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Editorial 

Emerging role of machine learning in cardiovascular disease investigation and translations  
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A B S T R A C T   

Unexpected insights and practical advances in cardiovascular disease (CVD) are being discovered by rapidly 
advancing developments in supercomputers and machine learning (ML) software algorithms. These have been 
accelerated during the COVID-19 pandemic, and the resulting CVD translational implications of ML are steering 
new measures of prevention and treatment, new tools for objective clinical diagnosis, and even opportunities for 
rethinking basic foundations of CVD nosology. As the usual cardiovascular specialist may not be familiar with 
these tools, the editor has invited this brief overview.   

Unexpected insights and practical advances in cardiovascular disease 
(CVD) are being discovered by rapidly advancing developments in su-
percomputers and machine learning (ML) software algorithms. These 
have been accelerated during the COVID-19 pandemic, and the resulting 
CVD translational implications of ML are steering new measures of 
prevention and treatment, new tools for objective clinical diagnosis, and 
even opportunities for rethinking basic foundations of CVD nosology 
[1–5]. As the usual cardiovascular specialist may not be familiar with 
these tools, the editor has invited this brief overview. 

1. Types of machine learning 

ML is a subcategory within the broad discipline of Artificial Intelli-
gence (AI). AI is the general concept of employing machines and 
mathematical algorithms that aspire to ultimately make computers 
behave with the capabilities of the human mind. AI is a lofty moving- 
target goal spanning a wide umbrella of technological advances that 
includes various subgroups such as ML which are more practical and less 
existential. ML uses computer programs in a dynamic self-altering pro-
cess to automatically improve outcomes through iterative self-training 
experiences of exploring data patterns [6]. There are four basic flavors 
of ML: unsupervised, supervised, reinforcement learning, and deep- 
learning. 

• Unsupervised ML models learn from clustering and association pat-
terns of unlabeled input data without human intervention. Here, the 
output delivers de novo meaningful insights to the table with minimal 
a priori assumptions. Such models include multivariate principal 
component analysis (PCA), k-means clustering, and hierarchical 
clustering. PCA is a method of reducing an unmanageably large 
number of complex variables in a dataset down to only two or three 
meaningful variables that still retain most of the original informa-
tion. K-means clustering sorts through huge pools of raw data to form 
multiple groups each clustered around a common center value. 

Hierarchical clustering builds a branching tree of data organized by 
degree of similarity nested within a branch or comparisons between 
branches. One medical example of unsupervised ML is predicting or 
managing heart disease based on anomalies found within a battery of 
patient characteristics such as age, body mass index, sex, lab values, 
lifestyle, etc. Another example is the exploration of Fibonacci 
“Golden Ratio” relationships that occur in nature and throughout 
anatomy and physiology; for instance, invoking ML to look for fractal 
patterns has been proposed in interpreting transthoracic echocardi-
ography data to unmask branching arrangements of coronary artery 
lesions responsible for ST-segment elevation myocardial infarctions, 
in order to assess abnormalities in cardiac dimensions and to 
examine blood pressure patterns that may predict decompensation in 
congestive heart failure patients [7,8].  

• Supervised ML involves labeled data based on predictive models 
supplied by a human operator. Here, an algorithm arrives at useful 
insights based on self-learning from previous data sets. For example, 
support vector machine (SVM) models [9] can classify ischemic heart 
disease as simple binary states of “good or bad” based on template 
electrocardiograms (ECGs) or on ejection fraction data measured by 
single photon emission tomography and echocardiography images. 
Other supervised models incorporate Bayesian networks, random 
forests, or least absolute shrinkage and selection operator (LASSO) 
regressions.  

• Reinforcement ML engages algorithms that either discover errors or 
bolster findings based on reward feedback from human intervention. 
This approach is being deployed for use in drug prescription rec-
ommendations and in imaging problems.  

• Deep-learning ML can be either supervised or unsupervised in 
enabling a computer to teach itself by exposure to vast datasets using 
multiple layers of artificial neural network computational nodes. 
Such algorithms can stitch together small samples of data scalable 
into a big picture with a predictable pattern. For example, deep- 
learning algorithms that combine retinal blood vessel images with 
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clinical lab values can detect various CVD risk factors with accuracy 
comparable to human experts [10]. 

2. CVD machine learning on the street 

Collectively, ML algorithms can use clinical and preclinical data of 
electrocardiography and echocardiography interpretations, MRI and 
computed tomography (CT) imaging diagnoses, scintigraphic myocar-
dial perfusion imaging, and lab chemistry values to address predictions 
or diagnoses of stroke, heart failure, arrhythmias, coronary artery dis-
ease, acute myocardial infarction, hospital recidivism, transplant de-
cisions, and other CVD issues requiring intervention decisions [11,12]. 
Many ML algorithms have been shown to validate such risk prediction 
models reliably, yielding receiver operating characteristic area under 
the curve (ROC AUC) values in the range of ~0.7 to 0.9 [11,12]. 

While numerous ML algorithms can explain the pathophysiological 
“why” underlying a given disorder, other approaches such as deep- 
learning engage “black-box” mathematical models that are of lesser 
value because they are devoid of extrapolation to actual medical in-
sights. ML is gaining traction as an invaluable tool for advancing aca-
demic CVD basic science research discoveries, although literature meta- 
analyses reveal that considerably more work is required to translate ML 
algorithms into everyday clinical practices of reliable precision cardi-
ology and patient management outside of major academic medical 
research institutions [2]. 

To improve accuracy and to validate results, large databases from 
high quality clinical trials are necessary to train the models. This is 
especially important for the elusive holy grail of assessing CVD risk in 
slowly emerging prodromic patients or mining risk assessment in elec-
tronic health records of asymptomatic patients. While the Framingham 
Risk Score was included in the American College of Cardiology/Amer-
ican Heart Association 2010 guideline [13], this traditional model is 
arguably not optimal because its incomplete variable set overestimates 
false positive CVD risk. To enhance diagnosis, the American Heart As-
sociation's Institute for Precision Cardiovascular Medicine [14] intro-
duced patient genomic data into the mix as a laudable contributing 
factor. 

Recent advances in microbiome metagenomics are contributing 
additional useful dimensions in applying ML to CVD. For example, 
assessing multifaceted gut microbiome–host interactions in mood dis-
orders comorbid with CVD has surprisingly uncovered pathophysio-
logical causal relationships that tie together heretofore strange 
bedfellow clinics: cardiology, psychiatry, and gastroenterology [15]. 
This is opening doors to integrate patient management across these 
traditionally siloed disciplines. One such illustration is the application of 
ML that unraveled a new putative phenotype of CVD denoted “depres-
sive-hypertension” [15]. Here, hypertensive patients comorbid with 
depression harbor a unique signature of gastrointestinal microbial spe-
cies' functional genomics in a model that disrupts central control of both 
blood pressure and mood. Further in these patients, ML analyses unin-
terestingly implied that oral ACE inhibitor drugs in the gut lumen 
exhibit antibiotic pharmacology that competitively inhibits key enzymes 
of proinflammatory gut bacterial cell wall biosynthesis associated with 
depression and hypertension [15]. Future expansion of these ML studies 
may lead to new or repurposed drugs to treat resistant hypertension. 

3. Bioethical considerations 

Unprecedented integration of facial expression, other “body lan-
guage”, and volumes of lab data present unlimited opportunities for 
patient management. For example, imaging of facial expressions among 
patients in the critical care setting who may be too ill or sedated to 
express their discomfort has the potential to improve their management. 
The COVID-19 pandemic mandated virtual outpatient visit sessions 
revealing latent opportunities to apply ML to decipher facial expressions 
for the video images that would otherwise have not been captured 

during an in-person visit with a masked patient. 
Nevertheless, making accurate predictions based on extensive use of 

personal biometric data raises the poignant issue that ML scientists and 
clinicians must rigorously address many ethical challenges. Attention 
must be paid to minimalizing biases and skewed representations relating 
to sex/gender, race, stereotypes, and physical limitations identities. 
Furthermore, in the light of the American Medical Association policy on 
AI in healthcare [16], ultimately clinicians must continue to treat pa-
tients humanistically regardless of the use of objective tools at their 
disposal. Emergence of journals such as Intelligence-Based Medicine 
(https://www.sciencedirect.com/journal/intelligence-based-medicine) 
shall facilitate this task. 

4. Rolling out machine learning for CVD 

ML holds much promise for the future of cardiology investigations 
and clinical translations. However, before ML becomes commonplace 
with FDA medical device approval, a considerable number of knowledge 
gaps exist. For example: i) numerous technological and societal/ethical 
challenges remain concerning standardization of gathering CVD data; 
and of ii) assessing model performances [12,17]. Once the models are 
established as robust and ethically unbiased, then iii) infrastructure 
matters must be addressed such as supercomputer processing re-
quirements for ambulatory wearable sensors, clinic-based online cloud 
needs, massive data storage requirements, real-time needs for inter-
ventional procedures, and ethical/social implications of equitable data 
access. Nevertheless, the future is bright for AI/ML as applied to the 
cardiovascular system. 
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