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Abstract

Cellular physiology is implemented by formidably complex biochemical systems with highly nonlinear dynamics, presenting
a challenge for both experiment and theory. Time-scale separation has been one of the few theoretical methods for
distilling general principles from such complexity. It has provided essential insights in areas such as enzyme kinetics,
allosteric enzymes, G-protein coupled receptors, ion channels, gene regulation and post-translational modification. In each
case, internal molecular complexity has been eliminated, leading to rational algebraic expressions among the remaining
components. This has yielded familiar formulas such as those of Michaelis-Menten in enzyme kinetics, Monod-Wyman-
Changeux in allostery and Ackers-Johnson-Shea in gene regulation. Here we show that these calculations are all instances of
a single graph-theoretic framework. Despite the biochemical nonlinearity to which it is applied, this framework is entirely
linear, yet requires no approximation. We show that elimination of internal complexity is feasible when the relevant graph is
strongly connected. The framework provides a new methodology with the potential to subdue combinatorial explosion at
the molecular level.
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Introduction

The overwhelming molecular complexity of biological systems

presents a formidable scientific challenge. The mere number of

protein-coding genes barely captures this complexity, [1]. Tran-

scription factor binding to DNA to regulate gene expression and

protein post-translational modification, to mention just two well-

studied mechanisms, enable combinatorial construction of vast

numbers of molecular states, [2]. How such complexity evolves

and how it gives rise to robust cellular physiology are among the

central questions in biology.

One of the few conceptual methods for rising above this

complexity, and thereby distilling general principles, has been

time-scale separation (Figure 1). A system of interest (dashed

box) is identified, which, for a particular behaviour being

studied, is assumed to contain all the components relevant to

that behaviour. A sub-system (box) within the larger system is

taken to be operating sufficiently fast that it may be assumed to

have reached a steady state or, as a special case of that, a state

of thermodynamic equilibrium. The larger system and its

environment adjust on slower time-scales to the steady-state of

the sub-system. The components within the sub-system may be

viewed as ‘‘fast variables’’, while those additional components

within the larger system are ‘‘slow variables’’. Those compo-

nents in the environment that might be influenced by the

overall system are taken to be operating on the slowest time

scale. Such assumptions often enable the internal states of the

sub-system to be eliminated, thereby simplifying the description

of the larger system’s behaviour.

Time-scale separation was first introduced at the molecular level

in the famous work of Michaelis and Menten on enzyme kinetics,

[3,4]. They considered the following biochemical reaction scheme,

in which an enzyme, E, reversibly binds to a substrate, S, to form

an intermediate enzyme-substrate complex, ES, which then

irreversibly breaks up to form the product of the reaction, P,

and release the enzyme:

SzE'ES?PzE : ð1Þ

A time-scale separation was assumed in which the free enzyme, E,

and the enzyme-substrate complex, ES, were regarded as fast

variables, while S and P were regarded as slow variables. (As a

matter of historical accuracy, Michaelis and Menten made a

simpler rapid equilibrium assumption. The so-called ‘‘quasi

steady-state’’ assumption used here, and now universally em-

ployed, was first introduced by Briggs and Haldane, [5].) A simple

algebraic calculation leads to the Michaelis-Menten rate formula

d½P�
dt

~
Vmax ½S�

KMz½S� , ð2Þ

in which the aggregated parameters Vmax and KM are

determined by the underlying rate constants for the reactions in

(1) and the total amount of enzyme that is present; see equation (9)

below. Here, [X] denotes the concentration of the chemical

species X.

This example has two characteristic features. First, the algebra

has eliminated the fast variables, E and ES, leaving a formula that
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involves only the slow variable, S, on the right hand side. In this

case, P does not appear on the right hand side because of the

irreversibility of (1). Second, the expression on the right hand side

is rational in the concentrations of the slow variables: it is a ratio of

two polynomials in [S]. In this simple case, both numerator and

denominator are first-order (linear) in [S].

Time-scale separations have been used in many distinct areas of

biology, including enzyme kinetics, allosteric enzymes, G-protein

coupled receptors, ligand-gated ion channels, gene regulation in

both prokaryotes and eukaryotes and protein post-translational

modification (see below). The characteristic features noted above,

of elimination leading to a rational expression, are shared by all of

them. Among these rational expressions are the familiar formulas

of Michaelis-Menten in enzyme kinetics, Monod-Wyman-Chan-

geux and Koshland-Némethy-Filmer in allostery and Shea-Ackers-

Johnson in prokaryotic gene regulation. However, the correspond-

ing analyses have been largely independent and ad hoc. In this

paper we introduce a graph-theoretic framework that underlies all

of these analyses. Despite the biochemical nonlinearity of the

systems to which it is applied, the framework is entirely linear, yet

it is not an approximation. Moreover, it is symbolic in the values of

all rate constants, so that it may be used without having to know

these values in advance. We show that elimination of internal

complexity becomes feasible when the relevant graph is strongly

connected and that, in this case, rational expressions emerge which

can be explicitly described in terms of the graph. This procedure

accounts for the rational expressions arising in all the time-scale

separation examples just mentioned.

In these examples, time-scale assumptions have not always been

justified by data. Instead, time-scale separation has been used as a

hypothesis to simplify complex behaviour and thereby obtain new

insights, which have subsequently guided conceptual understand-

ing and experimental design. We follow the same practice here,

treating time-scale separation as a method of mathematical

simplification whose validity must ultimately be judged by its

conceptual usefulness in guiding new experiments.

The examples mentioned above are reviewed next, to show the

scope of application of the results and to point out some of the

experimental insights. We then introduce the linear framework

and explain how it underlies these different results. We also show

how the framework appears in the study of general biochemical

networks. Finally, as a demonstration of its power, we show how

the framework can be readily adapted to deal with the more

general situation in which a sub-system’s components are subject

to synthesis and degradation. Applications of the framework to

specific biological examples will be reported elsewhere.

Results

Examples of Time-scale Separation
Enzyme kinetics. Time-scale separation has been used to

analyse enzymes with multiple substrates, products and effectors.

As with the Michaelis-Menten formula in (2), the internal

complexity arising from the bound states of the enzyme can be

eliminated, leading to rational expressions involving only sub-

strates, products or effectors. The algebra was formalised in the

King-Altman procedure, [6], and the resulting rational expressions

have been widely used in biochemistry, [7,8]. For a modern

example, see [9].

Enzyme allostery. Balancing supply and demand in meta-

bolic networks requires enzymes to be controlled by molecules that

are structurally distinct from the enzyme’s substrate. Allosteric

regulation separates enzyme activity from control by exploiting

distinct enzyme conformations having distinct activities. A

molecule that binds preferentially to a conformation with weaker

activity is an inhibitor, while one that binds preferentially to a

conformation with stronger activity is an activator. Many enzymes

subject to such regulation are oligomers with an axis of symmetry.

A ‘‘concerted’’ model of enzyme allostery, in which the

conformational changes were assumed to be limited to symmetric

quaternary movements of the oligomer, was put forward in [10].

An independent ‘‘sequential’’ model, in which tertiary changes in

the individual monomers were also allowed, was put forward in

[11]. Subsequent formulations have allowed for additional

complexity, [12,13]. In each case, the enzyme conformations

and ligand binding are assumed to be at thermodynamic

equilibrium and the internal complexity arising from states with

multiple bound ligands is eliminated. Enzyme activity is usually

taken to be proportional to the equilibrium fractional saturation–

the proportion of sites that are bound by ligand–leading to rational

expressions such as the Monod-Wyman-Changeux formula, [10].

G-protein coupled receptors. GPCRs form the largest

signalling superfamily in the human genome and one of the most

clinically-significant, [14,15]. Pioneering quantitative studies of

the b2-adrenergic receptor showed that apparent low- and high-

affinity states of the receptor were explained by a ‘‘ternary

complex model’’, in which the receptor could be simultaneously

bound to both a ligand and an accessory protein, later shown to

be the G-protein, [16]. This basic model has been developed

further to include distinct (allosteric) receptor conformations,

[17,18], and remains widely influential in quantitative pharma-

cology, [19,20]. The possibility that distinct conformations recruit

distinct subsets of the downstream signalling network, has been

suggested as a basis for the phenomenon of collateral efficacy

(‘‘functional selectivity’’, ‘‘protean agonism’’, ‘‘stimulus traffick-

ing’’), [21], although post-translational modification of the

receptor may also play an important role (see below). In these

mathematical models of GPCRs, the conformational changes,

Figure 1. Schematic illustration of time-scale separation. A
system is shown within the dashed box, which is assumed to contain all
the components relevant to a given behaviour, so that it is partially
uncoupled from its environment: it influences its environment (arrows
leading outwards) but is not in turn influenced by the environment.
Within the system is a smaller sub-system (box) which may be fully
coupled to the larger system (bi-directional arrows). The components in
the sub-system (blue dots) are taken to be operating sufficiently fast
that they may be assumed to have reached a steady state, or a state of
thermodynamic equilibrium, to which the remaining components in the
larger system (green dots), and those in the environment that are
influenced by the system (magenta dots), adjust on slower time scales.
The Michaelis-Menten formula in (2) is derived from a time-scale
separation of this kind.
doi:10.1371/journal.pone.0036321.g001
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ligand binding and accessory-protein binding are assumed to be

at thermodynamic equilibrium and bound-states of the receptor

are eliminated, leading to rational expressions for measures of

downstream response.

Ligand-gated ion channels. Ion channels are oligomeric

transmembrane proteins that regulate the movement of ions across

the plasma membrane, [22,23]. Ligand-gated ion channels have

been investigated in exquisite quantitative detail by patch-clamp

recording. The existence of distinct (allosteric) receptor confor-

mations was suggested by an early model of the nicotinic

acetylcholine receptor, [24]. This helped to distinguish the

pharmacological properties of affinity and efficacy and similar

models have since been widely used to understand quantitative

channel behaviour, [25]. These models, like those for allosteric

enzymes and GPCRs, assume that conformations and ligand

binding are at thermodynamic equilibrium and thereby eliminate

bound states of the receptor. Such equilibrium models have been

adapted to yield discrete-state, continuous-time stochastic models

of single receptors [26], from which new receptor conformations

have been inferred, [27,28]. These dynamic models show good

agreement with experimental data, providing some justification for

the assumption of thermodynamic equilibrium in this context.

Bacterial gene regulation. Gene transcription is regulated

indirectly by the binding of transcription factors (TFs) to DNA. A

model for expression of the lambda phage repressor was developed

by Ackers, Johnson and Shea, in which TF binding was assumed

to be at thermodynamic equilibrium and the net rate of gene

transcription was treated as an average over the rates for the

individual binding patterns. An implicit ergodic assumption is

made that, under stationary conditions, the temporal frequency

with which a pattern appears on a single molecule of DNA is the

same as the normalised concentration of the pattern when TFs

bind to many molecules of DNA. This ‘‘thermodynamic formal-

ism’’ has been systematically developed for bacterial genes,

[29,30], and widely exploited in recent studies, [31,32].

Eukaryotic gene regulation. Unlike prokaryotes, eukaryotic

genes may be regulated by multiple transcription factors that can

bind to multiple sites in widely-dispersed enhancer elements,

giving rise to enormous combinatorial complexity, [1]. The

thermodynamic formalism has also been used to analyse this

more complex gene regulation, [33–35]. For instance, it has been

used to determine how the Hedgehog morphogen in the Drosophila

imaginal wing disc regulates the patched and decapentaplegic genes,

[36]. In this and similar analyses, the rate of gene transcription is

taken as the fractional occupancy of an additional binding site for

an aggregated ‘‘basal transcriptional complex’’. The thermody-

namic formalism has also been tested in budding yeast using

random promoter libraries driving fluorescent reporters, [37]. The

formalism typically accounted for around 75% of the variance

between different promoters, after taking into account inherent

experimental variation, providing some justification in this context

for the underlying time-scale separation.

Gene regulation away from thermodynamic

equilibrium. Nucleosome repositioning can play an important

role in eukaryotic gene regulation but is a dissipative process that

cannot be treated at equilibrium. In a novel analysis, Kim and

O’Shea went beyond the thermodynamic formalism to model

regulation of the PHO5 gene in budding yeast, for which the

transcription factor Pho4 induces chromatin remodelling, [38]. A

steady-state time-scale separation and an ad hoc calculation yielded

a rational expression for the transcription rate as a function of

Pho4 concentration that agreed well with experimental measure-

ments.

Protein post-translational modification. Proteins with

multiple types and sites of post-translational modification can

exist in exponentially many global patterns of modification, or

‘‘mod-forms’’. A protein with n sites of phosphorylation, for

instance, has 2n potential phosphoryl-forms, providing another

potent source of combinatorial complexity. Evidence from many

sources reveals that distinct mod-forms may elicit distinct

downstream responses. This was first seen in the PTMs that

decorate the N-terminal tails of histone proteins, where distinct

mod-forms guide differential assembly of transcriptional co-

regulators, chromatin organisation and gene expression, giving

rise to a ‘‘histone code’’, [39,40]. Such encoding has become a

general theme relevant to many cellular processes, with the

emergence of ‘‘co-regulator codes’’, [2], ‘‘tubulin codes’’, [41], and

‘‘GPCR barcodes’’, [42], as reviewed in [43]. From a quantitative

perspective, it is the ‘‘mod-form distribution’’–the relative

concentration of each of the mod-forms–that determines the

functionality of a post-translationally modified protein. A mod-

form with high influence on some downstream process, but at low

relative concentration, may have less impact than one of low

influence but high relative concentration. The overall influence of

the protein is then an average over its mod-form distribution.

Mass-spectrometric methods are now being developed to measure

such distributions, [44]. The mod-form distribution is dynamically

regulated by a continuous tug-of-war between the cognate forward

and reverse modifying enzymes. This strongly dissipative process

allows mod-form concentrations to be maintained far from

equilibrium and to thereby transduce cellular information. Under

very general conditions, the steady-state mod-form concentrations

can be expressed as rational expressions in the enzyme concen-

trations–see equation (12) below–so that the effective complexity of

the mod-form distribution depends, at steady state, only on the

number of enzymes, not on the number of sites or on the types of

modification or on the biochemical mechanisms of the enzymes,

[45]. This enables average responses to be calculated, as in

equation (13) below, and the behaviour of complex PTM systems

to be analysed, without prescribing in advance either the number

of sites or the rate constant values, [46]. The analysis developed in

[45] was the starting point for the present paper.

Summary. The examples above fall into two broad classes,

those considered at thermodynamic equilibrium, some of which

have been treated by methods of statistical mechanics, such as the

thermodynamic formalism in gene regulation, and those consid-

ered at steady state far from equilibrium, to which such methods

do not apply. The framework introduced here integrates both

classes and all the examples above. Thermodynamic equilibrium

permits certain simplifications that are discussed below.

The Linear Framework
We start from a graph, G, consisting of vertices, 1, � � � ,n, with

labelled, directed edges, i?
a

j, and no self loops, i=? i (Figure 2A).

The vertices represent components of a system, on which a

dynamics is defined by treating each edge as if it were a chemical

reaction under mass-action kinetics, with the label as rate constant.

We can imagine that an amount (or, equivalently, a concentration)

of each component is placed on the corresponding vertex and that

these amounts are transported across the edges in the direction of

the arrows at rates that are proportional to the amounts on the

source vertices. The constant of proportionality is the label on the

edge. For instance, if the amounts of the components are denoted

x1, � � � ,xn, then the edge 2?
a1

1 in Figure 2A contributes to the

amount of component 1 at a rate a1x2, and so on. Since each edge

has only one source vertex, the reactions are all first-order and the

dynamics are therefore linear.

A Linear Framework for Time-Scale Separation
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For the present, labels can be regarded as symbolic positive

numbers with dimensions of (time){1. Positivity is not a

restriction. A negative label sends the flux in the opposite direction

and so has the same effect as reversing the direction of the edge

and the sign of the label. It is in the interpretation of the labels that

the leap can be made from the abstract linear system described

here to a nonlinear biological system, as discussed in the next

section.

The prescription above gives a system of linear, ordinary

differential equations, which can be written in matrix form as

Figure 2. The linear framework. A. A labelled, directed graph, G, gives rise to a system of linear differential equations by treating each edge as a
first-order chemical reaction under mass-action kinetics, with the label as rate constant. The corresponding matrix is the Laplacian of G. B. In a
strongly connected graph (note the difference to the one in A), there are spanning trees rooted at each vertex, the roots being circled. The MTT gives
an element of ker L(G) according to the formula in the box, as explained in the text. C. In a general directed graph, G, two distinct vertices are in the
same strongly connected component (SCC) if each can be reached from the other by a path of directed edges. The SCCs form a directed graph, G, in
which two SCCs are linked by a directed edge if some vertex of the first SCC has an edge to some vertex of the second SCC. G has no directed cycles,
allowing initial and terminal SCCs to be identified.
doi:10.1371/journal.pone.0036321.g002
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dx

dt
~ L (G):x , ð3Þ

where x is the column vector of component amounts and L(G) is

called the Laplacian matrix of G. Such matrices were first introduced

by Gustav Kirchhoff in his study of electrical circuits, [47]. They

resemble discretisations of the continuous Laplacian operator but

they are known in many different versions, [48]. As Laplacians

have been widely studied, the results outlined here may be known

under different guises.

Since material is neither created nor lost, the system has at least

one conservation law given by the total amount of matter,

xtot~x1z � � �zxn, which remains constant at all times. Hence,

1{: L(G)~0, where 1 is the all-ones column vector and { denotes

transpose.

If we imagine the system being started with arbitrary amounts of

each component, we expect that the dynamics will eventually relax

to a steady state. This is, indeed, true for any graph. The

dynamical behaviour of (3) has several interesting features, as well

as biological applications; for instance, to the dynamical behaviour

of ligand-gated ion channels. However, our interest here is in the

steady state, so we defer a full discussion of the dynamics to

elsewhere (I. Mirzaev, J. Gunawardena, in preparation). At steady

state, dx=dt~0, or, equivalently, x lies in the kernel of the

Laplacian, x [ ker L(G). The kernel can be determined in two

steps, first for a strongly connected graph and then for any graph.

A strongly connected graph is one in which any two distinct

vertices can be joined by a series of edges in the same direction.

The graph in Figure 2A is not strongly connected (vertex 1 cannot

be reached from vertex 3), unlike that in Figure 2B. Strong

connectivity depends only on the edge structure and not on the

labels. A key observation is that, if the graph is strongly connected,

then ker L(G) is one dimensional, [45]. No matter how many

components are present in the graph and whatever arbitrary

amounts of each component are present initially, once steady state

is reached only a single degree of freedom is left. If the steady-state

amount of any one component is known, then the steady-state

amounts of all components are mathematically determined. This

remarkable rigidity is the basis for the eliminations in all of the

examples discussed here.

To actually calculate the steady states, it is necessary to

determine a canonical basis element r [ ker L(G). This is

provided by the Matrix-Tree Theorem (MTT). Versions of this

go back to Kirchhoff, [49], but the one needed for our purposes

was first proved by Bill Tutte, one of the founders of modern graph

theory, [50]. To calculate ri, take the product of all the labels on a

spanning tree of G rooted at vertex i and add the products over all

such trees (Figure 2B, box). A spanning tree is a fundamental

concept in graph theory. It is a subgraph of G that contains each

vertex of G (spanning) which has no cycles when edge directions

are ignored (tree) and for which i is the only vertex with no

outgoing edges in the tree (rooted). The spanning trees for the

strongly-connected graph in Figure 2B are shown there along with

the calculation of r [ ker L(G). More spanning tree are shown in

Supporting Information S1.

The kernel could have been calculated by standard linear

algebraic methods using determinants. The significance of the

MTT is that it expresses ri as a polynomial in the labels with

positive coefficients (Figure 2B). The cancellations arising from the

alternating signs in a determinant are thereby resolved.

Results equivalent to the MTT have been frequently rediscov-

ered in biology, for instance, in the King-Altman procedure in

enzyme kinetics, [6], and in Terrell Hill’s thermodynamical

studies, [51], but without appreciating the broad scope of its

application.

If x is any steady-state, then, since dim ker L(G)~1, we know

that x~lr, where l [R. The undetermined l reflects the single

degree of freedom that remains at steady state. It can be removed

by normalising in different ways:

1: xi~
ri

r1

� �
x1 2: xi~

ri

rtot

� �
xtot : ð4Þ

In 1, one of the vertices, by convention vertex 1, is chosen as a

reference. In 2, xtot plays a similar role, with rtot~r1z � � �zrn.

It follows from the MTT that the terms in brackets in (4), ri=r1

and ri=rtot, are rational expressions in the labels. The component

amounts, xi, have been eliminated in favour of these rational

expressions, along with x1 or xtot, respectively. The rational

expressions in each of the examples discussed here arise in exactly

this way.

The situation when G is not strongly connected is also of

interest. For a general graph G, the dimension of ker L(G) is

given by the number of terminal strongly connected components.

A strongly connected component (SCC) of a graph G is a maximal

strongly-connected subgraph (Figure 2C). The SCCs themselves

form a directed graph, G, in which two SCCs are linked by a

directed edge if some vertex of the first SCC has an edge to some

vertex of the second SCC. G has no directed cycles, which allows

initial and terminal SCCs to be identified. A description of

ker L(G) in terms of the terminal SCCs is given in the Appendix

of [52]. We go further here by using the MTT to give explicit

expressions for the basis elements in terms of the labels. For each

terminal SCC, t, let rt [Rn be the vector which, for vertices in that

SCC, agrees with the values coming from the MTT applied to that

SCC in isolation, while for any other vertex, j=[t, (rt)j~0. These

vectors form a basis for the kernel of the Laplacian:

ker L(G)~Sr1, � � � ,rT T , ð5Þ

where T is the number of terminal SCCs. An outline proof is

provided in Supporting Information S1.

When G is not strongly connected there is more than one steady

state, up to a scalar multiple. This should not be confused with

multistability, as there is a corresponding increase in the number

of conservation laws. Steady states may also have components with

zero amounts, even when the initial conditions do not, in contrast

to the strongly connected case, in which the MTT shows that each

component is positive at steady state. For some applications, it is

useful to know which steady state is reached from a given initial

condition. Such dynamical issues will be dealt with elsewhere (I.

Mirzaev, J. Gunawardena, in preparation).

We discuss some additional general results later but turn next to

explaining how such a linear framework can be applied to

nonlinear biological systems.

The Uncoupling Condition
The leap from linearity to nonlinearity can be made in one of

two ways. For time-scale separation, as in the examples discussed

above, nonlinearity is encoded in the labels. Up till now, the labels

have been treated as uninterpreted symbols. In any application the

labels arise from the biochemical details of the system being

studied. A label may be an arbitrary rational expression involving

rate constants of actual chemical reactions or concentrations of

actual chemical species. For instance, the following expression for

a label would be legitimate

A Linear Framework for Time-Scale Separation
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a~
(k1½X1�zk2½X2�)½X3�

(k3zk4)½X4�
,

where k1, � � � ,k4 are rate constants and X1, � � � ,X4 are chemical

species. In our experience, so far, labels have been polynomials in

the concentrations with coefficients that are rational in the rate

constants. However, there is no mathematical reason to exclude

more complex expressions, like the one above. The crucial

restriction, which we refer to as the uncoupling condition, is that if a

concentration, [X], appears in a label, then the species X must not

correspond to a vertex in the graph. It could, however, correspond

to a slow component in a time-scale separation, which is often how

such a label arises. The uncoupling condition is essential to

preserve linearity but it can be circumvented in some cases, as

explained below. The other encoding of nonlinearity will be

discussed later.

The key to applying the framework in a time-scale separation is,

first, to find a directed graph whose components represent the fast

variables in the sub-system, which has a labelling that satisfies the

uncoupling condition, and, second, to show that the steady states

of the linear Laplacian dynamics coincide with those of the full

nonlinear biochemical dynamics of the sub-system. It is crucial to

note that only the steady states need coincide, not the transient

dynamics. If the latter were the same, then the sub-system would

itself be linear, which is not the case in any of the applications. In

this way, dynamical nonlinearity with simple rate constants is

traded for dynamical linearity with complex labels. The trade-off is

highly beneficial, as it allows the steady states of the nonlinear sub-

system to be algorithmically calculated without knowing in

advance the values of any rate constants. This enables the internal

complexity of the fast components to be eliminated, giving rise to

rational expressions based on one or the other of the normalisa-

tions in (4). This procedure underlies all the examples discussed

here. We turn now to outlining how the framework is used in these

applications.

Applications Far from Equilibrium
Enzyme kinetics. As a simple demonstration of the frame-

work, we return to the Michaelis-Menten example in the

Introduction. More complex enzymes are treated in essentially

the same way.

We first rewrite the reaction scheme in (1) after annotating the

reactions with their corresponding rate constants:

SzE ES ?
k3

PzE ð6Þ

The labelled, directed graph is constructed following the time-scale

separation described in the Introduction. The vertices correspond

to the fast components, which are the enzyme states E and ES.

The edges amalgamate the effects of the reactions in which these

components are involved. Edges outgoing from vertex E absorb

the concentrations of slow components (in this case S), while all

other edges only have rate constants in their labels. The following

graph emerges

E /{{{{{
{{{{{?

k1½S�

k2 z k3

ES ð7Þ

in which the vertices have been annotated for convenience with

the names of the corresponding components. [S] is the only

concentration that appears in a label and it is not the

concentration of a vertex in the graph. The uncoupling condition

is therefore satisfied.

It is not difficult to check that, with this labelling, the steady

states of the Laplacian dynamics given by (3) are the same as the

steady states of the fast components given by the actual

biochemical reactions in (6).

Graphs constructed like (7), even for more complex enzymes,

are naturally strongly connected because bound states of the

enzyme usually release the enzyme eventually. (If there are dead-

end complexes, they must be formed reversibly, thereby also

ensuring strong connectivity.) Accordingly, the MTT can be

applied and it follows from the formula in Figure 2B that

rE~k2zk3 , rES~k1½S� : ð8Þ

If the system is assumed to be at a steady state, then it follows from

the second elimination formula in (4) that

½ES �~ rES

rtot

� �
Etot

where Etot~½E�z½ES � is the total concentration of enzyme and

rtot~rEzrES . Note how [ES] has been eliminated in favour of

Etot and the expressions appearing in r, which come from the

MTT. The enzyme rate can now be calculated as

d½P�
dt

~k3½ES �~ k3Etot½S�
(k2zk3)=k1z½S�

,

and the Michaelis-Menten formula in (2) emerges with the usual

aggregated parameters, [8],

Vmax~k3Etot , KM~
k2zk3

k1
: ð9Þ

King and Altman were the first to formalise this kind of algebra for

more complex enzymes, [6]. They did not use graph theory and

spanning trees but introduced ‘‘reaction patterns’’, a terminology

that has persisted in the biochemical literature, [8]. The King-

Altman procedure is equivalent to the MTT.

Post-translational modification. The advantage of using

the framework introduced here becomes particularly clear when

moving from the behaviour of a single enzyme to that of a network

of enzymes in post-translational modification. The identical

mathematical machinery can be used in this quite different

context. This was first described in [45] but we clarify here several

issues whose significance was only understood more recently.

Consider a substrate, S, that is subject to different types of PTM

(phosphorylation, methylation, acetylation, etc), with each mod-

ification potentially taking place at many sites. (There may be

multiple such substrates but we consider only one for simplicity

here.) We will analyse such a substrate under the assumption that

it, and the enzymes acting upon it, are at steady state. The

substrate S may have many mod-forms, which can be enumerated,

S1, � � � ,SN . The number of mod-forms, N, typically depends

exponentially on the number of sites, although, with modifications

like methylation or ubiquitination, the detailed combinatorics may

be more complicated, [43]. There is a natural directed graph on

the vertices 1, � � � ,N, in which there is an edge i?j if some
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enzyme (and there may be several) is capable of converting Si to Sj.

Note that enzymes may be processive and able to make several

modifications in one encounter between enzyme and substrate, so

that an individual enzyme may be implicated in many edges with

Si as the source vertex. It is an empirical observation that each

individual transformation from Si to Sj can generally be undone, if

not directly, then through intermediate mod-forms. Hence, Si can

be recovered, eventually, from Sj, so that the directed graph is

naturally strongly connected.

This is an obvious setting to apply the linear framework. A

labelling of the edges is needed that captures the underlying

biochemistry and also satisfies the uncoupling condition. PTMs fall

naturally into two biochemical classes: those based on small-

molecule modifications (phosphorylation, methylation, acetylation,

etc) in which the donor molecules are regenerated by core

metabolism and modification is undertaken by a single enzyme;

and those based on polypeptide modifications (ubiquitin, SUMO,

NEDD, etc) in which the donor molecules are synthesised by gene

transcription and modification requires a series of enzymes, [43].

It is easiest to focus on the first class of small-molecule

modifications; analysis of the second class is still work in progress.

With small-molecule modifications, the biochemistry of modi-

fication is significantly different from that of demodification, since

the former involves the donor molecule that brings the modifying

group, while the latter is a hydrolysis. Such details have been

usually disregarded in the literature, where it has been the custom

to treat all enzymes as if they followed the Michaelis-Menten

scheme in (1). This overlooks much of the biochemical knowledge

that has accumulated since 1913, [53]. Reaction mechanisms for

kinases and phosphatases have been analysed, [54,55], although

less is known about the enzymology of other PTMs. One of the

virtues of the linear framework is that it shows how realistic

enzyme mechanisms can be analysed, thereby helping to bridge

the gap between enzyme biochemistry and systems biology, [56].

By making appropriate assumptions regarding the core biochem-

ical machinery that maintains the modifying groups, the modifi-

cation and demodification enzymes may be assumed to follow

mechanisms built up from just three basic reactions: creation of an

intermediate complex; break-up of an intermediate complex; and

conversion of one intermediate complex to another

EzS�?Y� , Y�?EzS� , Y�?Y� : ð10Þ

Here, the intermediate complexes have been denoted Y�, and the

asterisk in S� or Y� can be any index in the list of substrate forms

or intermediate complexes, respectively. This scheme allows for

complex enzyme mechanisms that may have multiple intermedi-

ates, yield multiple products, exhibit arbitrary degrees of

processivity and be fully reversible. Enzymes may also use different

mechanisms for different mod-forms. While (10) is quite general, it

does impose some restrictions on enzyme mechanisms, as

discussed further in [56], although these do not seem to be

restrictive for most metabolic PTMs.

If the enzyme E is able to convert Si to Sj by some mechanism

built up from (10), then the linear framework may be applied to

the enzyme intermediates just as described previously for enzyme

kinetics. The intermediate complexes can be eliminated at steady

state and the rate of conversion from Si to Sj can be calculated as

aE ½Si�½E�, where aE is a (possibly very complicated) rational

expression in the rate constants of the mechanism. For instance, if

the conversion from Si to Sj takes place by the Michaelis-Menten

scheme in (6), then it follows from (8) by using the first elimination

formula in (4) that the conversion rate is given by

k3

KM

� �
½S�½E� :

In this case, aE~k3=KM . What the linear framework shows is that

a similar formula holds for any reaction scheme built up from (10),

no matter how complicated.

The key point is that such formulas are linear in [Si], which

means that aE ½E� can be incorporated into a label in the mod-form

graph. If several enzymes are able to convert Si to Sj, each

contributes additively to the rate, and the edge from Si to Sj can be

labelled

X
E

aE ½E� : ð11Þ

The concentrations in such labels are those of enzymes. It follows

that the uncoupling condition will be satisfied so long as enzymes

are not also substrates. We assume this, for the moment, but

explain below how it can be circumvented. With this labelling, it

can be shown that the steady states of the Laplacian dynamics in

(3) are identical with the steady states of the nonlinear dynamics

coming from the specified enzyme mechanisms. This holds for

arbitrary numbers of sites, arbitrary numbers of modifying and

demodifying enzymes and arbitrary reaction mechanisms built up

from those in (10), [45]. The MTT can now be applied to show

that the substrate forms can be eliminated at steady state. The

relative concentration of each mod-form, Si, can be explicitly

written down using the second normalisation in (4),

½Si�
Stot

~
ri(½E1�, � � � ,½Ep�)X

u

ru(½E1�, � � � ,½Ep�)
: ð12Þ

We assume here that there are p forward and reverse enzymes in

total, E1, � � � ,Ep. The ri are given by the MTT as polynomials in

the free-enzyme concentrations, through the labels described by

(11). We see from (12) that the exponential complexity arising from

combinatorial patterns of modification disappears at steady state:

the effective (algebraic) complexity at steady state depends only on

the number of enzymes, not on the number of sites. As we have

seen, this surprising conclusion is a consequence of the strong

connectivity of the mod-form graph.

In this example, the elimination process is hierarchical. The

enzyme-bound intermediate complexes are first eliminated in

favour of the mod-forms and the free enzymes, yielding the labels

for the mod-form graph, and the mod-forms are then eliminated

to leave only the free enzymes.

As discussed above, different mod-forms may elicit different

downstream responses. The expression in (12) can be thought of as

the steady-state probability of finding the substrate in mod-form Si.

If Si elicits a quantitative level of effect given by ai, then the overall

response of the PTM substrate can be estimated as an average

over this probability distribution,

X
i

ai
½Si�
Stot

� �
: ð13Þ

It is assumed here, as part of the time-scale separation depicted in

Figure 1, that the downstream response is operating sufficiently

slowly to average over the different mod-forms. This is similar to

the calculation of the rate of gene expression as a function of

transcription factor concentrations (Figure 3A). In the case of
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PTM, formulas like (13) are functions of free enzyme concentra-

tions, which are set by the enzyme mechanisms and cannot be

readily estimated or approximated. However, since enzymes are

assumed to be neither synthesised nor degraded (see below for how

this restriction can be addressed), there is a conservation law for

each enzyme. These may be explicitly written down in terms of the

symbolic rate constants,

E1,tot ~ w1(½E1�, � � � ,½Ep�)

..

. ..
. ..

.

Ep,tot ~ wp(½E1�, � � � ,½Ep�)
ð14Þ

to give p nonlinear algebraic equations for the p unknown free-

enzyme concentrations. The essential nonlinearity in the bio-

chemistry makes its appearance in these equations. For instance,

for given total amounts of enzymes and substrate, there may be

multiple solutions to (14), giving rise to multistability, [46,57].

Equations (12) and (14) together provide a complete mathematical

description of the substrate’s behaviour at steady state.

For PTM, the uncoupling condition has significant consequenc-

es, as it appears to rule out enzyme cascades, such as the MAP

kinase cascade, in which the substrate at one level becomes the

enzyme for the next. However, in this case, substrate-forms at

distinct levels of the cascade can never be inter-converted and so

appear in distinct connected components of the graph. If the

concentration appearing in a label is that of a component in a

different connected component, then, under suitable conditions,

the analysis can still be undertaken in a recursive manner. Feliu

et al work out the case of a linear cascade, [58], but the general

conditions under which this method can be exploited have not yet

been determined.

Ligand Binding, at Equilibrium and Beyond
Several examples discussed above involve the binding of ligands

to various kinds of ‘‘scaffolds’’. These examples have usually been

treated by assuming that the ligands and the scaffolds are at

thermodynamic equilibrium. The case of the PHO5 gene in yeast,

discussed above, makes clear that a more general treatment is

necessary. The linear framework is not limited to systems at

equilibrium. We first describe how it can be used in sufficient

generality to allow for dissipative behaviour and then discuss the

simplifications that arise at equilibrium.

Consider a scaffold, S, that may correspond to an allosteric

protein, receptor, ion channel, DNA segment, chromatin, etc. The

scaffold can exist in multiple states, S1, � � � ,Sm, corresponding to

protein conformations, states of binding of accessory proteins,

states of DNA looping, patterns of nucleosome organisation, etc.

The number of scaffold states need not be high; in the Monod-

Wyman-Changeux model of allostery, for instance, m is often two,

corresponding to a ‘‘relaxed’’ and a ‘‘tense’’ state (Figure 3B). The

corresponding state transitions may take place at equilibrium, as in

allosteric transitions, or require energy expenditure and be

dissipative, as in nucleosome reorganisation. Ligands may bind

to multiple sites on the scaffold in each of its states, with

overlapping site preferences and cooperativity. To avoid excessive

notation, we discuss here the case in which distinct ligands do not

compete for sites, so that each site is associated with a specified

ligand, which may or may not be bound there. In this case, the

pattern of ligand binding can be encoded by a bitstring, b1, � � � ,bn,

where n is the number of sites and bi~0 indicates that site i is

empty, while bi~1 indicates that site i is bound by its cognate

ligand. (A more complicated encoding is needed when distinct

ligands bind to the same site.) The patterns of ligand binding in

different scaffold states, or the ‘‘microstates’’ of the system, may

then be encoded as

Si(b1, � � � ,bn) :

There are m:2n microstates in total although not all of these may

be relevant, depending on the biological context.

The microstates form the vertices of the labelled, directed

graph. The labelled edges arise from two sources. First, there may

be transitions between scaffold states. These do not alter ligand

binding and so take the form

Si(b1, � � � ,bn)?
k1

Sj(b1, � � � ,bn) ,

where k1 is the rate constant for the transition. Such transitions

may or may not be reversible depending on the context. If the

system can be treated at equilibrium, then all transitions must be

reversible (see below). If not, some transitions may be irreversible.

Second, there may be ligand binding and unbinding events. These

do not alter scaffold state and so take the form

Si(b1, � � � ,0, � � � ,bn)
k3

'
k

2
½L�

Si(b1, � � � ,1, � � � ,bn)

where L is the ligand. Here, only a single bit is changed. [L] is the

steady-state, or equilibrium, concentration of the ligand L and k2

and k3 are the binding and unbinding rate constants, respectively.

Examples of such labelled, directed graphs are shown in Figure 3A

for gene regulation and in Figure B for allostery, using, for

convenience, an abbreviated notation for the microstates.

This formulation is quite general. It allows for arbitrary degrees

of cooperativity: the affinity of a ligand for a site may depend both

on the conformation of the scaffold and on the occupancy of other

sites.

Since the concentrations appearing in the labels are those of

ligands, the uncoupling condition will be satisfied provided that

none of the scaffold states can act as a ligand. This is the case in all

the relevant examples discussed above. The situation in which the

scaffold can aggregate may also be of interest, [12]. For the

present, we assume that ligands and scaffolds are distinct, so that

the uncoupling condition is satisfied. With this labelling, it is easy

to check that the steady states of the Laplacian dynamics in (3) are

the same as the steady states of the nonlinear dynamics arising

from binding and unbinding of ligands and scaffold state

transitions. Here, the nonlinearity arises only from ligand binding

and trading it off into the labels is straightforward.

If the system is at thermodynamic equilibrium, then every edge

must be reversible (see below). As long as the graph is connected

(ie: does not fall into separate pieces with no edges between them),

which is usually the case, it must necessarily be strongly connected.

If the system is at steady state far from equilibrium, and some

edges are not reversible, then strong connectivity must be

confirmed. Strong connectivity allows the microstates to be

eliminated in favour of the ligands, which, using the first

normalisation in (4) and assuming there are p ligands,

L1, � � � ,Lp, yields expressions like.

½Si(b1, � � � ,bn)�~ ri(½L1�, � � � ,½Lp�)
r1(½L1�, � � � ,½Lp�)

� �
½S1(0, � � � ,0)� : ð15Þ
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Here, the reference microstate is taken to the be one in which no

ligands are bound, which is helpful for calculating fractional

saturation, as explained in Supporting Information S1. The

second normalisation in (4) is more suitable for calculating rates of

gene expression, following the method used previously for PTM.

As with PTM, the free-ligand concentrations are determined by

p conservation laws for the p ligands, similar to those in (14).

However, it is often assumed that ligands are in substantial excess

over scaffolds, so that, to a first approximation, ½Li�&Li,tot. If this

is not the case, then the p nonlinear equations must be solved to

determine the actual free-ligand concentrations.

Strong connectivity is not mentioned in the dissipative analysis

of PHO5, [38]. The corresponding gene regulation function was

calculated by Matlab from the steady-state equations. In this

example, the directed graph is essentially identical to that shown in

Figure 4b of [38], which is easily checked to be strongly connected

despite its irreversible edges. As we have seen, it is the strong

connectivity that is essential for eliminating the microstates and

calculating the gene-regulation function.

An important special case of the framework arises when the

system is at thermodynamic equilibrium. In this case, the principle

of detailed balance (DB) provides a simpler alternative to the

MTT. The origins of this principle are discussed further in the

next section. DB states that a chemical reaction at equilibrium is

always reversible and that any pair of such reversible reactions is

independently at equilibrium, irrespective of any other reactions in

which the substrates or products participate. To see the

implications for the labelled, directed graph constructed above,

it is convenient to enumerate the microstates, as we did earlier

when explaining the graphical framework, using the numbers

Figure 3. Ligand binding. A. Gene regulation, with two transcription factors (TFs), L1 and L2, binding to a promoter. A labelled, directed graph can
be constructed as described in the text, with the microstates being denoted here by the bitstrings 00, � � � ,11. In this example there are no changes of
conformational state in the scaffold, as would be the case if there was DNA looping or displacement of nucleosomes. The rate of mRNA transcription
by RNA polymerase (RNAP) is assumed to depend on the pattern of TF binding as shown and the overall rate is calculated as an average over the
probabilities of finding the promoter in each of the patterns. Assuming the system is at an equilibrium, x, these probabilities are given by the ratios,
x00=xtot, � � � ,x11=xtot, which can be calculated using the second elimination formula in (4). B. An allosteric homodimeric protein is shown in two
conformational states, relaxed (R) and tense (T). The labelled, directed graph has both conformational state changes in the scaffold as well as ligand
binding and unbinding. The microstates are denoted here R001, � � �R11,T00, � � � ,T11. Labels have been omitted for clarity. For allosteric enzymes,
the overall rate of product formation is usually assumed to be proportional to the fraction of sites that are bound by ligand (fractional saturation), as
shown. This can be calculated as described in Supporting Information S1.
doi:10.1371/journal.pone.0036321.g003
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1,2,3, � � � for the vertices and omitting the details of conformation

and ligand binding. We assume the graph is strongly connected.

DB implies that any edge j ?
a

i is reversible. Given any pair of

reversible edges,

j
b
'
a

i ð16Þ

and an equilibrium state x, DB implies that xi~(a=b)xj ,

irrespective of any other edges impinging on i or j. The quantity

(a=b) is an equilibrium constant.

DB makes it easy to calculate the equilibrium state, x. Choose a

reference vertex, 1, which we assume to be a microstate in which

no ligands are bound, such as 1~S1(0, � � � ,0). Given any other

vertex i, choose a path of reversible edges from 1 to i,

1
b1

'
a1

j1
b2

'
a2

� � �
bk{1

'
ak{1

jk{1
bk

'
ak

i

Such a path must always exist because of strong connectivity. It

then follows that

xi~
ak

bk

� �
ak{1

bk{1

� �
� � � a2

b2

� �
a1

b1

� �
x1 : ð17Þ

This should be compared to (15) above. The product of

equilibrium constants along the path corresponds to ri=r1. As

before, this quantity is a rational expression in the labels but, now,

the numerator and denominator consist only of the single

monomials, ak � � � a1 and bk � � � b1, respectively. At equilibrium,

DB cuts down the rooted trees of the MTT to a single path from 1.

Of course, there may be many such paths. However, the rate

constants are not free to vary arbitrarily. DB requires that formula

(17) gives the same result no matter which path is taken from 1 to i.

This constraint may be summarised in the ‘‘cycle condition’’: for

any cycle of reversible edges, the product of the rate constants on

clockwise edges equals the product on counterclockwise edges

(Figure 3A). This condition is necessary and sufficient for (17) to be

independent of the path taken and for every equilibrium state of

the graph to satisfy DB; the proof is given in Supporting

Information S1.

The so-called ‘‘thermodynamic formalism’’ has often been used

to analyse systems at equilibrium, [59,60], particularly in the

context of gene regulation, [30,35,61]. The equilibrium state is

Figure 4. Synthesis and degradation. A. The non-strongly connected graph in Figure A is augmented with partial edges denoting synthesis and
degradation to form the partial graph Gz B. By introducing a new vertex, �, the partial graph Gz is transformed into the labelled, directed graph, G� ,
which, in this case, is strongly connected. C. The linear system of ODEs arising from the partial graph Gz. D. The Laplacian dynamics defined by the
graph G� . Since, in this case, G� is strongly connected, the MTT can be applied to calculate the unique steady state of Gz, as given in equation (23).
The details of the calculation are given in Supporting Information S1.
doi:10.1371/journal.pone.0036321.g004
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calculated as a sum of interaction energies. The relationship

between this and the linear framework comes through van’t Hoff’s

formula for the equilibrium constant, which may be written, for

the reversible edge (16),

ln
a

b

� �
~

DU

RT
: ð18Þ

Here, DU is the difference in Gibbs free energy between

microstate i and microstate j, R is the gas constant (ie: the molar

Boltzmann constant) and T is the absolute temperature. Formula

(18) allows the multiplicative formulation of the linear framework

in (17) to be converted to the additive formulation favoured in

thermodynamics

RT ln
xi

x1

� �
~{DU1{ � � �{DUk :

In gene regulation studies, the interaction energies have usually

been limited to those of transcription factors binding to DNA and

of transcription factors binding to each other when they are

nearest neighbours or otherwise able to interact physically,

[35,37]. However, both the thermodynamic formalism and the

linear framework can incorporate higher-order interactions and

cooperativities as needed.

The thermodynamic formalism and the linear framework are

equivalent for systems at thermodynamic equilibrium and related

to each other as just explained. The linear framework comes into

its own for analysing systems far from equilibrium and is well

suited to the modern programme of unravelling complex

eukaryotic gene regulation functions, [62].

Chemical Reaction Network Theory (CRNT)
We mentioned previously that the linear framework can encode

nonlinearity in two ways and we have discussed at length the first

way, through the labels. Here, we briefly discuss the second way,

through the vertices, which arises in CRNT. In this case, the

framework is not associated with a time-scale separation but

CRNT is often used to determine steady-state properties.

CRNT originates in Horn and Jackson’s pioneering attempt to

extend thermodynamic reasoning from equilibrium to far-from-

equilibrium systems, [63]. If we have a reversible chemical

reaction, such as

k2

'
k1

then mass-action kinetics implies that the ratio of the equilibrium

concentrations is independent of the starting conditions of the

reaction and depends only the rate constants,

½B�
½A�~

k1

k2
: ð19Þ

A similar relationship holds generally for any chemical reaction at

equilibrium. Such formulas can also be deduced directly from

equilibrium thermodynamics, without making kinetic assumptions

about the rates of reactions, [64]. For an isolated reaction such as

this, kinetics is consistent with thermodynamics. However, a

network of chemical reactions may have kinetic equilibria that do

not satisfy thermodynamic constraints. Gilbert Lewis sought to

avoid such paradoxes by suggesting the principle of detailed

balance (DB), as stated in the previous section, [65]. It was later

realised that DB is a consequence of the fundamental time-

reversibility of microscopic processes, whether classical or quan-

tum, [66,67].

Horn and Jackson sought to extend thermodynamic properties

like (19) to steady states far from equilibrium, [63]. Under mass-

action kinetics, any network of chemical reactions gives rise to a

system of nonlinear ordinary differential equations, dx=dt~f (x),
for the concentrations, x1, � � � ,xm of the various chemical species.

Here, the nonlinear function f : Rn?Rn defines the dynamics on

the species level. To disentangle the nonlinearities, the stoichio-

metric expressions that appear on either side of a reaction were

treated as new entities called ‘‘complexes’’. A hypothetical reaction

such as Az2B?3C gives rise to the two complexes, Az2B and

3C. Each reaction defines a directed edge between complexes and

the mass-action rate constant provides the edge with a label. Any

network of chemical reactions, N, thereby gives rise to a labelled,

directed graph, GN. The number of vertices in GN is the number of

distinct complexes, m, among all the reactions in the network.

The Laplacian matrix of this graph defines a linear function,

L(GN ) : Rm?Rm, at the complex level that is the analogue of the

nonlinear f : Rn?Rn at the species level. The relationship

between f and L(Gn) is expressed in the fundamental equation.

f (x)~Y : L(GN ):Y(x) , ð20Þ

where Y : Rm?Rn is a linear function that records the

stoichiometry of each species in a complex and Y : Rn?Rm is a

nonlinear function that records the mass-action monomial

corresponding to each complex, [63]. The ‘‘dot’’ signifies

composition of functions. Horn and Jackson were unaware at

the time of the Laplacian interpretation, which was first pointed

out in [68]. The decomposition in (20) is the starting point of

CRNT, which was subsequently developed by Feinberg and his

students, [69,70]. The decomposition leads to Horn and Jackson’s

concept of a ‘‘complex-balanced’’ steady state, x, for which

L(GN ):Y(x)~0. This may be reached far from equilibrium but

still satisfies properties to be expected at equilibrium, including

relationships between concentrations and rate constants that

generalise (19), [63].

Synthesis and Degradation
A common feature of all the examples discussed previously is

that synthesis and degradation were entirely ignored, although

they are often significant in the biological context. It is an

indication of the power of the linear framework that it can be

readily extended to accommodate this.

Consider, as before, a labelled, directed graph, G, on vertices

1, � � � ,n but now allow each vertex in this ‘‘core graph’’ to have

additional partial labelled edges,

?
si

i or i?
di

corresponding to zero-order synthesis or first-order degradation,

respectively (Figure 4A). Each vertex may have any combination

of synthesis and degradation, including neither or both. Call this

‘‘partial graph’’ Gz. As before, there is a linear dynamics on Gz,

which may be described by the system of differential equations

dx

dt
~ L (G):x{D:xzS , ð21Þ
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where L(G) is the Laplacian matrix of the core graph, G. Here, D
is a diagonal matrix with Dii~di and S is a column vector with

Si~si, using the convention that di or si is zero if the

corresponding partial edge at vertex i is absent.

The dynamics defined by (21) has several different features to

that described by (3). It is easy to construct examples in which

degradation cannot keep up with synthesis, so that a component

becomes infinite and undefined. This usually arises from an error

in formulating the model. Conversely, if synthesis cannot keep up

with degradation, a component may become zero, which may not

be an error. What is required, is to determine whether any

components become infinite at steady state and, if not, to

determine the steady-state values of the components in terms of

the labels.

Elimination also takes a different form in (21) because it is non-

homogeneous: if x is a steady state of (21), it does not follow that lx

is also a steady state. Indeed, the single degree of freedom that is

found in a strongly-connected graph at steady state is no longer

present in the partial graph, as the total amount of matter in the

system is no longer conserved. Irrespective of how much matter is

present initially, it is the rates at which matter enters and leaves the

system that determine the final distribution of amounts, if a steady

state is reached. This requirement is expressed in a constraint on

the steady state. Setting dx=dt~0 in (21) and using the fact that

1{: L(G)~0 in the core graph, we see that

d1x1z � � �zdnxn~s1z � � �zsn : ð22Þ

This reflects the fact that synthesis and degradation must be in

overall balance if Gz is to have a steady state.

To determine the values of the steady state, construct a labelled,

directed graph G� by adding a new vertex � to G (Figure 4B). For

each of the partial edges above, introduce into G� the edges

�?
si

i or i?
di � ,

respectively. G� is a proper labelled, directed graph, whose

Laplacian dynamics are governed by (3). This graph enables a

complete solution to the problem raised above. We focus on the

case that is most relevant to the applications by assuming that G� is

strongly connected. This will be the case if the core graph G is

strongly connected and there is at least one synthesis edge and one

degradation edge. However, G� may be strongly connected even

when G is not (Figure 4A, B), so that this analysis applies to a wider

class of graphs than previously.

If G� is strongly connected, then the MTT provides a basis

element for the kernel of the Laplacian, rG�[ker L(G�). We have

annotated G� to emphasise that it is quite

different from the corresponding basis element, rG , if the core

graph also happens to be strongly connected. When G� is strongly

connected, no components of the partial graph Gz become

infinite and Gz has a unique steady state x given by

xi~
rG�

i

rG�
�
: ð23Þ

Here, all the vertices of Gz have positive amounts at steady state.

The single degree of freedom in G� has been used in (23) to ensure

that x�~1. It can easily be checked that (x1, � � � ,xn,1) is a steady

state of G� if, and only if, (x1, � � � ,xn) is a steady state of Gz. The

condition for vertex � to be at steady state in G� with x�~1

corresponds exactly to equation (22) for synthesis and degradation

to be in balance in Gz.

Equation (23) shows how synthesis and degradation can be

readily accommodated within the linear framework. It may be

used to revisit all the examples discussed previously to understand

the impact of synthesis and degradation. It also opens up for

analysis a range of new biological examples. For instance,

regulated degradation is a key mechanism in the Wnt/beta-

catenin and death-receptor signalling pathways, [71–73]. Analysis

of these using the linear framework is work in progress.

Discussion

We have shown that a simple, linear, graph-theoretic frame-

work integrates time-scale separation analysis across many

different biological areas. An expert in one of these application

areas might say that we have not added anything new to that

particular area. The expert would have a point. However, the

literature suggests that experts in different areas are apparently

unaware that they are all doing the same thing. The aim of this

paper has been to reveal this shared framework and to clarify its

essentials. The neutral mathematical language adopted here–

graphs, spanning trees, strong-connectivity–is spoken more widely

than the dialect adopted in any particular area, allowing a broader

community access to the ideas. The key insight of the paper is that

elimination of internal complexity is a linear procedure that works because the

underlying graph is strongly connected. To the best of our knowledge, this

has not been articulated previously nor has it been made evident

how broadly this idea can be applied.

We believe significant advantages accrue from using such a

framework. First, as mentioned, it helps break down the barriers

between areas: a technique developed in one area may be

exploited in many others. Second, the framework reveals the

simplicity that is obscured by contextual details. Third, the

quantitative analysis of biochemical systems acquires a foundation,

instead of appearing as a series of ad hoc calculations. Fourth, such

a foundation permits new kinds of analysis, such as incorporating

synthesis and degradation, that can now be used wherever the

framework can be applied.

The framework not only unifies, it also suggests new problems to

explore. An intriguing question is whether the dynamical

behaviour of a sub-system retains any vestige of the elimination

that becomes feasible at steady state. When a graph is strongly

connected, the many degrees of freedom that are present at the

start of the dynamics (equivalent to the number of vertices in the

graph) collapse to a single-degree of freedom at steady state. But

how does this collapse come about over time? Do the degrees of

freedom gradually ‘‘condense’’? If so, what does this process of

condensation reveal about the architecture of the graph? It is well

known that transient dynamics, prior to reaching steady state, are

informative about rate constants but it is conceivable that the way

in which degrees of freedom are lost may also tell us about the

structure of the graph and, thereby, about the structure of the

underlying network of biochemical reactions.

Time-scale separation is often used to simplify the dynamics of

the slow components. In the Michaelis-Menten example, for

instance, the differential equation in (2) is a simplified description

of the system’s behaviour, in terms of the slow components only.

The method of ‘‘singular perturbation’’ provides a systematic way

to determine the quality of this approximation and to understand

how it depends on the separation between the time scales, [74].

This has been undertaken for the Michaelis-Menten reaction

mechanism, [75,76], but, surprisingly, it appears not to have been

investigated further in enzyme kinetics and not at all in other
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biological areas. The linear framework provides the starting point

from which to apply singular perturbation. The key to doing so is

to identify one or more non-dimensional parameters, which

become small when the time-scales are separated, [77], from

which the accuracy of the simplified dynamics can be systemat-

ically determined. If such an analysis can be undertaken in

generality, then we would have a powerful new tool for simplifying

and approximating the dynamical behaviour of complex bio-

chemical systems.

What emerges from this may be a new approach for dealing

with molecular complexity. The examples discussed here, espe-

cially gene regulation and post-translational modification, are

combinatorial mechanisms with the potential for creating astro-

nomical numbers of internal cellular states. Making sense of this

combinatorial explosion remains one of the most significant and

intractable challenges facing integrative systems biology. It

presents particular difficulties for computational methods based

on numerical simulation because they require prior specification of

all the details of the system, including the number of sites of

modification or binding, as well as the values of all rate constants.

This has made it hard to distil general principles–those that hold

irrespective of such details. The framework introduced here, in

contrast, allows these details to be treated symbolically and

mathematically, no matter how many components are present.

Details, such as the number of modification or binding sites, may

be treated as variables, without having to give them numerical

values, [46]. A new kind of analysis becomes feasible which may

have the potential to rise above the combinatorial explosion.

Methods

The conclusions were reached by mathematical analysis, for

which further details are provided in Supporting Information S1.

Supporting Information

Supporting Information S1 Additional mathematical
details. 1 ‘‘Kernel of the Laplacian for a general graph’’; 2

‘‘Ligand binding at thermodynamic equilibrium’’; 3 ‘‘Synthesis

and degradation’’; and the figure ‘‘Spanning trees for the labelled

directed graph in Paper Figure 4B’’.

(PDF)
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