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ABSTRACT
Health warning labels have been found to increase awareness of the
harmful effects of tobacco products. An eye tracking study was con-
ducted to determine the optimal placement and type of a health
warning label on tobacco waterpipes. Participants viewed images
that contained one of (1) four waterpipes, (2) three different types
of warning labels, (3) placed in three locations. Typically, statistical
analysis of eye tracking data is conducted based on summary statis-
tics such as total dwell time, duration score, and number of visits to
an area of interest. However, these summary statistics fail to capture
the complete variability in a participant’s eyemovement. Instead, we
propose to estimate heat maps defined on the entire image domain
using the raw two-dimensional coordinatesof eyemovement via ker-
nel density estimation. For statistical analysis of heatmaps, we adopt
the Fisher–Rao Riemannian geometric framework, which enables
computationally efficient comparisons of heat maps, statistical sum-
marization and exploration of variability in a sample of heat maps,
andmetric-based hierarchical clustering.We apply this framework to
eye tracking data from the tobacco waterpipe study and comment
on the results in the context of the optimal placement and type of
health warning labels on tobacco waterpipes.
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1. Introduction

Exposure to misleading tobacco packaging and pro-tobacco advertising can lead to mis-
information and misperception about potential health risks associated with the use of
tobacco products [3,11,29,31]. Health warning labels on packaging and in advertisements
can help increase awareness of the harmful effects of these products [13,14]. However, the
particular placement and type of warning label can generate vastly different responses from
a tobacco user. Eye tracking studies, wherein a participant is presented with an image (or
video) and measurements of their eye movements are recorded, have become an effective
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tool in assessing the variability associated with people’s attentiveness to different place-
ments and types of warning labels on tobacco products shown in the image. In particular,
eye tracking studies have been used to avoid the issue of recall error, e.g. of survey-based
studies, since they record directmeasures of attention [19,48]. In the context of tobacco reg-
ulation, current statistical approaches for assessing attention in eye tracking studies have
primarily focused on crude summaries generated from the eye tracker such as the num-
ber of saccades (rapid movement between fixation points), total fixation times, and total
number of fixations in an area of interest (AOI) in an image [5,21,25–27,33,45,47]. Fixa-
tion points are calculated using eye movement event-detection algorithms from raw x and
y eye coordinates; see [2] for an evaluation and discussion of various eye movement event-
detection algorithms. Henceforth, we refer to raw x and y eye coordinates, i.e. the raw eye
tracking data without saccades, simply as raw eye coordinates.

A qualitative way to analyze attention is by using a heat map, which is a richer repre-
sentation of eye tracking data and is used to represent the full behavior of a person’s eye
movement across an image domain [42]. A common way of producing a heat map is from
a fixation map, which is an ordered set of fixation points, sized according to the viewing
duration, that are connected by lines that represent saccades. In other words, a fixationmap
represents the full ordered trajectory of a person’s eye movement, while its corresponding
heat map generally ignores the ordering of fixation points. Thus a heat map can be viewed
as a summary of a fixation map. Amajor benefit of the heat map representation, compared
to a fixation map, is its ability to better separate different levels of observation intensity,
by using color mappings or varying transparency levels. Due to proprietary restrictions,
specifications for the eye movement event-detection algorithms are not always provided,
making results difficult to reproduce [30]. Beyond eye tracking, heat maps have been used
in various imaging applications including robot navigation [34], transport geography [49],
group activity recognition [23], predictions of thermal comfort [10], biopsy [12], and fire
risk analysis [24]. However, each application utilizes its own definition of a heat map. As
mentioned earlier, heat maps are most commonly used for qualitative assessment of the
data with a primary role in data visualization.

In this work, we seek a definition of a heat map that can be estimated from raw eye
coordinates and that is amenable to quantitative statistical analysis. We derive heat maps
via kernel density estimation (KDE) applied to raw eye coordinates. The proposed heat
map representation eliminates the need to calculate fixations and consequently avoids the
use of eye movement event-detection algorithms. In our implementation of KDE, we use a
product of two support constrained Gaussian kernels as the smoothing function, and Sil-
verman’s rule with a robust estimate for the standard deviation to select the optimal value
of the bandwidth parameter [20,39,41]. Variousmethods have been proposed to determine
the optimal bandwidth size, with plug-in selectors, cross-validation selectors, and normal
optimal smoothers proving very useful for a wide range of data sets [6,7,15,35,40,41]. Our
choice of Silverman’s rule for the smoothing bandwidth parameter was determined based
on the sparsity of the data and primary interest in smooth estimated heat maps to repre-
sent a qualitative measure of participants’ overall attention patterns. Thus our definition of
a heat map is a nonparametric, bivariate probability density function (pdf) over the image
domain. For statistical analysis of heat maps, we use a Riemannian geometric framework
based on the nonparametric Fisher–Rao metric, which has shown promise in multiple
application domains [22,28,32,36,37,44]. As seen later, this framework allows us to (1)
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compare heat maps via a formal geodesic distance on the space of pdfs, (2) summarize
a sample of heat maps using their mean and principal component analysis-based direc-
tions of variability, and (3) cluster heat maps according to their similarity. For each of the
tasks, we additionally provide effective visualizations of the generated quantitative results.
The proposed framework is applied to eye tracking data from a study that considered an
optimal placement of health warning labels on various types of waterpipes (also commonly
referred to as hookah pipes) [21].

The rest of this paper is organized as follows. Section 2 describes the Fisher–Rao
Riemannian-geometric framework for statistical analysis of heat maps. Section 3 describes
the waterpipe eye tracking study and associated data that motivates our analysis. Section 4
applies the presentedmethodology to analyze the effectiveness of different placements and
types of health warning labels for four waterpipes. Section 5 contains a brief discussion and
directions for future work.

2. Statistical analysis framework for heat maps

Our representation of a heat map as a nonparametric, bivariate pdf allows us to exploit
an existing metric-based statistical framework for analyzing pdfs. In particular, we use the
Riemannian-geometric approach based on the Fisher–Rao metric. Details of this frame-
work for univariate pdfs are provided in [43,44]. Here, our focus lies in specifying this
framework for bivariate pdfs.

Each heatmap is a pdf with domain corresponding to the image domain.Without loss of
generality, we rescale the domain of each image to [0, 1]2, resulting in a representation space
of heat maps given byF = {f : [0, 1]2 → R>0 | ∫ 1

0
∫ 1
0 f (x, y) dx dy = 1}. A natural metric

structure on F is given by the Fisher–Rao (FR) Riemannian metric. Loosely speaking, a
Riemannian metric onF is a family of smoothly varying inner products on tangent spaces
ofF . Thus, to define the FRmetric, we first define the tangent space toF at a heat map f ∈
F as Tf (F) = {δf : [0, 1]2 → R | ∫ 1

0
∫ 1
0 δf (x, y) dx dy = 0}; intuitively, the tangent space

contains all possible perturbations of the heatmap f. Then, for two tangent vectors δf1, δf2 ∈
Tf (F), the FR Riemannian metric is defined as

〈〈δf1, δf2〉〉f =
∫ 1

0

∫ 1

0
δf1(x, y)δf2(x, y)

1
f (x, y)

dx dy. (1)

Importantly, the FR Riemannian metric (and associated geodesic distance) is invariant to
smooth, one-to-one transformations of pdfs [8]. But, as clearly seen in Equation (1), the
metric changes for every point f ∈ F , making computation of geodesic paths and distances
under this metric a difficult task; one has to resort to numerical algorithms, which tend to
be computationally inefficient in practice.

However, as shown by Bhattacharya [4], a simple square-root transformation simplifies
the complicated FR Riemannian metric to the standard L

2 metric, and maps the space of
heat mapsF to the positive orthant of the Hilbert sphere. Define the mapping φ : F → �

as φ(f ) = +√f := ψ . Henceforth, we refer to ψ as the square-root density (SRD) of the
heat map f. The inverse mapping φ−1 : � → F is simply given by φ−1(ψ) = ψ2 = f .
The representation space of SRDs is � = {ψ : [0, 1]2 → R>0 | ∫ 1

0
∫ 1
0 ψ

2(x, y) dx dy =
1}. The tangent space to � at a point ψ ∈ � is given by Tψ(�) = {δψ : [0, 1]2 →
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R| ∫ 1
0
∫ 1
0 δψ(x, y)ψ(x, y) dx dy = 0}. One can show that, under the SRD representation,

the FR Riemannian metric on F , given in Equation (1), simplifies to the standard L
2

Riemannian metric on � , i.e. for two tangent vectors δψ1, δψ2 ∈ Tψ(�), 〈δψ1, δψ2〉 =∫ 1
0
∫ 1
0 δψ1(x, y)δψ2(x, y) dx dy. Note that this metric remains unchanged as one tra-

verses tangent spaces defined at different ψ ∈ � . Further, since
∫ 1
0
∫ 1
0 f (x, y) dx dy =∫ 1

0
∫ 1
0 ψ

2(x, y) dx dy = ‖ψ‖2 = 1 (‖ · ‖ denotes the L
2 norm) and ψ(x, y) > 0 ∀ (x, y) ∈

[0, 1]2, � is the positive orthant of the unit sphere in L
2. The geometry of the sphere

under the L
2 metric is well known, resulting in analytical expressions for the geodesic

path and distance. This, in turn, results in efficient computation on � , and coupled with
the inverse mapping φ−1, can be exploited to define various statistical analysis tasks for
heat maps computed from raw eye coordinates. Further, geodesic paths can be used for
effective visualization of heat map deformations.

The FR distance between two heatmaps, f1, f2 ∈ F , is defined using their corresponding
SRDs, φ(f1) = ψ1,φ(f2) = ψ2 ∈ � , as the length of the great circle path connecting them
on� :

dFR(f1, f2) = dL2(ψ1,ψ2) = cos−1(〈ψ1,ψ2〉) = θ , (2)

where 〈ψ1,ψ2〉 = ∫ 1
0
∫ 1
0 ψ1(x, y)ψ2(x, y)dxdy. The corresponding geodesic path is given

by

α(t) = 1
sin(θ)

(sin(θ(1 − t))ψ1 + sin(θ t)ψ2). (3)

Based on this framework, the geodesic distance provides a quantitative measure of differ-
ences between heat maps, while the geodesic path provides a qualitative visual assessment
of the corresponding deformation. Importantly, both are easy to compute.

Using the distance in Equation (2), we define a sample mean on � . Let f1, . . . , fn ∈ F
denote a sample of heat maps and ψ1, . . . ,ψn ∈ � their SRDs. The sample Karcher mean
of ψ1, . . . ,ψn is given by

ψ̄ = argmin
ψ∈�

n∑
i=1

dL2(ψ ,ψi)
2, (4)

i.e. ψ̄ ∈ � minimizes the sum of squared pairwise distances from each datum in the
sample. Further, the Karcher variance of ψ1, . . . ,ψn is given by

ρ(ψ̄) = 1
n

n∑
i=1

dL2(ψ̄ ,ψi)
2. (5)

To compute the solution to the optimization problem in Equation (4) via a gradient descent
algorithm, we require two additional tools from differential geometry: the exponential
and inverse-exponential maps. The exponential map, exp : Tψ(�) → � , maps points
from the tangent space at a point ψ to the representation space � , and is defined as (for



JOURNAL OF APPLIED STATISTICS 1195

ψ ∈ � , δψ ∈ Tψ(�))

expψ(δψ) = cos(‖δψ‖)ψ + sin(‖δψ‖) δψ‖δψ‖ . (6)

Conversely, the inverse-exponential map (also commonly referred to as the log map),
exp−1

ψ1
: � → Tψ1(�), maps points from � to the tangent space at a point ψ1, and is

defined as (for ψ1,ψ2 ∈ �)

exp−1
ψ1
(ψ2) = θ

sin(θ)
(ψ2 − cos(θ)ψ1), θ = dL2(ψ1,ψ2) = cos−1(〈ψ1,ψ2〉). (7)

Briefly, the gradient descent algorithm to compute theKarchermean proceeds as follows.

(i) Initialize with a point ψ̄0 ∈ � and set iteration counter k = 0.
(ii) Project ψ1, . . . ,ψn to Tψ̄k(�) using the inverse-exponential map (Equation 7),

resulting in tangent vectors exp−1
ψ̄k (ψ1) = δψ1, . . . , exp−1

ψ̄k (ψn) = δψn.

(iii) Compute the sample average of δψ1, . . . , δψn, ¯δψ = 1
n
∑n

i=1 δψi.
(iv) Update the current sample mean using the exponential map (Equation 6), resulting

in ψ̄k+1 = expψ̄k(ε ¯δψ), where ε > 0 is a small step size.
(v) Check for convergence, and if not converged, return to step (ii) and set k = k+ 1.

Variability among a sample of SRDs ψ1, . . . ,ψn, representing heat maps f1, . . . , fn, can
be studied via principal component analysis (PCA) in the tangent space at the estimated
Karcher mean. In particular, it involves the following steps.

(i) Compute ψ̄ , the Karcher mean of ψ1, . . . ,ψn (solve optimization problem in
Equation 4).

(ii) For i = 1, . . . , n, compute δψi = exp−1
ψ̄
(ψi) using the inverse-exponential map

(Equation 7). In practice, each ψi and the corresponding δψi are sampled using a
grid of N × N points on [0, 1]2.

(iii) For i = 1, . . . , n, vectorize δψi ∈ R
N×N resulting in ˜δψ i ∈ R

N2
.

(iv) Compute the N2 × N2 sample covariance matrix given by K = 1
n−1

∑n
i=1

˜δψ i ˜δψ�
i .

(v) Perform singular value decomposition (SVD): K = U
U�. The resulting diagonal
matrix
 contains the ordered principal component variances, while columns of the
orthogonal matrix U are the principal modes of variation in the data.

To visualize a particularmode of variation, we first reshape the corresponding columnof
U (of size N2 × 1) into an N × N matrix, denoted by ũ, approximating the corresponding
functional object in the tangent space Tψ̄ (�). We then apply the exponential map and the
inverse mapping φ−1. For example, to visualize the first principal mode of variation, we
compute and display the path

ft = φ−1(expψ̄ (t
√

11ũ1)), t = −0.1,−0.05, 0, 0.05, 0.1, (8)

where 
11 denotes the first diagonal entry of 
 and ũ1 is the first mode of variation; the
path then captures heat maps that are −0.1,−0.05, 0, 0.05, 0.1 standard deviations from
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the mean in the direction specified by ũ1. We only visualize these paths locally since the
representation space of SRDs of heat maps, � , is constrained and the dimensionality of ũ
is very large, e.g. N2 = 10, 000 if we sample the domain [0, 1]2 using a 100 × 100 grid.

To summarize, the Riemannian-geometric framework based on the FRmetric provides
tools for (1) comparison of heat maps via the geodesic distance, (2) summarization of a
sample of heat maps via the Karcher mean, and (3) assessment of variability in a sample of
heat maps via principal component analysis in the tangent space at the Karcher mean. The
geodesic distance can also be used for other statistical tasks such as hierarchical clustering
of heat maps.

3. Description of the waterpipe eye tracking study and associated data

Waterpipe tobacco smoking has become more socially acceptable among young adults
in the USA, and over 40% of adults ages 18–24 years have tried waterpipe smoking
[9,18,38,46]. Young adults primarily smoke in a social setting such as hookah cafes and
rarely see the health warning label that comes with the tobacco pack [1,18]. Klein et al. per-
formed an eye tracking study to find the optimal placement of a graphic warning label for
hookah pipes by applying standard total fixation time comparisons [21]. The study assessed
three warning labels: a lung image with a text warning (lung+text), a mouth image with a
text warning (mouth+text), and a text warning only (text). The warning read, ‘WARN-
ING:Hookah smoke contains poisons that can cause mouth and lung cancer.’ The top panel
in Figure 1 displays the three types of warning labels. This warning message was different
than the text-only FDA-approved message (‘Warning: This product contains nicotine. Nico-
tine is an addictive chemical.’), because the FDA-approved message was not perceived to
be effective among a convenience sample of young adults [21].

The following waterpipe eye tracking study recruitment information is given in [21]
with further details. Themajority of study participants were recruited fromTheOhio State
University and surrounding areas through social media advertisements, flyers, and word-
of-mouth. Only young adults between the ages of 18 and 29 who had previously smoked
a waterpipe and did not have any eye conditions that could hinder the recording of eye
tracking data, e.g. glaucoma, macular degeneration, cataracts, eye implants, permanently
dilated pupils, inability to see out of both eyes, were eligible to participate in the single
session in-person eye tracking study. Table 1 provides a summary of demographics for
the participants in the study. The participants consisted of roughly the same proportion
of males (48.7%) and females (51.3%), and were primarily White Americans with lower-
middle class and middle class socioeconomic status.

Images presented to the study participants consisted of high-quality photos of four
waterpipes with the health warning labels placed in three different, standardized locations:
water bowl, stem and hose. The images of the four waterpipes and the three warning label
placements are shown in themiddle and bottom panels of Figure 1, respectively. Study par-
ticipants were seated between 24 and 32 inches from a monitor equipped with an infrared
camera of the eye tracking system. Experiment Suite software (SensoMotoric Instruments,
120Hz REDm System) was used to display the images and capture the eye movement data.
Each participant viewed 72waterpipe images: three warning labels (text+lung, text+mouth
and text) × four waterpipes × three placements of the warning label × two image types
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Figure 1. Top: Three types of warning labels used in the waterpipe eye tracking study (lung+text,
mouth+text, text-only).Middle: Cropped images ofwaterpipes 1-4 (left to right). Bottom: Three locations
of the warning label shown on pipe 1 (stem, hose, and water bowl).

Table 1. Summary of demographics for
study participants (n = 74).

n %

Gender
Female 36 48.7
Male 38 51.3
Race
White 42 56.8
African American 18 24.3
Other 14 18.9
Country of Birth
US 65 87.8
Non-US 9 12.2
Socioeconomic Status
Working/Lower-Middle Class 17 23.0
Middle Class 44 59.5
Upper Class 9 12.1
Don’t Know/Other 4 5.4
Age
18-20 20 27.0
21-23 42 56.8
24-29 12 16.2

(full and cropped image). Each waterpipe image was viewed for five seconds to standardize
total viewing time, and the order of the images was randomized.

Previous studies have shown that overall awareness of warning labels increases with the
size of the label and presence of graphics [16,17]. Readability is also improved as the size of
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the warning label increases. Thus, our analysis focuses on eye tracking data corresponding
to the cropped images, since the warning labels appear larger in these images.

3.1. Kernel density estimation of heatmaps

To estimate smooth heat maps based on the raw eye coordinates, we use a
standard product Gaussian kernel density estimator of the form f̂(h1,h2)(x1, x2) =

1
nh1h2

∑n
i=1 K(

x1−xi1
h1 )K( x2−xi2

h2 ), where x1 and x2 denote the image coordinates, n is the
total number of raw eye coordinate points, K is a standard normal kernel, and h1 and h2
are the bandwidths for the x1 and x2 coordinates, respectively. Since eye coordinates were
recorded on a restricted (image) domain, we modify this estimator by using the reflec-
tion boundary correction method to obtain a proper density with bounded support on the
image domain via

f̂(h1,h2)(x1, x2) =
n∑

i=1

2∏
j=1

[
K

(
xj − x−

ij

hj

)
+ K

(
xj − xij

hj

)
+ K

(
xi − x+

ij

hj

)]
, (9)

whereLj ≤ xj ≤ Uj, x−
ij = 2Lj − xij, x+

ij = 2Uj − xij andLj, Uj, j = 1, 2 represent the lower
and upper bounds of the image domain for each dimension, respectively [39]. The vast
majority of participants’ data did not lie too close to the boundaries of the image support,
and we found that the reflection method used for boundary correction had little to no
impact on the heat map estimates.

To select the bandwidths (h1, h2), we use Silverman’s rule with a robust estimate
of the standard deviation [20,41]. Silverman’s rule is given by hj = σj(

1
n )

1/6, j = 1, 2,
andminimizes themean integrated squared errorMISE((h1, h2)) = E[

∫ ∫
(f̂h1,h2(x1, x2)−

f (x1, x2))2 dx1 dx2] when the underlying density being estimated, f, is Gaussian. Fur-
thermore, to accommodate for long tailed distributions and possible outliers, we use
the median absolute deviation estimator for σj, j = 1, 2 given by σ̃j = median(|xij −
μ̃j|)/0.6745, j = 1, 2, where μ̃j, j = 1, 2 is themedian of the sample of raw eye coordinates
[20].

Furthermore, we compared Silverman’s rule with the robust standard deviation estimate
for bandwidth selection to the Improved Sheather–Jones method, which has the following
desirable features: (i) it optimizes the mean integrated squared error without using a nor-
mal reference rule, (ii) it fixes boundary problems, using a method similar to the reflection
method, to accurately estimate a density on a bounded support, and (iii) it has been shown
to perform better for multimodal data [6]. However, as seen in Figure 2, we found that due
to the sparsity of the data in our study, the Improved Sheather–Jones method selected very
small bandwidths and resulted in overfitting; this drawback was previously pointed out in
[6].

To summarize, Figure 3 presents the full analysis pipeline of the proposed approach.
We begin with images of raw eye coordinates (yellow points in left column) for each par-
ticipant, and apply KDE as described in this section to generate a pdf-based heat map for
each image (middle column). The heat maps are then used for statistical summarization
and distance-based clustering (right column).



JOURNAL OF APPLIED STATISTICS 1199

Figure 2. Each row compares the kernel density estimate for a different participant. Column 1: Pipe
1 image with lung+text label on water bowl. Column 2: Raw eye coordinates overlaid on the pipe
image. Column 3: Kernel density estimate of heat map using Silverman’s rule with robust stan-
dard deviation estimate for bandwidth selection. The bandwidth values from top to bottom are
{(0.0114, 0.0340), (0.0126, 0.0092), (0.0146, 0.0144)}. Column 4: Kernel density estimate using the
Improved Sheather-Jones method for bandwidth selection. The bandwidth values from top to bottom
are {(0.0039, 0.0045), (0.0026, 0.0031), (0.0048, 0.0048)}.

4. Statistical analysis of heat maps fromwaterpipe study

We apply the methodology described in Section 2 to investigate the effects of placement
and type of health warning label on waterpipes, based on heat maps estimated from raw
eye coordinates. As mentioned before, we consider eye tracking data corresponding to
cropped images of four different waterpipes (middle row in Figure 1). For each water-
pipe, there are three different placements of the label, water bowl, hose and stem, and
three different types of warning label, lung+text, mouth+text and text, for a total of 36
waterpipe images for each participant. For each waterpipe image viewed by the partici-
pants, the eye tracker recorded the x1 and x2 coordinates of their eye movement during
viewing time on a [0, 1280] × [0, 1024] image domain. Due to issues with the eye track-
ing device, we deleted outlier coordinates for some of the images prior to estimation of
the heat maps; outliers were defined as any points that fell outside of the image domain
or that had missing x1 or x2 coordinates. Out of the 74 participants enrolled in the study,
66 had reliable eye tracking data for each image after removal of outliers. All eye coordi-
nates were mapped to the domain [0, 1]2, and we applied KDE, as described in Section 3.1,
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Figure 3. We start with images of the raw eye coordinates (yellow points in the left column) for each
participant and apply kernel density estimation to generate a pdf-based heat map representation of the
data (middle column). The heat maps are then used for statistical summarization and analysis (right col-
umn): (1) sample averaging (top), (2) summarization of variability through principal component analysis
(middle), and (3) distance-based hierarchical clustering (bottom).

Figure 4. Left: Pipe 1 image with lung+text label on the water bowl. Middle: Eye coordinates recorded
for a participant viewing the image of waterpipe 1 with the lung+text label placed on the water bowl.
Right: Corresponding heat map overlaid on top of the waterpipe image.

on a 100 × 100 grid to obtain heat maps for each participant and waterpipe image. The
middle panel in Figure 4 displays the raw eye coordinates recorded for one participant
when viewing waterpipe 1 with a lung+text label placed on the water bowl; the right panel
displays the corresponding heat map. For improved visualization, when displaying a heat
map on top of the corresponding waterpipe image, we do not show values that are close
to 0.
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4.1. Quantitative/qualitative comparison of heatmaps via geodesic distance/ path

We first present two examples of comparisons of heat maps via the FR geodesic distance
and path. Since the geodesic distance is the length of the geodesic path, these results enable
us to assess the types of deformations between heat maps that are captured by the distance.
The second and third rows in Figure 5 display two geodesic paths between heatmaps. In the
second row, we compare heat maps for two different participants viewing waterpipe 1 with
the lung+text label; the label was placed on the water bowl in the leftmost image and on
the stem in the rightmost image. In the third row, we compare heat maps for two different
participants viewingwaterpipe 2with the lung+text label placed on thewater bowl. The two
geodesic paths represent natural deformations between heat maps and allow us to visually
interpret the associated geodesic distances, which are 1.28 and 1.05 for the second and third
rows, respectively. Further, we discover something interesting in the geodesic presented in
the third row. Although the two participants are viewing the same exact image, they tend to
focus on different features of the waterpipe. The second participant (rightmost heat map in
the geodesic path) directs most of their attention to the warning label located on the water
bowl. On the other hand, the first participant directs some of their attention to the warning
label, but also fixates on the shiny stem, which is a prominent feature of this waterpipe. This

Figure 5. (a) Waterpipe 1 with lung+text label on water bowl. (b) Waterpipe 1 with lung+text label on
stem. (c) Waterpipe 2 with lung+text label on waterbowl. (d) Geodesic path between heat maps for a
participant viewing image in (a) (start of path) and image in (b) (end of path). (e) Geodesic path between
heat maps for two participants viewing image in (c) (same for start and end of path). The associated FR
geodesic distances are 1.28 for (d) and 1.05 for (e).
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represents natural variability in eye tracking data, where different features of the image,
e.g. warning label, shiny stem, elaborate hose, etc., may capture some or the majority of a
participant’s attention during viewing time. This also highlights the challenges associated
with determining the optimal placement and type of warning label on waterpipes.

4.2. Hierarchical clustering of heatmaps

To assess the effectiveness of the FR distance in capturing variability and discriminating
across different placements of thewarning labels on the fourwaterpipes, we implement and
assess results of hierarchical clustering. For each waterpipe and type of label, we compute
the 198 × 198 pairwise distance matrix (66 participants ×3 different label placements).
Using each distance matrix, we perform hierarchical clustering with complete linkage; we
set the desired number of clusters to 3. In Table 2, we report the resulting rand indices
for each waterpipe and type of label, with the three label placements serving as a ground
truth partition of the heat maps; best performance is italicized for each waterpipe. The
rand index takes values between 0 and 1 (with 1 indicating perfect agreement) and is used
to assess clustering performance. The proposed FR distance is effective in discriminat-
ing across heat maps based on different label placements. In particular, the warning labels
with lung/mouth images produce the best clustering results, indicating that they are more
effective at capturing the participants’ attention than the text label.

To visualize the ground truth partitions and the hierarchical clustering results, we apply
multidimensional scaling (MDS) to the distance matrices, focusing on the mouth+text
label. Briefly, MDS allows us to visualize the similarity across heat maps, as well as their
cluster-based grouping, in a low dimensional Euclidean space. The top row of Figure 6 dis-
plays the heat map data of the participants after MDS, for waterpipes 1–4 (left to right),
with colors indicating the placement of the warning label (water bowl=blue, hose=green
and stem=red). The points are well-separated based on the three placements. In the bot-
tom row of Figure 6, we display the same sets of points, but color them according to the
partitions produced via hierarchical clustering. The three estimated clusters are more dis-
tinguishable for waterpipes 2–4. Similar patterns can be observed in the MDS plots for the
lung+text and text labels, which are presented in Section 1 of the SupplementaryMaterials.

4.3. Sample averaging of heatmaps

Next, we summarize the overall attention of the participants as they viewed images of each
of the four waterpipes by computing the sample Karcher mean, given in Equation (4), of
the corresponding heat maps. Figure 7 displays 12 Karcher means with different waterpipe
images along the bottom three rows (pipes 1–4 from left to right) and different warning

Table 2. Rand indices to assessheatmaphierarchical
clustering performance based on the FR distance.

Waterpipe Lung+Text Mouth+Text Text

1 0.639 0.505 0.512
2 0.666 0.567 0.613
3 0.586 0.663 0.494
4 0.641 0.658 0.627
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Figure 6. Heat map data after MDS, for waterpipes 1–4 (left to right), colored according to the place-
ment (water bowl=blue, hose=green, stem=red) of the mouth+text label (top row), and the partitions
estimated via hierarchical clustering (bottom row).

label placements along the columns (water bowl, hose and stem from top to bottom). We
only focus on the mouth+text warning label here and note that the results are similar for
the lung+text and text labels (see Section 2 of the Supplementary Materials). The sample
size for each Karcher mean computation is n = 66 corresponding to the 66 participants.
Although there is considerable variation in the heat maps across participants, the esti-
mated sample means tend to show a high level of consistency across the waterpipes and
label placement. In particular, on average, attention is heavily focused on the warning label.
However, participants also direct significant attention to prominent features of the water-
pipes, especially if the warning label is placed near these features. For example, waterpipe 4
appears the most unique, and attention is drawn toward the center of the waterpipe where
the hose connects to the stem, irrespective of where the label is placed. For waterpipes 1–3,
participants tend to focus on the shiny stems in addition to the label.

4.4. Assessment of variability among heatmaps

In the previous section, we used the Karcher mean to visualize and assess overall attention
while study participants viewed different waterpipe images. The Karcher mean is defined
as the minimizer of the Karcher variance. Thus, in Table 3, we report the Karcher vari-
ances of the heat map samples, computed using Equation (5), for each label placement and
type for the four different waterpipes. For each combination of label type and waterpipe,
we italicized the placement of the label that results in the lowest variance. Interestingly,
for waterpipe 4, the stem placement of the label always results in the lowest variance, irre-
spective of the type of label, indicating that this may be the most effective location for a
warning label on this waterpipe to capture the participants’ attention. For waterpipe 1, the
stem also appears to be the most effective label location. This is intuitive since the stem is
a prominent feature of this waterpipe. For waterpipe 2, with the lung+text and text labels,
it appears that the hose placement is most effective. Again, the hose appears to be the most
interesting part of this waterpipe. For waterpipe 3, with the mouth+text and text labels, it
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Figure 7. Karcher means of participants’ heat maps for pipe images withmouth+text label. Waterpipes
1–4 are shown along the rows from left to right, respectively. Starting from the second row, the label
placements are shown along the columns with the water bowl, hose and stem from top to bottom,
respectively.

appears that the stem placement is most effective. Overall, effectiveness of warning label
placement heavily depends on the type of waterpipe under consideration.

Finally, Figure 8 provides a visual assessment of the first principal mode of variability in
the heat map data for three different cases: (i) waterpipe 2, text label, water bowl placement
(top row), (ii) waterpipe 3, text label, stem placement (middle row), and (iii) waterpipe 4,
mouth+text label, stem placement (bottom row). The displayed paths were generated using
Equation (8). In case (i), we see a deviation of attention from the label on the water bowl to
the intricate stem of the waterpipe, i.e. the mode captures vertical eye movement. In case
(ii), there is deviation of attention from the warning label (placed at the stem) to the rest
of the stem and part of the water bowl; this mode also reflects variation in how attention
is directed at the label as evidenced by the changing shape of the yellow region. Finally, in
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Table 3. Karcher variances of heat maps for waterpipes 1–4, with different warning label placements
and types.

Lung+Text Mouth+Text Text

Waterpipe Base Hose Stem Base Hose Stem Base Hose Stem

1 0.793 0.925 0.731 0.822 0.769 0.771 0.730 0.831 0.658
2 0.868 0.700 0.711 0.773 0.820 0.711 0.833 0.707 0.733
3 0.839 0.659 0.725 0.846 0.811 0.737 0.771 0.743 0.606
4 0.789 0.672 0.662 0.797 0.831 0.674 0.774 0.734 0.647

Figure 8. First principal mode of variation for three cases: (i) waterpipe 2, text, water bowl (top), (ii)
waterpipe 3, text, stem (middle), and (iii) waterpipe 4, mouth+text, stem (bottom).

case (iii), there is a shift in attention from the stem and water bowl to the label (placed at
the stem). Overall, these modes of variation represent natural variability in the heat map
data. The secondmodes of variability for the same three cases are presented in Section 3 of
the Supplementary Materials, and tend to capture residual variability that directs attention
to the stem of the different waterpipes.

5. Discussion and future work

We use a Riemannian-geometric framework based on the Fisher–Rao metric for statistical
analysis of heat maps, which until recently have been primarily used as a qualitative mea-
sure. We apply this method to eye tracking data obtained from a waterpipe tobacco study
that endeavored to find the optimal placement of health warning labels on hookah pipes.
We computed averages of heat maps, studied variability via principal component analy-
sis, and used the FR distance for hierarchical clustering to quantify the attention of study
participants to different features of the waterpipe images.

In general, determining the optimal placement and type of warning label on tobacco
waterpipes, based on eye tracking data, is a very difficult problem. Heat maps estimated
from eye tracking data usually exhibit large amounts of complex variability that depends on
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the prominent features of the pipe under consideration.However, our analysis reveals some
consistent, intuitive patterns across the four waterpipes. First, the hierarchical clustering
results show better separation, as determined by higher rand indices, between partitions
corresponding to different label placements, when the warning label includes a graphic, i.e.
lung+text ormouth+text. Thismay indicate that thewarning labelswhich include a graphic
in addition to text are better at capturing and holding participants’ attention than the text
only label. This finding complements results seen in previous studies, where awareness
to warning labels increased in the presence of a graphic. Additionally, it highlights the
capability of the FR metric to capture meaningful differences between heat maps. Second,
our analysis reveals that the majority of participants’ attention is devoted to prominent
features of the waterpipes, i.e. the stem and hose. Across all four waterpipes and three types
of label, we find that these two placements result in lowest overall variability among the
heat maps. This suggests that these two locations may be more effective as warning label
placements than the water bowl. We note that these findings are based on fixed waterpipe
images and further studies are needed to corroborate these results when the waterpipes
appear in videos.

Twonatural extensions of the proposed framework are to consider (1) hypothesis testing
and (2) regression models with heat maps serving as predictors and/or responses; these
developments are complicated by the nonlinear representation space of heat maps. While
our analysis considered fixed images of waterpipes, there is great interest in eye tracking
data collected during viewing of videos. In this case, one must develop a time-varying heat
map representation. The FR metric-based framework can still be applied in this setting,
but the underlying data objects are more complex since they represent a trajectory of heat
maps indexed by video frames.
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