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Abstract

Adult cognitive neuroscience has guided the study of human brain development by identifying 

regions associated with cognitive functions at maturity. The activity, connectivity, and structure of 

a region can be compared across ages to characterize the developmental trajectory of the 

corresponding function. However, developmental differences may reflect both the maturation of 

the function and also its organization across the brain. That is, a function may be present in 

children but supported by different brain regions, leading its maturity to be underestimated. Here 

we test the presence, maturity, and localization of adult functions in children using shared response 

modeling, a machine learning approach for functional alignment. After learning a lower-

dimensional feature space from fMRI activity as adults watched a movie, we translated these 

shared features into the anatomical brain space of children 3–12 years old. To evaluate functional 

maturity, we correlated this reconstructed activity with children’s actual fMRI activity as they 

watched the same movie. We found reliable correlations throughout cortex, even in the youngest 

children. The strength of the correlation in the precuneus, inferior frontal gyrus, and lateral 

occipital cortex predicted chronological age. These age-related changes were driven by three types 

of developmental trajectories: emergence from absence to presence, consistency in anatomical 

expression, and reorganization from one anatomical region to another. We also found evidence that 

the processing of pain-related events in the movie underwent reorganization across childhood. 

This data-driven, naturalistic approach provides a new perspective on the development of 

functional neuroanatomy throughout childhood.

Keywords

Brain maturation; Child development; fMRI; Machine learning; Naturalistic perception; Shared 
response modeling; Developmental neuroscience

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
*Corresponding author. tristan.yates@yale.edu (T.S. Yates).
Credit authorship contribution statement
Tristan S. Yates: Conceptualization, Methodology, Software, Formal analysis, Writing - original draft, Writing - review & editing. 
Cameron T. Ellis: Conceptualization, Methodology, Software, Writing - original draft, Writing - review & editing. Nicholas B. Turk-
Browne: Conceptualization, Methodology, Writing - original draft, Writing - review & editing, Supervision, Funding acquisition.

Declaration of Competing Interest
The authors declare no competing financial interests.

Supplementary material
Supplementary material associated with this article can be found, in the online version, at 10.1016/j.neuroimage.2020.117606.

HHS Public Access
Author manuscript
Neuroimage. Author manuscript; available in PMC 2021 July 30.

Published in final edited form as:
Neuroimage. 2021 February 01; 226: 117606. doi:10.1016/j.neuroimage.2020.117606.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by-nc-nd/4.0/


1. Introduction

The advent of non-invasive neuroimaging techniques opened a new window into the study of 

human cognitive development. Initial fMRI studies of children examined functional 

differences in anatomical brain regions associated with particular cognitive functions in 

adults, such as the prefrontal cortex for executive function (Luna et al., 2001) and the 

amygdala for fear processing (Thomas et al., 2001). This approach was effective in 

characterizing the development of these brain regions. It also provided evidence in support 

of a maturational account of development (Johnson, 2011), which states that as cognitive 

functions come online during development, they will occupy the same neural regions as 

adults.

However, other research has shown that cognitive functions can be subserved by different 

brain regions at different ages (Bayet and Nelson, 2019; Brown et al., 2005; Durston et al., 

2006; Jolles et al., 2011; Nelson et al., 2003; Schlaggar, 2002; Thomason et al., 2008). One 

striking example is the development of visual object recognition: face processing is initially 

supported by both left and right fusiform gyrus, but as children learn to read, a region 

selective for visual words emerges in the left fusiform gyrus and face processing begins to 

shift to being right lateralized (Centanni et al., 2018; Dehaene-Lambertz et al., 2018; Dundas 

et al., 2013). Thus, as children gain new cognitive skills, such as reading, the localization of 

orthographic (and face) processing changes.

There are multiple interpretations for dynamic patterns of cognitive development in the brain 

(Brown et al., 2006; Poldrack, 2010). For example, studies sometimes show a shift from 

distributed to focal processing over development (Durston et al., 2006); that is, functions are 

localized to many regions early on, but localized to one or a smaller number of regions later. 

Such a finding could be evidence of increased efficiency of brain regions, decreased reliance 

on other regions for “support,” changes in the computations being performed, or simply 

artifacts of greater variability in region localization in developing populations.

Changes in the number and relationship between brain regions supporting a cognitive 

function can also be considered in the context of the interactive specialization framework 

(Johnson, 2001; 2011). This theory emphasizes that brain regions do not mature in isolation, 

but specialize over experience through interactions with each other. For example, if a newly 

emerging skill or function would be well-supported by a brain region (e.g., because of its 

cells, circuitry, or connectivity) that currently supports a different function, and if there is 

another brain region that already supports or could support the current function, there may 

be changes in tuning and connectivity between these regions to accommodate the new 

function while retaining the current function in conjunction with other regions.

The current study builds on prior work exploring dynamic changes in functional brain 

development in two ways. Hypothesis-driven approaches can find evidence for the 

maturational account, but have a harder time supporting alternatives. An analysis that can 

discover the reorganization of a function on the cortex would be valuable in discovering how 

the brain matures functionally. We therefore establish an unbiased, data-driven approach that 

can capture different kinds of developmental change under a common framework, by 
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searching for patterns of functional activity rather than focusing on specific regions. We do 

not assume the timing or types of cognitive functions that are recruited (though consider this 

in a secondary analysis), but instead rely on the idea that the time course of brain activity 

reflects the computations being performed. This means that similar time courses of brain 

activity can be attributed to similar cognitive processes. Second, most brain-based studies of 

cognitive development pursue a standard lab approach of isolating cognitive functions. 

Although vital for manipulating and tracking exactly what is changing, an alternative, 

naturalistic approach could provide a more comprehensive and ecological sense of how the 

brain is developing. Indeed, in adult cognitive neuroscience, naturalistic paradigms such as 

movie-watching have yielded unexpected insights into how the brain processes information 

across time-scales and domains (Sonkusare et al., 2019). Movie-watching has also emerged 

as an invaluable tool in children (see Vanderwal et al., 2019), with previous studies tending 

to focus on one or a small number of key cognitive functions (Cantlon and Li, 2013; 

Richardson et al., 2018). Here we operationalize function more holistically, as a collection of 

data-driven features derived from adult brain activity. In this way, movie-watching can be 

used to efficiently sample a broad swath of cognition.

To track the neural development of cognitive functions within and across brain regions, we 

applied functional alignment (Chen et al., 2015) to an open-access dataset (“Partly Cloudy”) 

of children aged 3–12 and adults watching a movie during fMRI (Richardson et al., 2018). 

We used open-source software for shared response modeling (SRM; Kumar et al., 2020) to 

extract temporal features of brain activity that were shared across the adults. For meaningful 

features to be extracted, this method requires that brain activity is time-locked across 

participants, as occurs when they watch the same movie (Hasson et al., 2004). Therefore, 

SRM is currently not well-suited for resting-state fMRI, for which there is no expectation 

that spontaneous activity will be aligned in time. There are larger movie datasets from 

children than Partly Cloudy (Alexander et al., 2017), which present additional opportunities 

for future research. However, to our knowledge, the Partly Cloudy dataset is unique in 

having both children across a range of ages and an adult comparison group who watched the 

same movie. This is crucial for the present goal of learning features of adult function and 

assessing their expression in children as a way of quantifying development.

In prior work, SRM has been used to distinguish scenes during movie-watching (Chen et al., 

2015; Turek et al., 2018), relate perception and recall (Chen et al., 2017), and map semantic 

features to fMRI activity (Vodrahalli et al., 2018). Here, we take a new approach of using 

SRM to understand how content in the adult brain is represented in the developing brain. 

Although a variant of SRM has been used for age prediction amongst adults ranging in age 

from 18 to 88 (Richard et al., 2019), our study is unique in learning a shared response from 

one age group (adults) and applying it to a completely independent age group (children). By 

studying a large sample across childhood, this approach can be used to characterize the 

developmental trajectory of adult brain function. The features that SRM learns can be 

thought of as capturing abstract cognitive functions that vary distinctively from each other 

across the movie in a way that is consistent in adults. We then mapped the children into this 

lower-dimensional feature space. These mappings were used in reverse to port adult fMRI 

activity into each child’s anatomical brain space. Comparing this reconstructed activity to 

the child’s actual fMRI activity allowed us to quantify the expression of adult functions 
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throughout childhood. Higher correlation between reconstructed and actual activity means 

that the child’s brain expressed the abstract functions shared in adults, what we refer to as 

“adult-like”. Although these abstract functions cannot be cleanly identified with specific 

psychological constructs, a key advantage of this data-driven approach is that they can be 

aligned across adults and children without making any anatomical assumptions. There is no 

requirement that functions are instantiated in the same brain regions across individuals, 

whether within or between ages. In fact, our approach would be equally sensitive to the 

development of functions that emerge within one region as to functions that reorganize from 

one region to another.

2. Materials and methods

2.1. Data

The Partly Cloudy dataset was obtained from the OpenNeuro database (accession number 

ds000228). A full description of data acquisition can be found in the original paper 

(Richardson et al., 2018). Participants with neuroimaging data available consisted of 33 

adults (18–39 years old; M = 24.8, SD = 5.3; 20 female) and 122 children (3.5–12 years old; 

M = 6.7, SD = 2.3; 64 female; for more details, see Table S1). Informed consent was 

obtained from adult participants and from parents/guardians on behalf of child participants, 

who provided their own assent. The study was approved by the Committee on the Use of 

Humans as Experimental Subjects (COUHES) at the Massachusetts Institute of Technology.

2.2. fMRI acquisition and preprocessing

Participants watched an animated movie (Sohn and Reher, 2009) that lasted approximately 5 

minutes while undergoing fMRI. No explicit task was given beyond staying still and paying 

attention to the movie. Adults and older children used the standard Siemens 32-channel head 

coil. For younger children, one of two custom 32-channel phased-array head coils was used 

(smallest coil: N = 3, M = 3.91, SD = 0.42 years old; smaller coil: N = 28, M = 4.07, SD = 

0.42 years old). The only difference between head coils was their size. These size-optimized 

head coils have been shown to increase signal-to-noise in participants with smaller heads 

(Keil et al., 2011). fMRI data were collected using a gradient-echo EPI sequence (TR = 2 s, 

TE = 30 ms, flip angle = 90° matrix = 64×64, slices = 32, interleaved slice acquisition) 

covering the whole brain. To correct for slight variations in the voxel size and slice gap 

parameters across participants, data were resampled to 3 mm isotropic with 10% slice gap 

(the modal parameters). Children also participated in a number of behavioral tasks not 

related to the movie that are beyond the scope of the current study.

Preprocessing of the structural and functional MRI data was performed with fMRIPrep 

(v1.1.8; Esteban et al., 2019). First, T1-weighted structural images from an MPRAGE 

sequence (GRAPPA = 3, slices = 176, resolution = 1 mm isotropic, adult coil FOV = 256 

mm, child coils FOV = 192 mm) were corrected for intensity non-uniformity using 

N4BiasFieldCorrection (v2.1.0) and skull-stripped using antsBrainEx-traction.sh (v2.1.0, 

OASIS template). Cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) 

masks were extracted from the structural image using FAST (FSL v5.0.9). Surface 

reconstruction was performed by FreeSurfer (v6.0.1). Nonlinear registration to an MNI 
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template for spatial normalization was performed with the antsRegistration tool (ANTs 

v2.1.0). Registrations were visually inspected and the quality of fit did not seem to differ 

across child and adult participants. Functional images were slice-time corrected using 

3dTshift from AFNI (v16.2.07), then motion corrected using FSL’s mcflirt (v5.0.9). Co-

registration to the structural scan was performed with 9 degrees of freedom using bbregister 

in FreeSurfer (v6.0.1). Transformations were concatenated using antsApplyTransform 

(v2.1.0). Frame-wise displacement was estimated using Nipype.

2.3. Experimental design

We used SRM (Chen et al., 2015; Turek et al., 2018) to identify activity in the developing 

brain that could be predicted from adult brain activity (illustrated in Fig. 1). This method 

assumes that all participants were shown the same stimulus with the same number of time-

points but does not require that they have the same number of voxels. First, the time-points 

from a group of adults were evenly split into training and test sets for cross-validation 

purposes. We used one half of the adult data to learn the shared feature space, consisting of 

features that captured shared temporal variance across adults, as well as the mappings 

between individual adults’ brain activity and this shared space. No child data were used for 

training the model. Prior to any other analyses, we ran this analysis on subsets of the adult 

data varying the number of features (5–80, in increments of 5) and found that 10 features 

learned from a set of adults gave the highest whole-brain signal reconstruction values for 

held-out adults (M = 0.087, SD = 0.031; Fig. S1). Although this was the global maximum, 

other numbers of features yielded comparable signal reconstruction. Selecting one of these 

local maxima would change the dimensionality of the shared response, which could affect 

the results. This would be unwieldy to examine in the current paper, but could be explored 

more thoroughly in future work, including by sampling different numbers of features with 

more granularity in steps of 1 rather than 5 features.

After learning 10 shared features in adults using one half of the adult data, we found the 

mapping (voxels by features) between an individual child’s functional activity (voxels by 

time) and the shared response (time by features) for this same portion of the movie. Singular 

value decomposition was implemented to solve for the orthogonal weight matrix. Values in 

each cell of this resulting weight matrix denote how strongly a given voxel in the child 

expresses each of the 10 features discovered from the adult data. Next, we used the 

remaining half of the adult data to quantify how the 10 shared features were expressed in 

data not involved in SRM training. Each adult’s transposed weight matrix (features by 

voxels) was used to transform their raw voxel activity (voxels by time) into the shared 

feature space (features by time). We then averaged these shared responses across all adults to 

find the canonical adult response in terms of shared features during this part of the movie. 

Finally, each child’s weight matrix (voxels by features) was used to transform the average 

adult shared response (features by time) into the child’s brain space (voxels by time). This 

predicted response represents what the child’s brain activity would look like if they 

expressed the same shared features of adults. We quantified the extent to which this was true 

by correlating the child’s actual raw response with this predicted response for each voxel 

separately. Thus, higher signal reconstruction reflected greater adult-child functional 

similarity—i.e., more adult-like functions in the child’s brain—agnostic to the anatomical 
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localization of these functions in either group. The voxelwise map of predicted-actual 

correlations for each child was averaged across individuals within age groups. We ran this 

entire procedure twice, training the SRM on the first half of the movie and testing on the 

second half in one fold, and then vice versa in another fold, and present results averaged 

across these folds. Rather than using Pearson correlation as a standardized measure of 

similarity, we could have estimated this association with a general linear model (GLM) for 

each voxel, in which the predicted activity from adults is entered as the explanatory variable 

and the actual child activity is treated as the response variable. The resulting beta values 

could be used to test reliability across participants, which yields nearly identical statistical 

significance as correlation coefficients (Fig. S2), but with the added benefit of reflecting the 

real magnitude of the relationship between these variables. The GLM approach also makes it 

possible to control for nuisance variables, such as head motion.

Our first objective was to assess the degree to which children’s brain activity could be 

reconstructed from shared features learned in adults. We quantified the noise ceiling for this 

group-level signal reconstruction by leaving one adult participant out of SRM training, 

correlating that individual’s predicted and actual brain activity, and then iterating through 

each adult. This was treated as the noise ceiling because the held-out participant was from 

the same age group used to train the SRM. Our second objective was to quantify how signal 

reconstruction may change over development, and whether this could be a useful measure 

for predicting an entirely held-out child’s age. We then explored how the individual features 

that comprise the shared response may exhibit different developmental trajectories 

throughout childhood. Finally, we investigated the relationship between individual features 

and cognitive constructs. Partly Cloudy was first used as a localizer for theory of mind in 

adults (Jacoby et al., 2016). As such, different events in the movie relevant to social 

cognition were annotated, including social, pain, and mentalizing events. For each event 

type, we generated a time series of events and convolved it with a double-gamma 

hemodynamic response function (HRF). Because we used data from the second half of the 

movie for predicting children’s brain activity from adult features, we restricted our analyses 

of social cognitive events in that half. Two of the three event types, pain and mentalizing 

events, were present in the second half of the movie and could therefore be compared to the 

average expression of shared features in adults.

2.4. Statistical analysis

We used bootstrap resampling methods to statistically evaluate our results non-

parametrically (Efron and Tibshirani, 1986; Fan et al., 2020; Kim et al., 2014). For each 

effect of interest, at the last step of the analysis we randomly sampled participants with 

replacement to form a new sample of the same size as the original group, averaged the effect 

across the sample, and repeated for 10,000 iterations. The logic of this approach is that if an 

effect is reliable across participants, the participants should be interchangeable, and a similar 

group effect should be observed in each iteration. The resampled values across all iterations 

reflect a sampling distribution of the effect of interest, further providing confidence intervals 

on the original effect. Null hypothesis testing can be performed by determining the 

proportion of resampled values that were of the opposite sign as the original effect. The 

original effect can also be normalized into a z-statistic by dividing the mean of the 
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resampled distribution by its standard deviation. For voxelwise analyses, this was performed 

in each voxel to create a statistical map. This map was corrected for multiple comparisons 

using a cluster-based correction in FSL’s cluster tool (cluster-forming threshold, p<0.001). 

Corrected p-values were found using Gaussian Random Field Theory and the smoothness 

estimated from the original map.

We quantified the relationship between signal reconstruction and age by first fitting a linear 

regression model for each voxel. We then used the same bootstrapping approach described 

above, now resampling participants to calculate the relationship between signal 

reconstruction and age in each iteration, resulting in a sampling distribution for the 

relationship. We calculated the p-value as the proportion of iterations on which the 

correlation coefficient from the linear regression model went in the opposite direction from 

the original model. We compared this model against other types of models that have been 

used previously in developmental cognitive neuroscience (Schlichting et al., 2017). For each 

voxel, we fit five regression models: (1) a linear model with age alone as the predictor (as 

above), (2) a linear model with age and sex as predictors, (3) a linear model with age and sex 

as predictors plus an age-by-sex interaction term, (4) a quadratic model with just age as a 

predictor, and (5) a quadratic model with age and sex as predictors plus an age-by-sex 

interaction term. We then assessed which model gave the lowest Akaike information 

criterion (AIC), a measure of the relative quality of different models, for each voxel.

We used leave-one-out cross-validation to predict the age of children from signal 

reconstruction. For each iteration, we fit the linear regression model between signal 

reconstruction and age in a training set of N-1 participants. We did this separately for each 

voxel and retained the clusters that were significant within the training set (based on the 

previously described bootstrap resampling method). Note that we ignored the sign of the 

significant relationship in a cluster and thus it was possible to find negative beta values. We 

then fit a regularized ridge regression (penalty = 1) across voxels from the significant 

clusters. To predict age in the held-out N th test participant, we input their signal 

reconstruction scores across these voxels and output an estimated age. Finally, we calculated 

the Pearson correlation and mean-squared error between the chronological and predicted 

ages of children across iterations.

In addition to reconstructing all 10 adult features in children, we also performed signal 

reconstruction for individual adult features. To test single-feature reconstruction within the 

adults, we could not perform the fully cross-validated approach described above of leaving 

one adult participant entirely out of both the training set used to learn the SRM and the 

testing set used to generate predicted activity. This is because each training set would have 

contained a unique set of adults, which could lead to different features and/or a different 

ordering of features in the shared space. We would therefore not be confident that we were 

considering the same feature across folds. Instead, we included all adults when training the 

SRM on one half of the movie, so that there would be a consistent shared space across adults 

and as used to reconstruct children. Nevertheless, we left one adult out when averaging the 

adult shared response for the other half of the movie, using the expression of the selected 

feature in all but that adult to predict their neural activity. Because the reconstructed adult 

was used in SRM training, we included a 10 time-point buffer between their training and test 
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data to minimize non-independence. Signal reconstruction of individual features in children 

was identical to the main analysis, except based on separate weight matrices for each child 

mapping from their voxel space to a given adult feature. That is, although the adult data 

could not be fully cross-validated, the data from children remained completely untouched 

during SRM training.

In the single-feature analysis, we sought to quantify how brain regions changed in their 

expression of features over development. We thus defined regions of interest (ROIs) using 

the Schaefer brain atlas (Schaefer et al., 2018). This atlas consists of 100 parcels discovered 

from resting-state connectivity data in adults and matched to 17 functional networks (Yeo et 

al., 2011). We reconstructed each of the ten features in adults and children and then 

calculated the average signal reconstruction scores across voxels in each of the 100 parcels. 

For statistical analysis, we used the same bootstrap resampling procedure across the 

participants in a given age group, separately for each parcel and feature. To correct for 

multiple comparisons across the parcels, we used Bonferroni correction (100,000 bootstrap 

iterations were run to gain precision on p-values for thresholding). Finally, the parcels that 

survived correction were ranked according to the strength of signal reconstruction.

We used bootstrap resampling to quantify the relationship between individual features and 

psychological constructs. For each feature, we randomly sampled with replacement the 

expression of the feature in 33 adults (i.e., second half data transformed into their feature 

space), and then averaged the results into a single adult shared response for the feature. We 

then correlated the average adult shared response for each feature with the convolved event 

time series for each event type and repeated the procedure 10,000 times. We calculated the 

p-value as the proportion of resamples in which the correlation had the opposite sign from 

the original correlation, doubled to convert to two-tailed. Because this was not a planned 

analysis, we corrected for 10 multiple comparisons (corresponding to the 10 features) with a 

Bonferroni correction.

2.5. Code accessibility

The analysis code for running the signal reconstruction analysis pipeline is available on 

Github: https://github.com/tristansyates/partly-recon.

3. Results

3.1. Adult-like brain function in early to middle childhood

We first characterized how well adult brain activity could be reconstructed from other adults. 

Signal reconstruction was widespread throughout the brain, especially in occipital and 

parietal cortices (Fig. 2A). This indicates that the shared features learned by SRM from one 

half of the movie accounted for adult brain activity during the other half of the movie. 

Importantly, this only works because of the ability of SRM to learn abstract features that 

generalize across the contents of the two halves. Although we found tentative evidence for 

higher whole-brain signal reconstruction in younger adults (Fig. S3), scores were reliably 

positive across the adult sample.
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Remarkably, signal reconstruction was also widespread in the children despite the fact that 

the functional features were defined entirely in adults (Fig. 2B). Results were nearly 

identical when including nuisance parameters in a GLM relating children’s actual and 

predicted brain activity (Fig. S2) and were similar, but slightly stronger after accounting for 

nuisance parameters prior to constructing the shared response (Fig. S4). In the child brain, 

adult functions were most strongly represented in lateral occipital and posterior medial 

regions, albeit weaker than in the adult brain.

3.2. Relationship between age and signal reconstruction

The previous analysis collapsed across all children, but the degree and location of signal 

reconstruction may vary with age. We quantified these relationships by correlating, for each 

voxel in the brain, children’s signal reconstruction values (i.e., the extent to which adult 

brain activity predicts that child’s brain activity) with their chronological age. After 

correcting for multiple comparisons, signal reconstruction was positively correlated with 

children’s age in regions including the bilateral precuneus, bilateral lateral occipital cortex, 

postcentral gyrus, and inferior frontal gyrus (Fig. 3A; see also Fig. S3). Thus, in these 

regions, adult brain activity better predicts older children’s brain activity compared to 

younger children. No regions showed a reliable negative correlation. Alternative models 

taking into account children’s sex and testing for quadratic relationships did not generally 

provide better fits than this linear model (Table 1). The basic linear model with age alone 

gave the lowest AIC values for the majority of voxels, and therefore minimized the 

information loss when trading off with model complexity. Furthermore, individual voxels in 

which other models had the lowest AIC values were scattered across the brain, suggesting 

that they were capturing noise and providing further evidence that the basic linear model 

performed best.

3.3. Out-of-sample prediction of a child’s age from signal reconstruction

With chronological age related to signal reconstruction in several regions of the brain, it may 

also be possible to predict the age of a previously unseen child. In a nested cross-validation 

analysis, we first trained a linear regression model between signal reconstruction and age for 

each voxel in all but one child. Blind to this child, we determined which voxels showed a 

significant relationship with age again through bootstrapping and cluster correction. We then 

trained a ridge regression model on these significant voxels. This model was used to predict 

the held-out child’s chronological age from their multivariate pattern of signal reconstruction 

scores across the voxels. This procedure was repeated 122 times to use each child as the 

held-out test data once. Note that the significant clusters varied slightly across iterations 

because the training set changed when different children were used as test data. Finally, we 

correlated the predicted and actual ages (Fig. 3B), and found a strong relationship (r = 0.436, 

p <0.001). Indeed, our model had a mean-squared error of 6.05, meaning that our average 

error in age prediction was 2.46 years across an age range of 8.78 years.

3.4. Reliable signal reconstruction in all age groups

The relationship between signal reconstruction and age could reflect a lack of adult function 

in early childhood that emerges in middle childhood. To evaluate this possibility, we divided 

children into five age bins (3.5–4.5, 4.5–5.5, 5.5–7.5, 7.5–9.5, 9.5–12.3 years old), each 
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containing roughly the same number of participants (N = 20–26). This was done for 

analytical convenience and was not intended to suggest discrete developmental stages. 

Although signal reconstruction increased with age, we nevertheless found reliable signal 

reconstruction in every age group. This includes lateral occipital, posterior medial, and 

supramarginal regions, even in the youngest children aged 3–5 (Fig. 4). Signal 

reconstruction emerged in frontal regions around age 5, and became more pronounced in the 

older groups. To obtain a global measure of adult-child similarity, we correlated the 

unthresholded maps of signal reconstruction for each age group with that of adults. There 

was reasonable agreement in all groups, though the amount of variance explained grew from 

25% in the youngest children to 64% in the oldest children.

3.5. Controlling for age-related noise in signal reconstruction

Increases in signal reconstruction over development may result from younger children being 

“noisier” than older children and adults, including because of differences in task compliance, 

preprocessing quality, and/or BOLD physiology (Harris et al., 2011; Phan et al., 2018). 

Children did move their heads more than adults overall, but this did not track with age across 

children (analysis of number of time-points exceeding 2 mm motion threshold from 

Richardson et al. (2018): one-way ANOVA across age groups, F(4,116) = 1.175, p = 0.325; 

correlation with age across children, r = −0.112, p = 0.221).

Moreover, we can estimate and control for noise in different age bands using the noise-

ceiling approach from adults (Fig. 2A). For each age group, we held one child out and used 

SRM to learn shared features in the remaining children of that group. We then predicted the 

held-out child’s voxel activity, correlated it with their actual activity, and averaged across 

significant clusters to derive a global within-group signal reconstruction score for each child. 

The average score across children in a group provides a measure of the reliability of 

functional brain activity in that group. This within-group signal reconstruction correlated 

with chronological age (r = 0.359, p <0.001), consistent with decreasing noise over 

development. Within-group signal reconstruction was also correlated with adult-group signal 

reconstruction (r = 0.647, p <0.001). Critically, however, the correlation between adult-

group signal reconstruction and chronological age (r = 0.418, p <0.001) persisted after 

controlling for within-group signal reconstruction (r = 0.261, p = 0.003). In contrast, the 

correlation between within-group signal reconstruction and chronological age did not hold 

after accounting for adult-group signal reconstruction (r = 0.128, p = 0.158). These results 

suggest that adult features capture more about child brain function than changes in noise 

over development.

3.6. Emergence and reorganization of adult function over child development

There are at least two other potential explanations for the age-related increases in signal 

reconstruction we observed. First, a subset of the adult functions being reconstructed may be 

absent from younger children and mature over development to become present in older 

children (emergence). Second, adult functions may be present in both younger and older 

children but expressed in different brain regions over development (reorganization). By both 

accounts, the brain regions expressing a function in older children would not express it as 

strongly in younger children. The accounts differ, however, in that reorganization but not 
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emergence predicts that the function would be expressed in other brain regions in younger 

children.

Emergence and reorganization are difficult to distinguish with the analysis approach used so 

far. By predicting the activity of each voxel as a weighted combination of all adult features, 

we may have obscured developmental trajectories that differed across features. We thus 

modified our pipeline to predict activity in children from individual adult features, each of 

which captures a narrower, more unique range of adult function. The modification occurred 

in step 4 (Fig. 1), where we now transformed only one average adult feature at a time into 

the voxel space of a child. Individual features do not necessarily isolate single functions, and 

emergence and reorganization are not mutually exclusive, so it may be possible to observe 

both patterns within a feature. We used a functional atlas (Schaefer et al., 2018) to identify 

regions that showed the strongest signal reconstruction for a given feature per age group.

We found evidence of both emergence and reorganization across different adult features, as 

well as a third pattern in which a feature was expressed in the same brain region(s) across 

development (consistency). Representative features illustrating these three types of 

trajectories are depicted in Fig. 5 (for all features, see Figs. S5 and S6). For example, 

Feature 4 was not reliably expressed in the two youngest age groups and emerged in the 

lingual gyrus of older children and adults (Fig. 5A). In contrast, Feature 6 was expressed 

most strongly in the posterior cingulate and lingual gyrus consistently throughout 

development (Fig. 5B). Finally, Feature 7 was expressed most strongly in the precuneus and 

posterior cingulate of children and migrated to be more strongly represented in parietal 

regions in adults (Fig. 5C). This feature also interestingly shows some consistency over 

development. Nonetheless, it was one of several features where the average signal 

reconstruction value across the whole brain was significantly related to child age (Fig. S3). 

Thus, by measuring functional profiles regardless of anatomy, signal reconstruction revealed 

developmental changes both within and across brain regions.

3.7. Cognitive interpretation of shared features

The features that we learned from adult fMRI activity are abstractions, making it difficult to 

assign them to specific cognitive functions. Moreover, our data-driven approach with SRM 

means that it is possible that some cognitive functions may be partially distributed across 

features, while others may not account for enough variance to be included in the model. 

Nonetheless, in a follow-up analysis, we explored the relationship of these features to 

cognitive functions that were evoked by this movie. An earlier study annotated different 

events relevant to social cognition in the same movie, including pain and mentalizing event 

types (Jacoby et al., 2016). For each event type, we convolved the time series of events with 

a double-gamma HRF and correlated it with the average expression of each shared feature 

from adults (Fig. 6). For pain events, only one of the features (Feature 9) was reliably 

correlated (p <0.05, corrected). For mentalizing events, none of the features were correlated. 

Interestingly, Feature 9 was most strongly expressed in the cuneus of adults and the oldest 

children, the postcentral gyrus near the temporoparietal junction of the middle age group 

(eight- and nine-year-olds) and the posterior cingulate of younger children (Fig. S6). These 

findings in adults and children over eight are in line with the prior studies showing that the 
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cuneus is more active for pain than mentalizing events in adults (Jacoby et al., 2016) and that 

bilateral postcentral gyrus is a node in the pain network (Bruneau et al., 2015; 2012). 

Although the posterior cingulate is usually more activated for mentalizing events than pain 

events in adults, here it is related to pain processing in young children. These results 

highlight that the localization of pain processing in the developing brain is dynamic, with the 

role of the posterior cingulate and other regions changing during this time. Furthermore, this 

shows that even quite young children are capable of representing the pain state of others, and 

that applying data-driven then confirmatory analyses can be a powerful combination for 

understanding cognitive development in the brain.

4. Discussion

In this study, we sought to bring a new perspective to the long-standing question of how and 

when the developing brain becomes “adult-like” (Johnson, 2011; Somerville, 2016). The 

typical approach for answering this question is to align children and adults into a common 

anatomical space and compare activity between groups in the same brain regions (Cantlon 

and Li, 2013; Dosenbach et al., 2010; Fair et al., 2009; Gogtay et al., 2004; Richardson et 

al., 2018). Thus, even when the goal is to understand functional similarities and differences 

over development, anatomy serves as a guide and constraint. The alternative approach we 

employed is to align children and adults into a common functional space, which allowed us 

to quantify adult-like brain activity in children without making any assumptions about a 

consistent mapping between function and anatomy over development. This anatomically 

agnostic approach has the advantage of finding representations in the developing brain that 

may otherwise be overlooked. It does not require pre-specifying the type of function that is 

expected to differ across development a priori. Instead, it uses a data-driven approach to 

extract content from the movie that explains brain activity and to identify where in the brain 

this content is represented. In children as young as 3.5 years old watching a short movie, we 

found regions of the brain, especially in occipital cortex, that reliably expressed functional 

features shared amongst adults who watched the same movie. Based on where and how 

strongly these features were expressed, we were able to build a predictive model of age that 

depended only on brain activity during movie watching. We then demonstrated the power of 

functional alignment by revealing features of adult function that emerge and reorganize 

across anatomical locations over development. Finally, we showed how confirmatory 

hypothesis testing can be performed within this framework to interpret shared adult 

functions and how they develop.

We interpreted increasing signal reconstruction with age as evidence of functional 

specialization and maturation in the developing brain. A related but slightly different 

framing is that brain functionality itself was not always changing in these cases, but rather it 

was the way that children deployed this functionality during the movie. For instance, if older 

children attended to the content of the movie in a more adult-like fashion than younger 

children, this may have affected perceptual input to downstream functions and increased 

similarity to adult brain activity. The defining characteristic of this interpretation is that 

younger children may possess the capacity for such functions but not engage them because 

of attentional differences in perceptual input. Even if attention was allocated similarly across 

age, richer schematic knowledge in older children may have enhanced their understanding of 
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the movie narrative (Brod et al., 2017; Ghosh and Gilboa, 2014) by highlighting connections 

between objects and events that may not otherwise be easily integrated. Again, younger 

children may have the capacity for this kind of integration in principle but be unable to 

deploy it without access to the relevant conceptual knowledge. Of course, attention and 

memory are functions of the brain, and so developmental differences in these functions are 

what we sought to characterize in the first place. The key point is that increasing signal 

reconstruction could reflect the development of a function or of necessary perceptual or 

conceptual precursors to that function.

Signal reconstruction allowed us to build a predictive model of age based on how strongly 

children’s brains represented the shared features of adults. Our predictive model was highly 

significant, but a limitation is that the strength of the relationship was moderate, and the 

mean error in age was substantial for the sample’s age range. Larger sample sizes and more 

training data (i.e., longer movie) in future studies could increase precision. Nonetheless, 

other studies using out-of-sample cross-validation methods like ours have found a similar 

range of relationship strength (Finn et al., 2015; Lin et al., 2018).

A variant of the signal reconstruction approach allowed us to identify different types of 

developmental trajectories across adult features. We used ROIs defined by functional 

connectivity (Schaefer et al., 2018) to map the developmental trajectories of neural features 

shared amongst adults. The voxels that comprise a region in this atlas have homogeneous 

functional activity and connectivity in adults. We used the term “emergence” to describe 

features of adult brain activity that were not reliably expressed in any regions of young 

children’s brains, but appeared in older children and were present in the same location up 

until adulthood. Features that showed “consistency” were those in which the localization 

remained consistent in all of the age groups tested, including the youngest children. Finally, 

features that showed “reorganization” were those that were reliably expressed in at least one 

parcel in the brains of children and adults, but where the localization of these parcels varied 

across ages. Therefore, features that exhibit the first trajectory (emergence) may comprise 

late-developing cognitive functions, while the other feature types comprise cognitive 

functions that can be represented by younger children.

Although both emergence and consistency of features in adult regions over development are 

consistent with multiple accounts of brain development, the reorganization of features over 

development cannot be explained by a maturational account, which argues that certain 

cognitive functions are tied to particular brain regions and minimally influenced by the 

environment and nearby regions. This may apply to certain highly specialized regions, such 

as for vision or language (Kanwisher, 2010), but our results highlight that many adult 

features are not characterized by a one-to-one mapping between structure and function, and 

that assuming this might obscure functional similarities across development. It is worth 

noting that a more pure form of reorganization, whereby a feature in adulthood is no longer 

expressed at all in the regions in which it was previously expressed, was less common in our 

study. Instead, we tended to observe relative reorganization, whereby the set of regions 

expressing a feature remains fairly consistent over development but the rank order of which 

regions show the strongest expression changes. For example, the precuneus was replaced by 

the postcentral gyrus as the region with highest signal reconstruction of feature 7 for 
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children around 9 years old, even though the precuneus continued to express the function 

through adulthood. Future work tracking individuals longitudinally should try to understand 

why reorganization occurs and how it relates to environmental changes or new skill 

acquisition (e.g., reading; Dehaene-Lambertz et al., 2018).

Our findings that several relevant features are present as early as 3 years of age, in either the 

same or different regions as expressed in adults, suggest early adultlike cognition. Even so, 

these data-driven features remain abstract and are not easily decomposed into specific 

cognitive functions. Moreover, although the features captured unique and substantial 

variance shared across adults, each may still embed multiple cognitive functions with similar 

temporal profiles of brain activity. This has implications for interpreting features showing 

anatomical reorganization of function over development (e.g., Fig. 5C). Specifically, our 

definition of reorganization was that the same functions were subserved by different brain 

regions over development—that is, a cognitive function that manifests in region X of 

younger children is expressed in region Y of adults. This could occur if the original region 

was co-opted by a different function (Behrmann and Plaut, 2015) or if the nature of the 

function changed with increasing skill and expertise (Johnson, 2001).

However, the possibility of multiple functions being embedded in a given feature suggests an 

alternative interpretation. Namely, these functions may have stable organization over 

development, but the relative weighting of the functions as captured by the feature may 

change. Consider a hypothetical feature that is active during the title and credits of the 

movie. This feature might capture multiple language-related functions engaged by these 

scenes, such as letter recognition in region X and semantic comprehension in region Y. We 

would expect even the younger age groups to respond to the orthography of the words and 

thus show signal reconstruction in X, but perhaps only the older children and adults would 

respond to the meaning of the words and show signal reconstruction in Y. Disentangling 

these possibilities requires a better understanding of how the abstract features from SRM 

relate to the contents of the movie and to the cognitive functions that are engaged. Future 

studies could make progress in this direction by using reverse correlation (Hasson et al., 

2004) or hand-coded events in the movie to better ascertain the functional profile of the 

features. Indeed, we found that Feature 9 was related to the processing of pain events 

identified by prior annotations of the movie. This pain-related feature demonstrates the 

power of our data-driven approach to understanding cognitive development, as it was 

expressed in different regions of the brain in younger children and adults. Although the 

regions recruited in older children and adults were predicted by previous research (Bruneau 

et al., 2015; Jacoby et al., 2016), the region recruited in younger children, the posterior 

cingulate, is typically associated with mentalizing rather than observing physical pain 

(Bruneau et al., 2015; Saxe and Powell, 2006). Thus, signal reconstruction allowed us to find 

evidence for commonalities in the ability to process pain events over development, despite 

differences in anatomical localization. Although annotations were not available for other 

types of events, this movie likely engaged other functions related to visual processing, object 

recognition, and narrative comprehension. The relationship between adult shared features 

and these cognitive functions remains an avenue for future research.
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Future work could also address the cognitive underpinnings of shared features by selecting 

or designing movies to target specific cognitive functions. Indeed, a constraint in our study, 

and SRM more generally, is that the features extracted depend on the movie. The use of 

other data for functional alignment, including from live action videos, different sensory 

modalities, or synchronized trials of varied cognitive tasks could sample cognition even 

more broadly. This might allow SRM to learn a richer functional space that provides a more 

complete picture of functional brain development across childhood. Additionally, it might 

reveal other types of developmental trajectories that were not evident in the current study. In 

one of the three types of neural trajectories we defined (reorganization), a function that may 

be present behaviorally from a young age undergoes neural changes, such that it is subserved 

by one region early on before reorganizing to another region later in development. The 

transition between these two regions may inform behavioral findings of a U-shaped (or 

inverted U-shaped) curve, where younger children and adults are more similar than children 

of intermediate ages (Siegler, 2004). Combining this approach with behavioral measures 

could therefore reveal why such changes occur.

Another limitation of the current study is that we rely on shared features learned in adults, 

yet there may be developmental changes within the adult cohort. Indeed, the adult sample 

includes a large age range, and we found some evidence that younger adults had higher 

signal reconstruction than older adults (Fig. S3). However, the younger adults comprise a 

larger proportion of the sample, which likely biased the SRM features to be more consistent 

with their features. Regardless, any adult heterogeneity does not compromise our analyses of 

children; signal reconstruction within the adults was reliable across the sample, suggesting 

that the shared response was able to capture functions that are stable over this age range. 

One takeaway from this result is that our approach can be applied successfully to adults 

(akin to Richard et al., 2019). It also hints at the possibility of learning shared features in 

younger age groups and testing on older age groups. Thus, in addition to characterizing the 

emergence of adult features of cognition over development, our analyses could be applied in 

reverse to answer the complementary question of what child features disappear over 

development into adulthood (or in aging from young adults to the elderly). Future work with 

larger cohorts of similarly-aged children may be able to answer this question.

We focused on brain development, but the techniques in our paper could be applied 

productively to a number of questions that involve comparing functional activity across 

groups. For instance, learning the functional features shared amongst a clinical population 

and then reconstructing these features in an undiagnosed individual may be useful for 

predicting whether the individual will develop the condition. This method could also be used 

to assess how and when a learner’s brain starts to resemble that of an expert over the course 

of training. Because signal reconstruction does not require that the group and individual 

have the same brain sizes or even anatomical organization, this approach could even be 

applied between humans and non-human animals to trace how cognitive functions are shared 

over phylogeny. Indeed, there is no requirement that the group and individual be brains at 

all, which could, for example, allow states of a computational model to be ported into the 

brain for model-based analysis, or vice versa for brain-computer interfaces.
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Fig. 1. 
Schematic of the signal reconstruction pipeline. An SRM was trained on the first half of the 

fMRI data from a group of adults (N = 33; 2 example matrices shown) and then each of the 

children (N = 122) was fit into this space. Adult fMRI data from the second half of the 

movie (i.e., not used to train the model) were transformed into the shared space and 

averaged. This shared adult activity was then projected into each child’s brain and correlated 

with their actual activity. This procedure was then repeated for training on the second half 

and testing on the first half.
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Fig. 2. 
Reconstruction of adult function in children. In all brain plots, the strength of signal 

reconstruction is denoted by color and only regions that survived statistical thresholding 

through cluster correction are plotted. (A) Signal reconstruction for a group of adults 

predicting an independent adult’s functional activity is reliable throughout much of the 

brain. (B) Signal reconstruction remains statistically reliable (though numerically weaker) 

for adults predicting functional activity in children ranging from 3–12 years old.
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Fig. 3. 
Relationship between signal reconstruction and age. (A) Brain regions with a reliable 

correlation between signal reconstruction of adult function in a child’s brain activity and the 

child’s chronological age across all 122 children, colored by the strength of the relationship. 

(B) Similar regions are found in leave-one-child-out iterations of the age prediction analysis. 

Yellow–red colors signify regions that were significant in a majority of iterations. Using 

signal reconstruction scores from these regions, we could accurately predict the held-out 

child’s chronological age.
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Fig. 4. 
Signal reconstruction of adult features was statistically reliable even in the youngest 

children, but spread anatomically and grew in strength throughout childhood. To quantify 

this developmental change, we correlated the unthresholded voxelwise signal reconstruction 

in each age group with that of adults, revealing increasing maturity: 3.5–4.5 years, r = 0.507; 

4.5–5.5 years, r = 0.587; 5.5–7.5 years, r = 0.601; 7.5–9.5 years, r = 0.646; 9.5–12.3, r = 

0.797.
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Fig. 5. 
Trajectories of functional development within and across brain regions. (A–C) To 

understand the nature of developmental changes in signal reconstruction, we predicted 

activity from one adult feature at a time rather than all features. We used a functional 

parcellation to identify which regions expressed a given feature most strongly in each age 

group. Parcels with significant signal reconstruction of adult features within each age group 

(p<0.05, corrected) were ranked by the strength of the reconstruction. For ease of 

visualization, here we color up to the top five parcels for each feature and age group. The 

anatomical labels for these parcels were obtained from the Talairach atlas. Three example 

adult features are depicted across ages, illustrating developmental trajectories we refer to as 

emergence (Feature 4), consistency (Feature 6), and reorganization (Feature 7). The top five 

parcels for the remaining features are depicted in Fig. S5 and all parcels that are significant 

for each group are displayed in Fig. S6. Asterisks indicate which parcels differed 

significantly in signal reconstruction of each feature across age groups (p <0.05, corrected; 

Fig. S7).
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Fig. 6. 
Distribution of resampled correlation values between the average representation of shared 

features in a group of adults and two of the three cognitive constructs defined in Jacoby et al. 

(2016). (A) For mental events, we did not find a significant relationship with any of the 

shared features of adults. However, we did find a significant positive correlation between 

Feature 9 and pain events (p <0.05, corrected). This feature was strongly expressed in the 

cuneus of adults and older children, the postcentral gyrus in the middle child age group, and 

the posterior cingulate of younger children. (B) Visualization of the z-scored time courses of 

individual features during the second half of the movie and the two cognitive constructs. 

Orange lines represent the HRF-convolved mentalizing events, and purple lines represent the 

HRF-convolved pain events. The feature time course lines are colored similarly to (A).
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Table 1

Different models used to predict signal reconstruction (SigRecon), which is the correlation between predicted 

and actual activity in a held-out child. For each voxel, the model with the lowest AIC was assigned to that 

voxel. The average and standard deviation of AIC values for a given model for voxels where that model was 

the best is shown in the right column. Overall, the linear model used in our main analyses with age as the only 

predictor best described the data.

Regression model Number of voxels AIC M (SD)

SigRecon ~ Age 39,111 2.41 (0.56)

SigRecon ~ Age + Sex 60 5.21 (1.39)

SigRecon ~ Age + Sex + Age * Sex 31 4.76 (1.91)

SigRecon ~ Age2 49 3.75 (2.01)

SigRecon ~ Age2 + Sex2 + Age * Sex 31 3.71 (1.05)
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