions of large networks as well (64).
Many of these networks even favor the evolution of spite (16).
Yet we have found that, even for such networks, conversion of
some bidirectional edges to unidirectional can rescue coopera-
tion. An important implication is that asymmetric interactions
provide an alternative method of modifying population structure
to promote cooperation—besides severing old ties and building
new ones, as has been explored in the bidirected setting (16,
20, 59) (SI Appendix, Fig. S9). In particular, we have identified
two specific structural motifs, triangular cycles for downstream
behavior dispersal and in-in pairs for upstream dispersal, that
efficiently guide structural modifications to favor the spread of
cooperative behavior.

Our results on structural motifs are reminiscent of seminal
work on social hierarchies by Chase (29, 31). Using experiments
on hens, Chase showed how double-dominance and double-
subordinance relationships serve as microfoundations for social
stratification (29, 31). Davis (26), Holland and Leinhardt (27,
30), Davis and Leinhardt (28), and Faust (33) introduced a
typology of 16 different triads, based on three kinds of pairwise
relationships—mutual reciprocal action, asymmetric action, and
nonreciprocal action. Although their classification scheme does
not precisely map onto game-theoretic models in networked
populations (which lack the “no-action” relationship), we can

compare our definitions of triangular cycle and in-in pair to the
typology of Holland and Leinhardt (27, 30). Our definitions are
broader than those of Holland and Leinhardt (27, 30) because a
triangular cycle in our sense refers to all triads of nodes contain-
ing the motif i → j → �→ i , including possibly other directed
edges. This definition comprises four different triads in Holland
and Leinhardt’s (27, 30) classification (SI Appendix, Fig. S10A);
likewise, our in-in pair occurs in nine different triads under Hol-
land and Leinhardt’s (27, 30) typology (SI Appendix, Fig. S10B).

Several prior studies have considered the role of directionality
in population structure on the spread of mutant types (65–68).
But in those studies the fitness advantage of the mutant is fixed,
independent of type frequency. By contrast, our study consid-
ers frequency-dependent fitness effects that therefore describe
game-theoretic interactions: An individual’s payoff depends on
both the individual’s type and the neighbors’ types. The question
of directionality in models of social behavior has been analyzed in
at least one prior paper (10), but only in the case of two specific
networks: a directed circle network, where each node has one
incoming neighbor and one outgoing neighbor, and a superstar
network (10). In those two cases the effect of directionality is to
repress cooperation. But our analysis applies to arbitrary directed
network structures and we find that, in general, directionality
tends to favor cooperation.

Our results reveal the importance of directed interactions for
the long-term prospects of cooperative behavior in a population.
Our analysis also highlights an interesting relation between the
direction of social interactions and the direction of behavioral
spread (or dispersal). We have focused on two opposite extremes:
downstream dispersal, in which behavior spreads in the same
direction as directed social interactions, and upstream dispersal,
in which behavior spreads in the opposite direction. The former
is roughly analogous to generalized reciprocity—a player who re-
ceived help from another player feels motivated to help the third
player in turn (55). This mode of dispersal is also reminiscent of
the asymmetric interactions between parents and their offspring
(69). Whereas upstream dispersal is roughly analogous to indi-
rect reciprocity—the player who helped another player receives
a benefit from a third party (56). Despite these similarities, the
form of reciprocity arising from directed dispersal of behavior
differs from generalized reciprocity and from indirect reciprocity:
The dispersal mechanism is payoff dependent while the latter
mechanisms are action dependent. A synthetic understanding
of reciprocity based on conditional behavior versus reciprocity
achieved by payoff-biased imitation remains an important topic
for future research.

Materials and Methods
Complete derivations of our mathematical results are detailed in SI Appendix,
section 2. We briefly outline these derivations below.

Analysis of Asymmetric Games on Random Regular Networks. The population
structure is described by a directed, unweighted random regular network
with degree k, with a proportion p of unidirectional edges. Each node
has kp/2 incoming edges, kp/2 outgoing edges, and k(1 − p) bidirectional
edges. The payoff structure for a general asymmetric game along a directed
edge wij is

( A B

A a1, a2 b1, b2

B c1, c2 d1, d2

)
. [9]

The entry (X, Y) in the payoff matrix means that when the source node
(i) uses the strategy in the row and the target node (j) uses the strat-
egy in the column, the former obtains payoff X and the later obtains
payoff Y. Using a pair approximation and associated diffusion process
(SI Appendix, section 2A), for sufficiently large node degree k and popu-
lation size N, we prove that selection favors the A strategy over the B
strategy if [

(2 − p)2k − 6 + 2p
]
(a1 − d1 + a2 − d2)

+
[
(2 − p)2k − 14 + 8p

]
(b1 − c1 − b2 + c2) > 0,

[10]
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for both downstream and upstream dispersal. For the donation game, the
payoff structure is

( C D

C −c, b −c, b
D 0, 0 0, 0

)
, [11]

and selection favors cooperation over defection if

b

c
>

(2 − p)2

4 − 3p
k. [12]

Analysis of Donation Games on Arbitrary Networks. We apply the method
of ref. 21 to derive conditions for the evolution of cooperation on arbi-
trary directed networks, with independent structures for interactions and
strategy dispersal. Let w[1]

ij (respectively w[2]
ij ) denote the edge weights

for the interaction (respectively dispersal) network. The downstream case
corresponds to a structure with w[2]

ij = w[1]
ij for all i, j ∈ N ; and the upstream

case corresponds to a structure with w[2]
ij = w[1]

ji .

Let pij = w[2]
ji /

∑
� w[2]

�i and πi denote the probability that a mutant at
node i will eventually fix in the population under neutral drift. As described
in SI Appendix, section 2B, we can obtain πi by solving

∑
i πi = 1 and πi =∑

j pjiπj . The condition for cooperation also involves the coalescence times
τij , obtained by solving the linear system of equations

τij =

⎧⎪⎨
⎪⎩

1 + 1
2

∑
k∈N pikτkj +

1
2

∑
k∈N pjkτik i �= j,

0 i = j.

[13]

The critical cost–benefit ratio is given by

(
b

c

)∗
=

v2

u2 − u0
, [14]

where

u0 =
∑

i,j,�∈N
πipijτj�w[1]

�j ,

u2 =
∑

i,j,k,�∈N
πipijpikτj�w[1]

�k ,

v2 =
∑

i,j,k,�∈N
πipijpikτjkw[1]

k� .

[15]

Data Availability. All study data are included in this article and/or
SI Appendix.
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