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Microbial natural products and their derivatives have been developed as a considerable part of clinical drugs and 

agricultural chemicals. Marine microbial natural products exhibit diverse chemical structures and bioactivities 

with substantial potential for the development of novel pharmaceuticals. However, discovering compounds with 

new skeletons from marine microbes remains challenging. In recent decades, multiple approaches have been de- 

veloped to discover novel marine microbial natural products, among which heterologous expression has proven 

to be an effective method. Facilitated by large DNA cloning and comparative metabolomic technologies, a few 

novel bioactive natural products from marine microorganisms have been identified by the expression of their 

biosynthetic gene clusters (BGCs) in heterologous hosts. Heterologous expression is advantageous for character- 

izing gene functions and elucidating the biosynthetic mechanisms of natural products. This review provides an 

overview of recent progress in heterologous expression-guided discovery, biosynthetic mechanism elucidation, 

and yield optimization of natural products from marine microorganisms and discusses the future directions of 

the heterologous expression strategy in facilitating novel natural product exploitation. 
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. Introduction 

Natural products are small organic compounds originating from an-

mals, plants, and microorganisms. They often possess unique chemical

tructures and exhibit specific biological activities. Natural products are

mportant sources of novel drugs and pesticides [1] . Natural products

rom microorganisms have made their most significant contribution to

odern medicine in antibiotics, which have saved billions of lives in

he clinical setting [2] . Since the discovery of penicillin in 1928, the

eeking of bioactive microbial natural products, especially antibiotics,

as attracted substantial attention and entered a short golden age [3] .

owever, the discovery of novel chemical skeletons has become difficult

ith the continuous bioactivity-guided screening of compounds. More-

ver, the emergence and prevalence of multidrug-resistant pathogens

ave become prominent, conferring significant threats to human health.

herefore, the search for bioactive molecules and development of novel

ntibiotics are urgently necessary [4] . 

Oceans harbor the most abundant biological resources and pos-

ess great diversity of natural products. More than 40,000 com-

ounds have been deposited in the marine natural product database

 https://marinlit.rsc.org/ , 2023), and 14 marine natural products and
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heir derivatives have been marketed, including cytarabine, vidara-

ine, fludarabine, nelarabine, histochrome, eribulin mesylate, trabecte-

in, lurbinectedin, plitidepsin, ziconotide, Omega-3-acid ethyl esters,

mega-3-carboxylic acids, icosapent ethyl, and fish oil triglycerides [5] .

n order to adapt to the special environment of high pressure, high salin-

ty, low temperature, and insufficient light in the ecological niches in

he ocean, marine microorganisms have evolved unique metabolic and

iosynthetic pathways, enabling the synthesis of structurally novel and

unctionally distinctive compounds that cannot be produced by terres-

rial microorganisms [6] . Since the beginning of the 21st century, the

umber of novel natural products discovered from marine microorgan-

sms has increased rapidly. Compounds isolated from marine microor-

anisms include terpenoids, alkaloids, steroids, polyketones, peptides,

lycosides, and halogenated compounds. Many of these compounds ex-

ibit distinct bioactivities . Their antibacterial, antiviral, anticancer, an-

icardiovascular, antioxidant, anti-inflammatory, and other activities

ave substantial potential for drug discovery [7–9] . 

Genes involved in the synthesis of natural products are typically clus-

ered in the genomes of microorganisms and are collectively referred

o as biosynthetic gene clusters (BGCs). Secondary metabolite produc-

ion involves multiple stages, including gene transcription, translation,
 December 2023 

 University. This is an open access article under the CC BY-NC-ND license 

https://doi.org/10.1016/j.engmic.2023.100137
http://www.ScienceDirect.com/science/journal/26673703
http://www.elsevier.com/locate/engmic
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engmic.2023.100137&domain=pdf
https://marinlit.rsc.org/
mailto:fuyan@sdu.edu.cn
https://doi.org/10.1016/j.engmic.2023.100137
http://creativecommons.org/licenses/by-nc-nd/4.0/


S. Zhao, R. Feng, Y. Gu et al. Engineering Microbiology 4 (2024) 100137

Fig. 1. Strategies for the discovery of new natural products from marine microorganisms. 
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nd enzyme-catalyzed biosynthesis. This process is tightly controlled by

arious regulatory systems, and the BGCs are usually expressed under

pecific environmental conditions. The product yield is influenced by

actors such as metabolic flux, codon preferences, and product stabil-

ty . Therefore, most BGCs remain “silent ” under laboratory conditions,

estricting the identification of the corresponding products. Genome se-

uencing has uncovered many BGCs in the genomes of microorganisms;

owever, the products of most BGCs are unknown. Transforming un-

nown BGCs into natural product entities would contribute to the dis-

overy of new chemicals and the development of novel drugs. 

. Strategies for the discovery of new natural products from 

arine microorganisms 

In recent decades, multiple strategies have been developed to exploit

idden compounds from microorganisms. In this review, we provide an

verview of the strategies for the discovery of natural products from

arine microorganisms ( Fig. 1 ). Specifically, the application of heterol-

gous expression strategies in the research on natural products from

arine bacteria and fungi is highlighted. 

The combination of strain fermentation, bioactivity screening, and

etabolomic analysis is a traditional route to identify natural products

rom marine microorganisms. This approach has led to the discovery

f a variety of natural products, some of which have been applied in
2

isease treatment. To elicit expression of biosynthetic pathways, ‘one

train many compounds’ strategy is developed by changing the com-

osition of the media, aeration rate, cultivation conditions and supply

f enzyme inhibitors [10] . Co-cultivation with other species is another

oute for maximizing chemical diversity [ 11 , 12 ]. Interspecies interac-

ions between co-cultivated microorganisms may induce the expression

f previously silent biosynthetic pathways. 

DNA sequencing and bioinformatics analyses have uncovered a large

umber of BGCs in the genome of marine microbes. However, a large

roportion of marine microorganisms are poorly cultivated or uncultur-

ble under laboratory conditions, and certain external or internal signals

hat elicit the expression of BGCs are unclear; thus, the discovery of ma-

ine natural products has been challenging. Therefore, although marine

icroorganisms possess unique metabolic and enzymatic mechanisms,

ost natural products are not produced or produced in trace amount un-

er laboratory cultivation conditions, which are difficult to identify by

ioactivity and metabolomic screening. Meanwhile, this approach has

ncountered problems in the rediscovery of known compounds [ 13 , 14 ].

BGCs can be activated by manipulating BGCs or regulatory networks

n situ [15–17] . For example, Zhang et al. employed a successful CRISPR-

as9 knock-in strategy to insert the kasO∗ p promoter upstream of the

rst open reading frame in the native producer Streptomyces roseosporus ,

esulting in the successful production of photocyclized alteramide A

nd PTM (polycyclic tetramate macrolactam) [18] . Wang et al. intro-
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(  
uced a transcription factor decoy strategy to selectively activate large

ilent polyketide synthase (PKS) and non-ribosomal peptide synthetase

NRPS) genes, leading to the discovery of oxazolepoxidomycins, novel

ompounds belonging to the oxazole family [19] . In addition, epigenetic

egulation and modification of DNA at the chromatin level has been ob-

erved to precisely control BGC expression by activating or blocking

athway-specific genes [ 20 , 21 ]. Ribosome engineering and the manip-

lation of protein-modifying genes can also assist in the production of

atural products [22] . An example of the activation of silent biosyn-

hetic pathways through ribosome engineering is the identification of

he polyketide isoindolinomycin by screening rifampicin-resistant mu-

ants [23] . Nevertheless, a premise for the aforementioned strategies is

hat the native host targeting the BGC can be genetically manipulated.

nsufficient tools for the genetic manipulation of marine microbes re-

tricts the exploitation of natural products in these routes. 

In circumventing the challenges of operating native producers, an

lternative approach is to transfer and express BGCs in genetically

menable heterologous hosts with clear metabolite backgrounds. Het-

rologous expression avoids the effects of the regulatory network and

he requirement of signaling molecules for the transcriptional initia-

ion of BGCs. In addition to facilitating the discovery of valuable new

roducts, heterologous expression exhibits advantages in the character-

zation of biosynthetic mechanisms and generation of novel derivatives

24] . In a heterologous host, the genes of exogenous BGCs can be mod-

fied, and metabolome differences can be easily differentiated. 

With the development of direct DNA cloning techniques, such as

AR [25] , Red/ET recombineering [ 26 , 27 ], CAPTURE [28] , and SIRA

 29 , 30 ], natural product BGCs can be cloned from the genomes of ma-

ine microorganisms, and gene clusters from unculturable marine mi-

roorganisms or environmental samples can be obtained using de novo

NA synthesis and assembly. In order to choose an appropriate cloning

ethod, the size of the BGC, G + C content, suitable enzyme cleavage

ites, screening efficiency, and the host for DNA cloning should be con-

idered [31] . After modification, for example, promoter engineering and

upplementation of mobile elements, BGCs can be transferred into het-

rologous hosts, such as S. coelicolor, Bacillus subtilis, and Escherichia coli ,

hrough transformation or conjugative transfer. The gene cluster is then

eplicated in the host carried by a plasmid or integrated into the chromo-

ome by integrase ( eg. PhiC31 integrase), transposition, or homologous

ecombination, enabling the activation of BGCs and the production of

ompounds [ 32 , 33 ]. Several factors must be considered when selecting

 suitable heterologous chassis. Generally, natural product-producing

otential is an important factor to consider. Heterologous NRPS gene

lusters can be easily expressed in heterologous hosts capable of produc-

ng multiple NRPS types [34] . Other factors include the type of BGC to

e expressed, the existence of genes for precursor biosynthesis and post-

ssembly modifications, the genomic DNA G + C content of the heterolo-

ous host, and the phylogenetic relationship between the heterologous

ost and the native strain harboring the BGC. Furthermore, heterologous

osts can be optimized by deleting endogenous secondary metabolite

GCs, allowing more substrates and energy to participate in the syn-

hesis of exogenous products [35] . The yield and diversity of products

an be improved by introducing new metabolic pathways, adding syn-

hetic precursors, or applying strong promoters to heterologous hosts.

he heterologous hosts developed during the discovery and biosynthetic

nvestigation of marine natural products are summarized in Table 1 . 

. Discovery and characterization of marine natural products 

hrough heterologous expression 

In recent decades, there has been substantial progress in the acqui-

ition and characterization of natural products from marine microor-

anisms. In this section, we summarize natural products from marine

acteria (mainly Actinomyces and cyanobacteria) and fungi that inves-

igated by using heterologous expression ( Table 1 ). 
3

.1. Natural products from marine bacteria 

.1.1. Polyketides 

.1.1.1. Aromatic polyketides. Xu et al. isolated one new aromatic

olyketide [36] , prealnumycin B, and four known aromatic polyketides

K1115A, DHPA, phaeochromycin B, and ( R )-7-acetyl-3,6-dihydroxy-

-propyl-3,4dihydronaphthalen-1( 2H )-one) from the marine-derived S.

undarbansensis SCSIO NS01( Fig. 2 ). Genome analysis revealed a unique

ype II PKS gene cluster ( als ) in SCSIO NS01 associated with the

iosynthesis of the isolated aromatic polyketides, which was con-

rmed by the expression of the als gene cluster in S. coelicolor M1152

nd the production of the anticipated compounds. A novel aromatic

olyketide, phaeochromycin L, and two known aromatic polyketides,

haeochromycins D and E, were produced. 

.1.1.2. Galbonolide. Galbonolide is a macrolactone with potent an-

ifungal activity ( Fig. 2 ). As an inositol phosphorylceramide (IPC)

ynthase inhibitor, it inhibits sphingolipid synthesis, exerting activ-

ty against pathogenic fungi [ 37 , 38 ]. Additionally, it effectively in-

ibits clinically important human pathogens, particularly the danger-

us emerging pathogen Candida auris [39] . Liu et al. identified a pu-

ative BGC associated with galbonolide synthesis in the genome of a

arine Streptomyces strain [ 40 , 41 ]. Heterologous expression of the gbn

ene cluster in S. coelicolor ZM12 successfully generated galbonolide B

42] . 

.1.1.3. Neoabyssomicin/abyssomicin. This family of antimicrobials is

enerally composed of C19 spirotetronates, which often containing a

our- or five-membered ring system within their architecture. They typ-

cally exhibit promising antibacterial activity. For example, in 2014,

byssomicin C isolated from the marine actinomycete strain Verruco-

ispora sp. AB-18032, showed promising antibacterial activity against

everal Gram-positive bacteria, including MRSA [43] and M. tubercu-

osis [44] . In 2017, neoabyssomicins A-B were isolated from marine-

erived S. koyangensis SCSIO 5802, along with abyssomicins 2 and 4

45] . Neoabyssomicin A augmented HIV-1 replication in a human lym-

hocyte model ( Fig. 2 ). In 2018, Tu et al. cloned the BGC ( abm ) of

eoabyssomicins and abyssomicins from S. koyangensis SCSIO 5802 and

xpressed them in the heterologous host S. coelicolor M1152 [46] . 

.1.1.4. Shuangdaolides. Shuangdaolides and dumulmycin are poly-

yclic macrolides biosynthesized by the trans -AT PKS gene cluster. Some

f these compounds contain rare internal five-membered carbocyclic

oieties. Dumulmycin was first identified in Streptomyces spp. DM28

as obtained from a river in Republic of Korea [47] . Shuangdaolide

GC ( sdl ) was discovered in marine Streptomyces sp. B59, which was

ransferred into the heterologous host S. albus J1074, resulting in the

roduction of shuangdaolides A-D and dumulmycin ( Fig. 2 ). The pro-

uction of the compounds was improved by exchanging the promoter

f the sdl gene cluster [48] . Subsequent gene inactivations led to the

ccumulation of two biosynthetic intermediates, shuangdaolides E and

 [ 47 , 48 ]. 

.1.1.5. Streptoseomycin. Streptoseomycin is a novel macrodilactone

solated from marine S. seoulensis A01 [49] ( Fig. 2 ). It exhibits signif-

cant activity against microaerophilic bacteria such as Helicobacter py-

ori . To gain insights into the biosynthetic mechanism of this compound,

 type I PKS gene cluster was identified and confirmed as the BGC of

treptoseomycin by using the expression in the heterologous host S.

hartreusis 1018 [50] . 

.1.1.6. Violapyrones. Violapyrones are a group of 𝛼-pyrone com-

ounds that exhibit antimicrobial and anticancer activities. They were

nitially isolated by Zhang et al. from S. violascens YIM 100525 [51] . In

016, Huang et al. activated violapyrone BGC by deleting the whiB-like

 wbl ) regulatory gene in deep sea-derived S. somaliensis SCSIO ZH66.
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Table 1 

Heterologous hosts applied in discovery and characterization of marine natural products. 

Compound Original producer Heterologous host Application 

Prealnumycins S. sundarbansensis SCSIO NS01 S. coelicolor M1152 compound discovery [36] 

Ashimides A and B Streptomyces sp. NA03103 S. lividans SBT18 compound discovery [54] 

Berninamycins Streptomyces sp. SCSIO 11878 S. lividans SBT18; S. coelicolor M1154; S. albus 

J1074 

compound discovery [59] 

Bonsecamin S. albus subsp. chlorinus NRRL B-24108 S. albus Del14 compound discovery [ 60 , 61 ] 

Chrodrimanins I and J Penicillium funiculosum GWT2-24 Aspergillus nidulans A1145 biosynthetic investigation [122] 

Desotamides S. scopuliridis SCSIO ZJ46 S. lividans TK64; S. coelicolor M1152 compound discovery [63] 

Diazaquinomycins Streptomyces sp. strain F001 S. coelicolor M1152 biosynthetic investigation [102] 

Galbonolide B Streptomyces sp. LZ35 S. coelicolor ZM12 biosynthetic investigation [ 40 , 41 ] 

Lasso peptides (RES-701-3, 

RES-701-4, Aborycin) 

S. caniferus CA-271066; Streptomyces sp. 

SCSIO ZS0098 

S. coelicolor M1152 / M1154 compound discovery [94] ; yield optimization 

[95] 

Neoabyssomicins / abyssomicins S. koyangensis SCSIO 5802 S. coelicolor M1152 biosynthetic investigation [46] 

Polycyclic tetramate macrolactams S. pactum SCSIO 02999 S. lividans TK64 compound discovery [110] 

Salinamides Streptomyces sp. CNB-091 S. coelicolor M1146 biosynthetic investigation [78] 

Streptoseomycin S. seoulensis A01 S.chartreusis 1018 biosynthetic investigation [50] 

Totopotensamide A S. pactum SCSIO 02999 S. lividans TK64 yield optimization [80] 

Violapyrones S. violascens YIM 100525 S. youssoufiensis OUC6819 compound discovery [53] 

Columbamides Moorena bouillonii PNG5-198 Anabaena ( Nostoc ) PCC 7120 compound discovery [82] 

Cryptomaldamide Moorea producens JHB Synechococcus elongatus PCC 7942 yield optimization [84] 

4- O -demethylbarbamide M. producens 19L S. venezuelae DHS 2001 compound discovery [86] 

Lyngbyatoxins M. producens E. coli GB05-MtaA; Anabaena sp. PCC 7120 yield optimization [71] ; biosynthetic 

investigation [72] 

Microginins Microcystis aeruginosa LEGE 91341 E. coli BAP1 biosynthetic gene cluster characterizition [88] 

Patellamides Prochloron didemni E. coli BL21(DE3) pLys biosynthetic investigation [98] 

Sphaerocyclamide Sphaerospermopsis sp. LEGE 00249 E. coli TOP10 biosynthetic gene cluster characterizition [99] 

Bromo-alterochromides Pseudoalteromonas piscicida JCM 20779 E. coli BL21 (DE3) biosynthetic investigation [91] 

3-formyl- l -tyrosine- l -threonine 

dipeptide; 3-formyl- l -tyrosine 

P. tunicata D2 E. coli BL21 (DE3) biosynthetic investigation [104] 

Polybrominated diphenyl ethers; 

Polybrominated bipyrroles 

P. luteoviolacea 2ta16 E. coli BL21 (DE3) biosynthetic investigation [109] 

Violacein Pseudoalteromonas sp. 520P1; P. 

luteoviolacea 2ta16 

E. coli BL21 (DE3); Pseudomonas putida 

KT2440; Agrobacterium tumefaciens 

LBA4404 

biosynthetic gene cluster characterizition 

[116] ; yield optimization [117] 

Penifulvins Penicillium griseofulvum NRRL 35584 Aspergillus nidulans A1145 biosynthetic investigation [126] 

Talaromyolides Talaromyces purpureogenus CX11 A. oryzae NSAR1 biosynthetic investigation [132] 

Phomoxanthones Diaporthe sp. SYSU-MS4722 A. oryzae NSAR1 yield optimization; biosynthetic investigation 

[ 136 , 137 ] 

Shimalactone A and B Emericella variecolor GF10 A. oryzae M-2-3; A. oryzae NSAR1; 

Saccharomyces cerevisiae BJ5464 

biosynthetic investigation [139] 

Spiromaterpenes Spiromastix sp. MCCC 3A00308 S. cerevisiae; A. nidulans LO8030 biosynthetic investigation [143] 
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he wbl plays a crucial role in morphological differentiation and sec-

ndary metabolism. The violapyrone BGC comprises the type III PKS

ene vioA and the regulatory gene vioB , which are responsible for the

ynthesis of violapyrone B (VLP B). Inactivation vioB results in the pro-

uction of violapyrones A, J, C, H [52] . Expressing vioA under the con-

rol of the constitutive promoter PgapDH in marine-derived S. youssoufien-

is OUC6819 led to the production of violapyrones B and I and the four

ovel compounds violapyrones Q–T ( Fig. 2 ). These violapyrones were

ound to exhibit anti-influenza A [H1N1 (A/Virginia/ATCC1/2009) and

3N2 (A/Aichi/2/1968)] activities with IC50 values ranging from 30.6

o 132.4 𝜇M and 45.3 to 150.0 𝜇M, respectively. Also discovered was

hat the methylation at the 4-OH position of violapyrone enhanced anti-

irus activity but reduced anti-MRSA (methicillin-resistant Staphylococ-

us aureus ) activity [53] . 

.1.2. Nonribosomal peptides 

.1.2.1. Ashimides. Using genome mining, Shi et al. discovered an

RPS-like BGC ( asm ) with a size of 32 kb in the marine Streptomyces

train NA03103, which was composed of single NRPS modules and with

n absence of homologous counterparts in publicly available databases.

loning of the complete asm gene cluster and its expression in the engi-

eered host Streptomyces sp. SBT18 produced two novel cyclic peptide

ompounds, ashimides A and B ( Fig. 3 ), with ashimide B exhibiting mod-

rate cytotoxicity [54] . 

.1.2.2. Berninamycin. Berninamycin are thiopeptides compounds

55–58] . In 2021, De et al. isolated berninamycins A and B from
4

arine-derived Streptomyces spp. SCSIO 11878 and identified the 12.8

b BGC of berninamycins from the genome [59] . This gene cluster

ontains 11 genes ( berA - J ). After transferring the gene cluster to S.

ividans SBT18, S. coelicolor M1154, and S. albus J1074, berninamycins

 and B were successfully detected in S. lividans SBT18 and S. coelicolor

1154, and two new thiopeptide antibiotics, berninamycin J and K,

ere produced in S. albus J1074, indicating the potential involvement

f an unknown enzymatic function in S. albus J1074. Antimicrobial

ctivity test showed potent inhibitory activity of berninamycins A, B,

nd K against Gram-positive bacteria ( Fig. 3 ). No antibacterial activity

as observed for berninamycin J, indicating that the hydroxyl group on

he valine residue and the cyclized form of the thiopeptide are crucial

or its antibacterial activity. 

.1.2.3. Bonsecamin. Lasch et al. discovered an uncharacterized NRPS

ene cluster in S. albus subsp. chlorinus NRRL B-24108 [ 60 , 61 ]. The gene

luster is 35 kb in size and consists of 28 genes. After cloning the gene

luster into a BAC vector and introducing it into the heterologous host

. albus Del14, a novel cyclic pentapeptide, bonsecamin, was produced

 Fig. 3 ). 

.1.2.4. Desotamides. Desotamides (DSAs) are a class of naturally oc-

urring cyclic hexapeptides that exhibit strong inhibitory activity

gainst S. aureus, S. pneumoniae , and methicillin-resistant S. epidermidis .

esotamides A-D were isolated from the deep-sea actinomycete S. scop-

liridis SCSIO ZJ46 [62] . Li et al. identified a 39-kb NRPS gene cluster

 das ) from the genome of S. scopuliridis SCSIO ZJ46, which is putatively
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Fig. 2. Chemical structures of marine bacteria-derived polyketides investigated using heterologous expression. 
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esponsible for desotamide biosynthesis [63] . For the validation of The

esotamide biosynthetic pathway, the das gene cluster was cloned and

ntegrated into the genomes of the heterologous hosts S. lividans TK64

nd S. coelicolor strain M1152. A new compound, desotamide G ( Fig. 3 ),

as successfully produced in S. coelicolor M1152. Desotamide G is dif-

erentiated from desotamide A by an aspartic acid residue in its structure

ut exhibits lower antibacterial activity than that of desotamide A. 

.1.2.5. Lyngbyatoxin. Lyngbyatoxin is a compound with the ability

o activate protein kinase C and exhibit strong tumor-promoting ac-

ivity [ 64 , 65 ]. Lyngbyatoxin A was initially isolated from the marine

yanobacterium M. producens (formerly Lyngbya majuscula ) by Cardel-

ina et al. in 1979 [66] . Subsequently, Aimi et al. isolated lyngbyatoxins

 and C from M. producens in 1990 [67] ( Fig. 3 ). Jiang et al. discov-

red several derivatives of lyngbyatoxin in M. producens collected from

awaii [ 68 , 69 ]. The BGC of lyngbyatoxin consists of four genes: ltxA-

 [70] . Because of the slow growth of marine cyanobacteria and low

ompound yields, obtaining sufficient compounds for further develop-

ent is challenging. In 2013, Ongley et al. transferred the ltx gene clus-
5

er controlled by the tetO tetracycline-inducible promoter ( PtetO ) into E.

oli GB05-MtaA and achieved the high-level expression of lyngbyatoxin

25.6 mg L− 1 ) and the intermediate compounds NMVT and ILV [71] . In

ddition, Videau et al. introduced ltxA-C and ltxA-D into Anabaena PCC

120 and successfully obtained lyngbyatoxin A [72] . 

.1.3. Polyketide-nonribosomal peptide hybrids 

.1.3.1. Salinamide. Salinamides are a rare group of bicyclic depsipep-

ide antibiotics ( Fig. 4 ). This group is characterized by the inclusion of

 (4-methylhexa-2,4-dienoyl) glycine unit. Salinamides A and B have

een isolated from the marine actinomycete Streptomyces sp. CNB-091

73–75] . Subsequently, the series of salinamides has been expanded by

he identification of various derivatives, including salinamides C, D, E,

nd F [ 76 , 77 ]. Ray et al. identified the BGC ( sln ) of salinamides from

treptomyces sp. CNB-091. Moreover, expression of the sln gene cluster

n S. coelicolor M1146 led to the production of salinamides A-F [78] . 

.1.3.2. Totopotensamide. Totopotensamide (TPM) is a polyketide pep-

ide glycoside discovered by in situ activation of a cryptic gene cluster
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Fig. 3. Chemical structures of marine bacteria-derived nonribosomal peptides investigated by heterologous expression. 
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n marine-derived S. pactum SCSIO 02999 [79] ( Fig. 4 ). However, the

roduction of TPMs appeared unstable. Tan et al. cloned the tot gene

luster from S. pactum SCSIO 02999 and transferred it into S. lividans

K64, leading to the production of totopotensamide A. By knocking out

wo negative regulatory genes, totR5 and totR3 , totopotensamide A pro-

uction increased six-fold [80] . 

.1.3.3. Columbamide. Columbamides are chlorinated acyl amides ini-

ially isolated and identified from the filamentous marine cyanobac-

erium Moorena bouillonii PNG5-198 ( Fig. 4 ) [81] ; among them, colum-

amides A and B have been reported to be potent binders to the cannabi-

oid receptors CB1 and CB2. The biosynthetic pathway of colum-

amide was determined using a combination of mass spectrometry-

ased metabolomic and genomic analyses [82] . Expression of the 28.5

b columbamide BGC in the heterologous host Anabaena ( Nostoc ) PCC

120 led to the production of the previously characterized colum-

amides A-C and several new analogs, I-M [82] . A significant correlation

as observed between columbamide production and NaCl concentration

n the culture medium of Anabaena . 

.1.3.4. Cryptomaldamide. Cryptomaldamide was first isolated from

he marine cyanobacterium Moorea producens ( Fig. 4 ). This compound

as a high nitrogen content and exhibits weak activity against H-460

uman lung cancer cells [83] . Taton et al. cloned the 28.7 kb cryp-

omaldamide BGC from Moorea producens JHB and expressed it in the

eterologous cyanobacterial strains Synechococcus elongatus PCC 7942

nd Anabaena (Nostoc) PCC 7120, resulting in a high-titer production of

ryptomaldamide in Anabaena (Nostoc) PCC 7120 [84] . 
6

.1.3.5. 4- O -demethylbarbamide. Barbamide is a molluscicidal com-

ound isolated from Moorea producens . A hybrid PKS/NRPS gene clus-

er was found to be responsible for the synthesis of barbamide [85] .

im et al. cloned the barbamide BGC and expressed it in the engi-

eered strain S. venezuelae DHS 2001, resulting in the production of

- O -demethylbarbamide ( Fig. 4 ), a new derivative of barbamide lacking

n O -methyl group. Interestingly, this derivative exhibited significantly

ncreased molluscicidal activity compared with barbamide, making it

aluable for the development of insecticides [86] . 

.1.3.6. Microginins. Microginins are lipopeptide protease inhibitors

solated from cyanobacteria. Their main characteristic is the presence

f a 3-amino fatty acyl residue connected to the peptide (typically con-

isting of three or four amino acid residues). In 2009, Rounge et al. pro-

osed that the NRPS/PKS hybrid gene cluster ( mic ) is responsible for

he synthesis of microginin oscillaginins A and B in Planktothrix prolifica

IVA-CYA 98 but did not validate this hypothesis [87] . 

In 2022, Eusébio et al. isolated 12 new microginins and identified a

ic gene cluster encoding a dimetallic carboxylate halogenase homolog

n M. aeruginosa (LEGE 91341). The mic gene cluster was cloned from

. aeruginosa LEGE 91341 and expressed in E. coli BAP1, leading to the

roduction of several known microginins and new variants ( Fig. 4 ), con-

rming the involvement of the mic gene cluster in microginin synthesis

88] . 

.1.3.7. Bromo-alterochromides. Alterochromides and their brominated

erivatives, bromo-alterochromides, are lipopeptides produced by the

arine bacteria Pseudoalteromonas species. Bromo-alterochromides iso-

ated from P. maricaloris KMM 636T in 2005 possess potent antimicro-
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Fig. 4. Chemical structures of marine microbe-derived polyketide-nonribosomal peptide hybrids investigated by heterologous expression. 
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ial and cytotoxic activities [89] . In 2013, Nguyen et al. identified the

GC of bromo-alterochromides by using MS/MS networking and gene

luster analyses [90] . Ross et al. cloned the alterochromide BGC ( alt )

rom the genome P. piscicida JCM 20779 and expressed it in the heterol-

gous host E. coli BL21 (DE3) to decipher the biosynthetic pathway of

bromo-) alterochromides ( Fig. 4 ) [91] . 

.1.4. Ribosomally synthesized and post-translationally modified peptides 

RiPPs) 

.1.4.1. Lasso peptides. Lasso peptides are a class of RiPPs produced by

acteria. Lasso peptides possess a wide range of biological activities,

ncluding antibacterial, enzyme-inhibitory, and receptor-antagonistic

ctivities. Because of their unusual topological structure and signifi-

ant biological activity, lasso peptides have garnered increasing interest

 92 , 93 ]. 

Oves-Costales et al. identified a 7.7 kb gene cluster consisting of

even genes in S. caniferus CA-271066. The cloning and expression

f this gene cluster in S. coelicolor M1152 and M1154 generated two

ype II lasso peptides, RES-701-3 and RES-701-4 [94] ( Fig. 5 ). Both

asso peptides exhibited activity against endothelin 1 with IC50 values

f 5-10 mM, indicating their potential for the treatment of systemic

ypertension, myocardial infarction, cardiac ischemia, diabetes, and

ther diseases. 

Aborycin is a type I lasso peptide with strong antibacterial activity

gainst S. aureus ( Fig. 5 ), Enterococcus faecalis ATCC 29212, B. subtilis ,

nd the poultry pathogen Clostridium perfringens 5F52C. It was isolated

y Shao et al. from the deep-sea Streptomyces sp. SCSIO ZS 0098. The
7

borycin BGC ( abo ) was identified and expressed in S. coelicolor M1152,

roducing aborycin at a higher yield than in the original strain [95] . 

.1.4.2. Patellamides. Patellamides are cyclic peptides that exhibit cy-

otoxicity against L1210 murine leukemia cells and the human ALL cell

ine CEM ( Fig. 5 ). They were initially isolated from the patella of the

idemnid ascidian Lissoclinum patella [96] . Further analysis revealed

hat patellamides were synthesized by the symbiotic cyanobacterium

rochloron [97] . However, the availability of these compounds is limited

ecause of the difficulty in culturing Prochloron . Schmidt et al. identi-

ed the BGC of patellamides in Prochloron and validated it by successful

xpression in E. coli BL21(DE3) pLys [98] . 

.1.4.3. Sphaerocyclamide. Sphaerocyclamide belongs to the

yanobactin family and has been isolated from Sphaerospermopsis spp.

EGE 00249 ( Fig. 5 ). The bioactivity tests revealed a weak inhibitory

ffect on the growth of Halomonas aquamarina . A gene cluster encoding

0 proteins, including several proteases homologous to those involved

n the synthesis of other cyanobactins, was identified and speculated

o be involved in sphaerocyclamide biosynthesis. This speculation was

onfirmed by the heterologous expression of the gene cluster in E. coli

OP10 and the successful production of sphaerocyclamide [99] . 

.1.5. Others 

.1.5.1. Diazaquinomycins. Diazaquinomycins are a class of neutral

uinoid antibiotics that exhibit activity against drug-resistant Mycobac-

erium tuberculosis and other Gram-positive bacteria [ 100 , 101 ] ( Fig. 5 ).
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Fig. 5. Chemical structures of marine microbe-derived RiPPs and other types of compounds investigated by heterologous expression. 
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urther development of these compounds is restricted by their poor

ater solubility. Braesel et al. identified the daq gene cluster from the

enome of the marine bacterium Streptomyces sp. F001, and the fresh-

ater bacterium Micromonospora sp. B006. The daq gene cluster was

3.5 kb and comprised of 21 genes ( daqA - U ). The expression of the daq

ene cluster in S. coelicolor M1152 led to the successful production of

iazaquinomycins [102] . 

.1.5.2. 3-formyl- l -tyrosine- l -threonine dipeptide and 3-formyl- l -tyrosine.

enome mining and the identification of natural products typically rely

n the identification of BGCs or functional biosynthetic modules. How-

ver, studies have shown that other enzymes, such as ATP-grasp ligases,

re important in natural product biosynthesis [103] . By identifying ATP-

rasp enzymes, Blasiak et al. cloned a gene cluster ( fty ) from the marine

amma-proteobacterium Pseudoalteromonas tunicate D2 and expressed

t in E. coli , which resulted in the production of 3-formyl- l -tyrosine- l -

hreonine dipeptide and 3-formyl- l -tyrosine ( Fig. 5 ) [104] . 

.1.5.3. PBDEs and polybrominated bipyrroles. Polybrominated

iphenyl ethers (PBDEs) and polybrominated bipyrroles are a group

f compounds with distinct halogenation properties that often provide

rotection against predators, parasites, and pathogens in symbiotic

osts of marine microorganisms. For example, tetrabromopyrrole can

e used as an inducer of coral larval settlement and metamorphosis, and

ther types of polybromopyrroles were shown to inhibit Gram-positive

acteria . [ 105 , 106 ]. 
8

PBDEs have received substantial attention because of their persis-

ence in the environment and potential toxicity to humans [ 107 , 108 ].

n 2014, Agarwal et al. identified a gene cluster ( bmp ) responsible for

he biosynthesis of PBDEs and polybrominated bipyrroles in the strain

. luteoviolacea 2ta16 ( Fig. 6 ). The bmp1-8 is expressed in E. coli , leading

o the production of PBDEs and polybrominated bipyrroles [109] . 

.1.5.4. Polycyclic tetramate macrolactams. Polycyclic tetramate macro-

actam (PTMs) compounds exhibit a broad spectrum of biological activi-

ies, including antifungal, antibacterial, antiprotozoal, antiulcer, antivi-

al, and cytotoxic activities. PTM BGCs are widely present in microbial

enomes, but most are silent. Subhasish et al. performed a genomic anal-

sis of the deep-sea bacterium S. pactum SCSIO 02999 and predicted

 PTM synthesis-related gene cluster ( ptm ). Subsequent promoter ex-

hange and heterologous expression of the ptm cluster in Streptomyces .

ividans TK64 successfully generated five new PTMs. The newly gener-

ted compounds, pactamides A-E ( Fig. 5 ), exhibited potent cytotoxicity

gainst SF-268, MCF-7, NCI-H460, and Hep-G2 cell lines; among them,

actamide A demonstrated the highest cytotoxicity with IC50 values of

.24-0.51 𝜇M [110] . 

.1.5.5. Violacein. Violacein is a purple pigment produced by a few

ram-negative bacteria ( Fig. 5 ). It possesses various physiological ac-

ivities such as antiprotozoal, antibacterial, antiviral, antimalarial, anti-

ungal, and anticancer properties; thus, it of substantial interest in phar-

acology [111] . Extensive studies have been performed on its biosyn-



S. Zhao, R. Feng, Y. Gu et al. Engineering Microbiology 4 (2024) 100137

Fig. 6. Biosynthetic gene cluster (a) and assembly pathway of PBDEs and polybrominated bipyrroles (b). Bmp2, flavin-dependent halogenase; Bmp4, proline adenyl- 

transferase; Bmp5, flavin-dependent oxygenase; Bmp6, chorismate lyase; Bmp7, cytochrome P450; Bmp8, carboxymuconolactone decarboxylase; Bmp9, ferredoxin; 

Bmp10, ferredoxin reductase. 
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hetic pathways and quorum-sensing mechanisms [112–115] . Zhang et

l. cloned the 7.4 kb vio gene cluster from Pseudoalteromonas sp. 520P1

nd achieved expression in E. coli after promoter engineering [116] .

n addition, Zhang et al. cloned an vio gene cluster from P. luteovio-

acea 2ta16 and successfully produced violacein in Pseudomonas putida

T2440 and Agrobacterium tumefaciens LBA4404 in high yields [117] . 

.2. Natural products from marine fungi 

.2.1. Chrodrimanin-type meroterpenoids 

Meroterpenoids derived from fungi have complex and diverse struc-

ures, and their skeletons are generally constructed by attaching ter-

enes to nonterpene parts, such as polyketides, nonribosomal peptides,

nd shikimates, by prenyltransferases (PTases) [118] . These compounds

how a high practical value for clinical use, such as the first-line im-

unosuppressive drug mycophenolic acid [119] and the anti-angiogenic

gent fumagillin [120] . Zhou et al. isolated seven meroterpenoids from

he Antarctic moss-derived fungus Penicillium funiculosum GWT2-24, in-

luding the previously reported chrodrimannins A and B [121] and two

tructurally unique chrodrimannins I and J ( Fig. 7 ). The specificities

f chrodrimannins I and J are related to the cyclohexanone combi-

ation of a benzocyclohexanone moiety and a terpene moiety. Subse-

uently, heterologous production of chrodrimanins I and J was success-

ully achieved in Aspergillus nidulans A1145 by expressing the cdn and

he PKS47 gene clusters of GWT2-24, which may produce the precursor

enzo-cyclohexanone [122] . 
9

.2.2. Dioxafenestrane sesquiterpenes 

Sesquiterpenes penifulvins A-E from the terrestrial fungus Penicil-

ium griseofulvum and asperaculin A from the marine fungus Aspergillus

culeatus CRI323-04, both of which contain a unique [5.5.5.6] dioxafen-

strane ring, are rare dioxafenestrane sesquiterpenes ( Fig. 7 ); the for-

er presented a specific killing activity against the crop pest Spodoptera

rugiperda and has the potential for the development of innovative pes-

icide [123–125] . Zeng et al. elucidated the biosynthetic pathway of

enifulvins and achieved their reconstitution in A. nidulans [126] . Sub-

equently, the same group identified an asperaculin BGC in the genome

f A. aculeatus . Heterologous expression of biosynthetic genes in A. nidu-

ans revealed that the penifulvin and asperaculin biosynthetic pathways

hare a similar mechanism for the generation of intermediate precursors

ut present significant differences in late-stage modifications [127] . 

.2.3. Talaromyolides 

Meroterpenoids are widely distributed in marine bacteria, fungi, and

igher plants [128] . BGCs typically contain polyketide synthase genes,

soprene transferase genes, flavin monooxygenase genes, and terpene cy-

lase genes [129] . In 2019, Cao et al. isolated meroterpenoids talaromy-

lides A− D and talaromytin from the marine fungi Talaromyces sp. CX 11

130] ; subsequently, talaromyolides E–K were identified in the marine

ndophytic fungus T. purpureogeneus . Talaromyolides D and K showed

ood activity against pseudorabies virus [131] . Subsequently, Bai et al.

dentified the BGC of talaromylides ( tlx ) in T. purpureogenus based on a

equence alignment ( Fig. 8 ) [121] . The talaromylide product was iden-
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Fig. 7. Chemical structures of marine fungi-derived compounds investigated by heterologous expression. 

Fig. 8. Biosynthetic gene cluster (a) and assembly pathway of talaromyolides (b). TlxB, acetyltransferase; TlxD, flavin monooxygenase; TlxE, isoprene transferase; 

TlxF, terpene cyclase; TlxG, short-chain dehydrogenase/reductase (SDR); TlxH, non-heme PKS; TlxACIJ, four 𝛼- KG dependent non-heme iron oxygenase. 

10
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Fig. 9. Biosynthetic gene cluster (a) and assembly pathway of shimalactones A and B (b). ShmA, highly reducing iterative type I polyketide synthase (HR-PKS); ShmB, 

Flavin adenine dinucleotide (FAD)-dependent monooxygenase. ShmC, transporter; ShmD, iron-sulfur protein; ShmE, transcription factor; ShmF, FAD oxidoreductase; 

ShmG, integral membrane protein. 
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ified by the sequential transfer tlxHEDFG into A. oryzae NSAR1. Gene

nockouts in the original strain revealed two pairs of heterodimeric NHI

nzymes (TlxJ-TlxI and TlxA-TlxC) [132] . Expression of tlxACIJ in the

rokaryotic host E. coli and in vitro biochemical analysis of recombinant

roteins further confirmed that each monomer possesses specificity for

eterodimer formation. 

.2.4. Phomoxanthones 

Phomoxanthones A and B were discovered by Isaka et al. ( Fig. 7 )

n the terrestrial fungus Phomopsis sp. BCC 1323 and revealed anti-

alarial and antitubercular activities [133] . Strong antibacterial, an-

ifungal, and antineoplastic activities were later found for phomoxan-

hone A [ 134 , 135 ]. The BGC of phomoxanthones ( pho ) was identified

nd validated in the genome of the marine filamentous fungus Dian-

orthe sp. SYSU-MS4722 [ 136 , 137 ]. Owing to the low efficiency of gene

diting in the original strain, the pho gene cluster was transferred to the

eterologous host Aspergillus oryzae NSAR1, resulting in the production

f penexanthone B and phomoxanthones. The biosynthetic mechanism

f phomoxanthones was elucidated using gene knockout and metabolic

nalyses in Aspergillus . 

.2.5. Shimalactone 

Wei et al. discovered shimalactone A, a novel neurogenic polyketone

ompound from the marine fungus Emericella variecolor GF10 [138] . Fu-

ii et al. identified the BGC of shimalactone ( shm ) and elucidated its

iosynthetic mechanism by expressing the shm gene cluster in A. oryzae

nd Saccharomyces cerevisiae ( Fig. 9 ). Expression of the polyketide syn-

hase gene shmA in A. oryzae M-2-3 generated a new compound, preshi-

alactone [139] . Subsequent gene transfer revealed that both shmA and
11
hmB are necessary for the generation of shimalactone A and shmDFG

id not affect the production of shimalactones, indicating that oxadia-

yclization and 8 𝜋-6 𝜋 electrocyclization were conducted spontaneously

fter the ring opening of preshimalactone epoxide without enzyme catal-

sis. 

.2.6. Spiromaterpenes 

Guaiacane-type sesquiterpenes contain a 5/7 fusion ring skeleton

ith two methyl groups and an isopropyl group and are widely present

n medicinal plants and marine organisms. They have been observed

o exhibit excellent antitumor and anti-ulcer effects [140–142] . Dur-

ng the production of spirotarpenes by the difficult-to-cultivate marine

ungus Spiromastix sp., Liu et al. identified two sesquiterpene synthases

SptA and SptB) that may be involved in the synthesis of the cyclohep-

adionene [143] . The co-expression of SptA and SptB in Saccharomyces

erevisiae and Aspergillus nidulans LO8030 successfully generated spiro-

aterpene A ( Fig. 7 ). 

. Conclusion 

Marine microbial natural products have been recognized as impor-

ant sources of lead compounds for drug discovery. In marine microor-

anisms, many structurally and functionally unique compounds have

een discovered, such as marine actinomycetes, fungi, cyanobacteria,

nd symbiotic bacteria. Heterologous expression plays an important role

n the exploration and biosynthesis of marine natural products, provid-

ng a new method for large-scale production of valuable marine natural

roducts. However, multiple limitations must be overcome for the het-

rologous expression of marine natural product biosynthetic pathways.
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irst, a suitable heterologous chassis is crucial for successful expres-

ion of gene clusters. Compared with the diverse heterologous platforms

sed for the expression of BGCs originating from terrestrial microor-

anisms, efficient heterologous hosts for marine biosynthetic pathways

re relatively rare. Metagenomic analyses have uncovered a large num-

er of BGCs in marine environments [ 144 , 145 ]. With the development

f bioinformatics and synthetic biology technologies, the acquisition of

olid BGC is no longer the main obstacle for genome-guided exploitation

f marine microbial natural products. The screening and development of

 versatile chassis suitable for the production of marine natural products

re considerably important. Second, cutting-edge gene editing tools, eg.

he CRISPR-Cas system, has been applied for the genetic modification of

arine microbial genomes; however, the editing efficiency is consider-

bly low, and most marine microorganisms remain genetically inacces-

ible. DNA transfer and genetic manipulation of marine microorganisms

argely rely on conjugal transfer and homologous recombination, which

estrict the genetic modification of marine microorganisms. Therefore,

he development of efficient genetic systems for marine microbes is rec-

mmended in further research. Further investigations are also necessary

o elucidate gene regulatory networks in marine microorganisms. In a

pecial marine environment, marine microorganisms have most likely

volved gene regulatory mechanisms that differ from those of terres-

rial microbes. Understanding the mode of BGC-related gene regulation

ill contribute to the activation of marine-derived BGC in situ and in het-

rologous hosts. A reasonable prediction is that heterologous expression

trategies will play an important role in the exploration of additional

arine natural products. 
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