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Abstract: The extracellular matrix (ECM) plays a crucial role in all parts of the eye, from maintaining
clarity and hydration of the cornea and vitreous to regulating angiogenesis, intraocular pressure main-
tenance, and vascular signaling. This review focuses on the interactions of the ECM for homeostasis
of normal physiologic functions of the cornea, vitreous, retina, retinal pigment epithelium, Bruch’s
membrane, and choroid as well as trabecular meshwork, optic nerve, conjunctiva and tenon’s layer as
it relates to glaucoma. A variety of pathways and key factors related to ECM in the eye are discussed,
including but not limited to those related to transforming growth factor-β, vascular endothelial
growth factor, basic-fibroblastic growth factor, connective tissue growth factor, matrix metallopro-
teinases (including MMP-2 and MMP-9, and MMP-14), collagen IV, fibronectin, elastin, canonical
signaling, integrins, and endothelial morphogenesis consistent of cellular activation-tubulogenesis
and cellular differentiation-stabilization. Alterations contributing to disease states such as wound
healing, diabetes-related complications, Fuchs endothelial corneal dystrophy, angiogenesis, fibrosis,
age-related macular degeneration, retinal detachment, and posteriorly inserted vitreous base are
also reviewed.

Keywords: TGF-beta; descemet membrane; collagen; metalloproteinases; AMD; interphotoreceptor
matrix; MMP-9; VEGF; MMP-14; TIMP-3; bruch’s membrane; choroid

1. Introduction

The extracellular matrix (ECM) is an essential and major component of the ocular
microenvironment. It forms a complex but organized meshwork surrounding cells and
confers not only cellular structural and mechanical support, but also regulates cellular
homeostasis and signaling [1]. Proteoglycans (including heparan sulfate, chondroitin
sulfate, and keratin sulfate), hyaluronic acid, collagen, elastin, laminin, fibronectin, and
fibrillin represent major components of the ECM [2,3]. Other components include extracel-
lular proteases (such as matrix metalloproteinases, aka MMPs), immune mediators and
growth factors [4].

The first portion of this manuscript is a review loosely organized from the front to
the back of the eye, starting with the cornea, then addressing parts of the eye involved in
intraocular pressure maintenance and glaucoma (i.e., trabecular meshwork, optic nerve,
conjunctiva and tenon’s layer), vitreous, retina, retinal pigment epithelium, Bruch’s mem-
brane, and choroid. Each section describes how ECM components are involved in home-
ostasis but also details its alterations resulting in disease states such as wound healing,
diabetes-related complications, Fuchs endothelial corneal dystrophy, angiogenesis, fibrosis,
age-related macular degeneration, choroidal neovascularization, retinal detachment, and
posteriorly inserted vitreous base.
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2. Cornea

Under normal conditions, the cornea is able to support visual transparency by remain-
ing avascular. A complex counterbalance of homeostatic mechanisms exist to maintain
corneal avascularity. In the most anterior layers of the cornea, these mechanisms include
soluble factors in the precorneal tear film that mediate corneal immune privilege, such as
transforming growth factor-β (TGF-β); the limbal stem cell niche, which prevents conjunc-
tivalization of the epithelium; and structural factors in the stroma that prevent vascular
ingrowth mechanically, such as tight packing of the collagen lamellae and dense corneal
innervation [5]. Perturbations of these homeostatic conditions, such as those occurring with
trauma, aging and various infectious and inflammatory diseases, can result in degeneration
of these functional barriers against opacification due to vascular infiltration and fibrosis
of the cornea [6]. Corneal opacification due to scarring and vascularization may require
optical rehabilitation with contact lenses or surgical rehabilitation with keratoplasty and
can lead to blindness.

In addition to corneal avascularity, the cornea under normal conditions is able to
support visual clarity by maintaining appropriate hydration. The corneal endothelium-
Descemet membrane (EDM) complex—the functional unit that comprises the two inner-
most layers of the cornea—is the primary regulator of corneal hydration. Within this
complex, the corneal endothelial cell (CEC) monolayer functions as the primary boundary
between the corneal stroma and the anterior chamber. CECs maintain the clarity of the
cornea by regulating corneal stroma hydration through barrier and pump functions. How-
ever, the EDM undergoes changes with aging. There is a high density of endothelial cells at
birth, but these cells are arrested in G1 phase and therefore do not repopulate themselves
following death of adjacent cells. As a result, human corneal endothelial cell density
decreases at an average rate of approximately 0.6% per year in normal corneas throughout
adult life, with gradual increases in polymegathism and pleomorphism to maintain a
continuous endothelial cell layer [7]. Descemet membrane, the basement membrane of the
corneal endothelium, also undergoes age-related changes. This specialized extracellular
matrix is comprised of a fetal anterior banded layer that is present at birth and a posterior
non-banded layer that thickens with age as CECs continue to secrete extracellular matrix
proteins. Reductions in endothelial cell density and alterations to Descemet membrane
occur together in aging and in pathological conditions affecting the posterior cornea. As
CECs do not divide readily, sodium-potassium adenosine triphosphatase pump sites and
cell-cell junctions also decline when the endothelial cell density falls below a critical level.
When the EDM undergoes cell death that exceed age-predicted changes, premature corneal
edema and vision loss can occur, and keratoplasty using donor CECs may be indicated.

We will review the effects of damaging conditions on the anterior corneal layers, and
the interplay between corneal neovascularization and extracellular matrix alterations after
epithelial and stromal wounding. With the wide variety of disease conditions that can lead
to the development of corneal neovascularization (e.g., infection, inflammation, trauma,
degeneration), it is important to understand the mechanisms by which neovascularization
can lead to loss of stromal clarity. We will also review the effects of two common diseases af-
fecting cell–matrix interactions in the EDM complex—Fuchs endothelial corneal dystrophy
and diabetes mellitus—and the impact of these pathologies on posterior corneal health and
function over time. With the emergence of single-layer endothelial keratoplasty techniques
such as Descemet membrane endothelial keratoplasty (DMEK) and Descemet stripping
automated endothelial keratoplasty (DSAEK), it is imperative to understand cell–matrix
interactions in the posterior cornea in more detail, particularly because posterior lamellar
donor tissues may be altered by disease states such as diabetes [8–10].

2.1. Stromal Extracellular Matrix Alterations and Corneal Neovascularization

The cornea is able to maintain clarity and avascularity, even in most cases after
sustaining injury to the epithelium and stroma, by a variety of mechanisms that preserve the
homeostatic balance between pro-angiogenic and anti-angiogenic factors. However, corneal
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neovascularization can occur in a variety of conditions—including microbial keratitis,
autoimmune and systemic inflammatory conditions, corneal graft rejection, neurotrophic
keratitis, chemical injury, contact lens overwear, and limbal stem cell deficiency—where
angiogenesis is initiated despite the presence of homeostatic anti-angiogenic regulatory
mechanisms [6]. Most often, when corneal neovascularization does occur, it involves the
anterior two-thirds of the stroma (89%) and is frequently associated with corneal edema
and/or inflammatory cell recruitment [11].

Corneal stromal wound healing occurs in 4 phases [5]. In the first phase, keratocytes
at the area of wounding undergo apoptosis, which initiates a healing response and leaves a
central acellular zone [12]. In the second phase, adjacent keratocytes immediately begin
to proliferate to repopulate the wound area and transform into fibroblasts that migrate
into the wound area, a process that can take days. In the third phase, transformation of
fibroblasts into myofibroblasts occurs, and in the fourth phase cell-mediated remodeling of
the stroma occurs, which can take more than 1 year. The process of stromal wound healing
is mediated by signaling of transforming growth factor-beta (TGF-β) [13], matrix metallo-
proteinases (MMPs), and a balance between pro-angiogenic factors (vascular endothelial
growth factor [VEGF], basic fibroblastic growth factor [bFGF], also referred to as FGF-2],
and platelet-derived growth factor [PDGF]) and anti-angiogenic factors (angiostatin, endo-
statin, pigment epithelium-derived factor [PEDF], thrombospondin-1, and soluble VEGF
receptor 1 [VEGFR1]) [5,14] (Figure 1).
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Figure 1. Corneal stromal wound healing. Stromal wound healing in the cornea is mediated by
signaling of transforming growth factor-beta (TGF-β), matrix metalloproteinases (MMPs), and a bal-
ance between pro-angiogenic and anti-angiogenic factors. In some cases, corneal neovascularization
can occur.
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When the balance between pro-angiogenesis and anti-angiogenesis is not maintained,
corneal neovascularization can occur (Figure 2). As a result of corneal epithelial and stromal
injury, bFGF becomes upregulated and mediates fibroblast activation, whereas stromal
fibroblast MMP-14 initiates enzymatic activity [5]. bFGF-mediated fibroblasts and stromal
fibroblasts show upregulation of VEGF, and MMP-14 potentiates bFGF-induced corneal
NV [15]. In addition, MMP-14 also mediates the degradation of ECM. Both VEGF upregula-
tion and ECM degradation enhance vascular endothelial cell proliferation, migration, and
tube formation. In addition to MMP-14 and VEGF, vascular growth in the corneal stroma
is also associated with MMP-2, tissue inhibitors of metalloproteinases-2 (TIMP-2), and
Src [5,16], and requires both cell proliferation/migration and extracellular matrix turnover.
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Figure 2. Corneal neovascularization with stromal scarring secondary to atopic keratoconjunctivitis.

Of note, MMP-14 is the most prevalent MMP involved in angiogenesis and ECM
remodeling in the cornea [17,18], and induces angiogenesis and ECM degradation by a vari-
ety of other signaling pathways in addition to the bFGF pathway [5]. MMP-14 activity leads
to the disruption of endothelial tight junctions, reorganization of the actin cytoskeleton,
and proteolysis of the basement membrane and interstitial matrix. Furthermore, MMP-14
cleaves ECM molecules such as type I collagen, degrading the ECM as well as stimulating
migration, organization, and guidance of vascular endothelial cells to form new blood
vessels [19].

2.2. Fuchs Endothelial Corneal Dystrophy (FECD) and EDM Pathology

FECD, the most prevalent indication for endothelial keratoplasty in the United
States [20], results in both CEC dysfunction and abnormal extracellular matrix depo-
sition that are observable clinically as corneal edema and characteristic excrescences on
the posterior cornea (guttae) [19]. Endothelial cell characteristics of FECD include channel
protein dysfunction, mitochondrial dysfunction, reactive oxygen species accumulation, en-
doplasmic reticulum stress, DNA alterations, unfolded protein response, and cell apoptosis
and dropout [21,22].

Experimental data using tissues from patients with FECD as well as expanded, im-
mortalized cell cultures that model FECD demonstrate the overexpression of collagen 1,
fibronectin, and collagen 4 in the EDM complex [23]. These protein expression changes
are the result of zinc finger E-box binding homeobox 1 (ZEB1) and Snail1 activation in
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FECD, which can be stimulated and/or augmented with TGF-β exposure. The result of this
disease-mediated overexpression is both thickening of Descemet membrane and buildup
of matrix proteins that result in corneal guttae formation.

Corneal guttae indicate regions of endothelial cell dropout in FECD. Until recently,
it was not clear whether extracellular matrix buildup caused cellular dropout or whether
cell loss resulted in matrix changes and guttae formation. Importantly, Kocaba et al.
have tested the impact that Descemet membrane tissues with guttae have on normal
corneal endothelial cell health. After seeding healthy immortalized CECs on decellularized
Descemet membrane explants from FECD patients undergoing surgery, they observed a
decrease in the coverage area and number of normal cells seeded onto these abnormal
membranes, and an increase in apoptosis surrounding large diameter guttae, compared to
decellularized membranes from healthy guttae-free control donor corneas [24]. The same
group also noted an increase in the expression of alpha-smooth muscle actin, N-cadherin,
Snail1, and NOX4 in normal CECs that were grown in the presence of large diameter
guttae. These expression footprints indicate that endothelial-mesenchymal transition
(EndoMT) with loss of cell phenotype, as well as increased extracellular matrix component
transcription, occur in conjunction with apoptotic cell death in FECD. Taken together, these
findings indicate that the presence of extracellular matrix alterations alone are capable of
causing altered expression of EndoMT proteins and additional matrix proteins, yielding
a vicious cycle of aberrant cell and matrix changes that over time can result in Descemet
membrane thickening, guttae formation, and ultimately endothelial cell phenotype loss
and cell death (Figure 3).
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2.3. Diabetes and EDM Pathology

Type II diabetes mellitus (T2DM) causes dramatic pathological effects on the corneal
EDM complex and can result in vision loss due to corneal edema. Characteristic disease-
related changes include lower than average CEC densities [25], greater than average post-
operative cell loss [9], altered matrix properties altering EDM biomechanical stiffness [24],
and reduced mitochondrial quality. Endothelial cell dropout in patients with diabetes
may result in greater than average need for keratoplasty. Importantly, changes in both
cell health and Descemet membrane that occur in tandem due to diabetes are important
indicators for keratoplasty surgical outcomes, particularly as they relate to donor tissue
health [8].

T2DM CECs have several functional changes that may explain the greater amount of
cell loss observed in donor corneal tissues. As described by Aldrich et al., CECs from donors
with a history of advanced diabetes have lower mitochondrial respiratory capacity than
control cells, as measured using the Seahorse Extracellular Flux Analyzer [26]. Looking
closely at diabetic CEC mitochondrial morphology using transmission electron microscopy,
there are increases in cristae dropout, inclusion body formation, and average surface area
in donor tissues with T2DM. Taken with the functional data, these findings demonstrate
that the mitochondria in CECs with T2DM have a decreased functional capacity despite
a larger surface area, and indicate an imbalance in mitochondrial dynamics related to
mitochondrial fission and mitophagy (mitochondrial autophagy). Without proper clearance
of dysfunctional mitochondria, CECs may become taxed to the point of cell death, leading
to the higher amounts of dropout observed. Additional studies are indicated in this area,
particularly given recent prospective randomized clinical trial data documenting increased
graft failure rates and greater CEC loss three years following DSAEK surgery using diabetic
graft tissues [9,10].

In addition to these functional changes, T2DM CECs have several structural matrix
properties that may explain their tendency to tear during surgical preparation. Mechanical
peel testing during controlled separation of donor corneal EDM tissues from stroma
showed higher mean values for elastic peel tension (TE), average delamination tension
(TD), and maximum tension (TMAX) in advanced diabetic donor corneas compared to
non-diabetic donor corneas [27]. The region being peeled, between Descemet membrane
and the stroma, is known as the interfacial matrix. Alterations occurring in diabetes to
this region may be responsible for the higher mechanical peel test results, but further
research is required. Using transmission electron microscopy (TEM), Rehany et al. found
there were abnormal 120-nm wide-spaced collagen fibril bundles within both Descemet
membrane and the stroma of noninsulin dependent diabetic patients (n = 16) compared
to nondiabetic controls (n = 16) [28]. The authors hypothesized that the wide spacing
was due to excessive glycosylation products. Together, the mechanical abnormalities and
structural abnormalities in Descemet membrane, the interfacial matrix, and the stroma may
explain the increased risk of tearing diabetic EDM grafts during donor tissue preparation
for Descemet membrane endothelial keratoplasty [8].

3. Glaucoma

Abnormalities of the ECM have been implicated in some models of glaucomatous
optic neuropathy. Cellular and extracellular matrix (ECM) interactions contribute to the
resistance at the trabecular meshwork to aqueous outflow [29]. Increased deposition
or impaired remodeling of extracellular matrix, changes in actin fiber contractility and
arrangement, and regulatory derangements of cell adhesion all appear to play a role in
the pathophysiology of glaucoma [30]. Vascular signaling also appears to play a role,
as recent studies of nitric oxide and cyclic guanosine monophosphate signaling show
alterations in vascular tone in many anterior segment structures as well as improved
outflow facility [31,32]. This has been adapted for therapeutic use [33,34]. However, it is
still unclear whether this signaling pathway involves any mediation or interaction with
extracellular matrix, therefore the rest of this sub-section will focus on pathways that do.
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3.1. Trabecular Meshwork

The ECM is a vital component of all three segments of the trabecular meshwork: the
corneoscleral, uveoscleral, and juxtacanalicular layers. The trabecular meshwork ECM is
comprised of numerous glycosaminoglycans and proteoglycans, collagens, elastic fibrils,
basement membrane, and matrix proteins [29]. In the corneoscleral and uveoscleral layers,
the trabecular meshwork cells wrap around these components to form the trabecular
beams, between which are relatively large intertrabecular pores (Figure 4) [30]. In the
juxtacanalicular layer, which is the site of highest resistance to aqueous outflow, trabecular
meshwork cells have a more interwoven and irregular spatial relationship with ECM
fibrils [35].
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Figure 4. Configuration of the trabecular meshwork. In both the corneoscleral and uveoscleral layers,
the trabecular meshwork cells wrap around a core of extracellular matrix components. Note the
increasingly large intertrabecular pores between the trabecular meshwork beams in the deeper layers.
In the juxtacanalicular layer, the extracellular matrix and the trabecular meshwork cells have a more
irregular and interwoven spatial relationship.

The components of the trabecular meshwork ECM are dynamic in that their expression
or function can be induced by interaction with other components via bidirectional signaling,
or as responses to environmental stimuli, such as mechanical stretch [30,36–40]. As one
example, the matrix metalloproteinases (MMPs) can be induced by mechanical stretch,
glucocorticoid steroids such as dexamethasone, laser trabeculoplasty, and the inflammatory
cytokines TNF-α and TGF-β, leading to ECM remodeling and subsequent alterations
to outflow facility [41–43]. Processes that impede MMP function and ECM remodeling
may therefore decrease outflow facility [36,38,40,44,45]. Similarly, the expression and/or
induction of numerous other proteoglycans and matricellular proteins, such as tenascin C,
thrombospondin-1 and -2, SPARC (secreted protein, acidic and rich in cysteine), connective
tissue growth factor (CTGF), fibronectin, various integrins, and periostin, have also been
associated with changes in intraocular pressure [30,41,46–67]. These mechanisms are
not limited to ECM turnover, and also include modulation of such processes as cellular
contraction, adhesion and migration, proliferation, and phagocytosis [60,68–71] (Figure 5).
It has been suggested that cell–matrix interactions like these are mechanisms by which
the trabecular meshwork can regulate intraocular pressure homeostasis [30], and elements
in these interactive pathways, such as Rho kinase inhibitors, have shown promise as
therapeutic targets [71–73].
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3.2. Optic Nerve

Optic nerve head (ONH) remodeling in the glaucomatous excavation process also
appears to be modulated by cellular and ECM interactions. The lamina cribrosa is a porous
support structure for retinal ganglion cell axons passing through the scleral canal and
out of the eye. The lamina cribrosa contains three cell types, including astrocytes, lamina
cribrosa cells, and microglia [74–76], all of which are interspersed with the ECM. The
ECM of the lamina cribrosa is comprised of proteoglycans as well as the relatively stiff
collagens and relatively flexible elastin [77]. The last two mediate the distensibility of
the lamina cribrosa, which overall becomes less mechanically compliant with age that
is further accentuated in glaucoma [37,77,78]. In glaucomatous eyes, astrocytes at the
prelaminar region have relatively enhanced expression of collagen type IV mRNA, while
lamina cribrosa astrocytes have de novo expression of elastin mRNA. Animal models of
glaucoma have more elastotic fibers at the lamina cribrosa compared to models of nerve
transection or fellow eyes, suggesting that the increased elastin synthesis is a response to
increased intraocular pressure [74]. Stress–strain models and analyses further support the
notion that ECM deposition and dysregulation of ECM remodeling are eventual responses
to mechanical stretch [37,79,80]. TGF-β1 and MMPs appear to have a role in mediating
this pathway, and many other genes, including elastin, collagens IV, VI, VIII and IX,
thrombospondin, perlecan, and lysl oxidase, show increased expression in response to
24 h cyclical stretch [42,75,81]. It has been postulated that the intraocular pressure-induced
changes in the laminar ECM may even impede axonal nutrition despite stable laminar
capillary flow [79].

3.3. Conjunctival and Tenon’s Layer

Subconjunctival fibrosis is also a process involving overproduction of ECM and is of
particular interest for subconjunctival glaucoma surgeries such as trabeculectomy. After a
filtration procedure, fibroblasts of Tenon’s layer (human Tenon’s fibroblasts, HTFs) may
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be chemoattracted to the surgical area by such factors as fibronectin in the aqueous [82].
after which there is increased ECM synthesis and collagen contraction [82–84]. Component
proteins of the subconjunctival ECM include fibronectin and collagen type I, which are
further induced by TGF-β1 [85]. One matricellular protein, SPARC, has been noted to
be significantly increased in HTFs after exposure to TGF-β1 or TGF-β2, and relatively
more SPARC is found in scarred blebs compared to normal Tenon’s. Additionally, SPARC-
null knockout mice have HTFs that do not respond to TGF-β1, and filtration surgery in
these mice functioned longer and with more expansive blebs than compared to wild type
mice [86,87]. Another matricellular protein, CTGF, seems to promote bleb scarring and
has been found to be overexpressed in filtration blebs [88,89]. Subconjunctival injection
of a CTGF antibody after filtration surgery in rabbits also led to relatively larger blebs
and lower intraocular pressure [90]. These matricellular proteins may hold promise as
therapeutic targets for enhancing filtration surgery efficacy.

4. Vitreous

The vitreous humor is unique in that it is comprised almost entirely (>98%) of water
but has various ECM components that give its gel-like consistency at birth and liquefies
with age. Multiple blinding disorders can result from pathologic changes at the vitreoretinal
interface. Normal vitreous is nearly completely acellular except for some macrophage-like
hyalocytes [91]. The vitreous contains a network of glycosaminoglycans (GAGs), primarily
hyaluronan, that supports a scaffold of collagen fibrils allowing a swelling osmotic gradient
to inflate the gel [92].

The most prevalent form of collagen found in the vitreous is type II, which is secreted
as procollagen prior to cleavage. Alternative splicing of exon 2 pre-mRNA can yield two
forms: if exon 2 is expressed it is called procollagen IIA (which more prevalent in the
vitreous); if exon 2 is excluded it is procollagen IIB [93,94]. Other collagens that are less
prevalent but have a relatively prominent role in the vitreous include types V/XI, [95]
IX, [93] XVIII, and VI [96].

Orientation of collagen fibrils varies in different regions of the eye. The central
vitreous fibrils tend to course parallel in an anterior-posterior direction as opposed to the
vitreous base where the fibrils insert directly into the internal limiting membrane (ILM)
perpendicularly [97,98]. The precise mechanisms for adhesion of the vitreous to the ILM
are not fully understood but differs at the vitreous base compared to the rest of the eye.

4.1. Age-Induced ECM Changes in the Vitreous Causing Retinal Detachment

Aging results in vitreous liquefaction and weakening of vitreoretinal adhesion that
is associated with loss of type IX collagen and its chondroitin sulfate side-chains, and a
four-fold increase in ‘sticky’ type II collagen predisposing to fibril fusion [99,100]. Opticin
on the surface of cortical vitreous collagen fibrils may bind heparan sulphate proteoglycan
chains on the ILM, including type XVIII collagen, which can also mediate vitreoretinal
adhesion [101,102]. The role of opticin in angiogenesis from proliferative diabetic retinopa-
thy (PDR) is discussed further in Section 5.1 but it is noteworthy that complete posterior
vitreous detachment is protective against PDR as the collagenenous scaffold network for
neovascularization is no longer present.

Vitreoretinal adhesion is critical in formation of retinal breaks and ensuing rhegmatoge-
nous retinal detachment during the process of posterior vitreous detachment [103,104].
Lattice degeneration increases risk for retinal tears as there is increased vitreoretinal ad-
hesion in these lesions with overlying vitreous liquefaction as well as alterations in the
ILM, absence of basement membranes over the lattice, and increased presence of astro-
cytes [105,106].
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4.2. Posteriorly Inserted Vitreous Base

The vitreous base can migrate posteriorly with advanced age that could be due
to synthesis of new collagen by retinal cells [107]. Posteriorly inserted vitreous base
(PIVB), generally defined as a wider than average vitreous base that straddles the ora
serrata, has been observed in human donor eyes [108–110]. We defined vitreous base
as posteriorly inserted if the posterior hyaloid membrane could not be elevated during
pars plana vitrectomy anterior to the vortex veins, which approximates the equator of
the eye that averages a distance of 7.6 mm posterior to the ora serrata in human donor
eyes (Figure 6). PIVB can present challenges to eyes undergoing vitrectomy due to the
increased number retinal tears (average 3.1) pre-operatively, high incidence of new breaks
occurring during vitrectomy (30%), and increased risk for proliferative vitreoretinopathy
needing re-operation [111]. Primary scleral buckle can be used for some of these cases
but if vitrectomy is employed for a retinal detachment with PIVB, use of a wider buckle,
meticulous shaving of the vitreous base, 360 degree laser, longer-acting tamponade agents,
and potentially removal of crystalline lens [112] may help reduce rates of re-operation and
vision loss [113].
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5. Retina and Retinal Pigment Epithelium (RPE)

In the retina, ECM is organized into the interphotoreceptor matrix (IPM) and the
retinal ECM (RECM) [4]. The IPM (Figure 7) represents the meshwork occupying the
subretinal space between the photoreceptor cells and the retinal pigmented epithelium
(RPE), and is comprised of a unique array of glycoproteins, while the RECM represents
ECM outside the IPM. Structurally, ECM is found in basement membranes including the
inner limiting membrane, the vasculature and Bruch’s membrane (BM) [1]. The major
source of RECM are the Müller cells, intraretinal and migrating glial cells [114] while most
of the IPM components, of which hyaluronan (HA) forms the basic scaffold, are synthesized
by either the RPE or photoreceptors [115].

Within a given tissue, the ECM is a milieu in constant evolution and could show
variation in its composition and organization over time [4]. For instance, age-related
posterior vitreous detachment [116]. A well-known physiologic phenomenon, and ILM
increasing in thickness and stiffness [117]. Both ECM-driven processes are mediated by
changes in retinal cellular differentiation, migration, and adhesion [1,118–120]. Other
physiologic processes related to ECM functionality and breakdown include tissue wound
healing, innate immune defense, and angiogenesis [121–124].
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5.1. Retinal Endothelial Cells and Angiogenesis

The pathophysiology of angiogenesis with relation to ECM are complex and not
fully understood yet. Retinal angiogenesis is vitally important in age-related macular
degeneration (AMD; discussed in Section 5.3) and blinding retinal vascular diseases such
as proliferative diabetic retinopathy (PDR) and retinal vein occlusion, where preretinal
neovascularization could result in massive pre-retinal hemorrhage, contractile fibrovas-
cular membranes and tractional retinal detachment. Before detailing the role of ECM in
vessel formation, it is useful to understand two concepts of angiogenesis: sprouting and
intussusceptive [125]. In sprouting angiogenesis, new vessels are formed after an initial
endothelial “tip cell” degrades the pre-existing vessel basement membrane, migrates into
the surrounding ECM, proliferates and directs the remaining “stalk cells” in the formation
of a cord [125]. This process is dependent on ECM-based growth factor signaling including
vascular endothelial growth factor (VEGF) [125]. Intussusceptive angiogenesis, which is
the basis for preretinal neovascularization in PDR [126] is different as the newly formed
vessel emerges from the splitting of pre-existing blood vessels [125].

The ECM plays a critical role in most, if not all, aspects of vascular biology. ECM
vasculogenic functionality includes the following: (1) supporting key signaling events in
endothelial cell adhesion, proliferation and survival, (2) providing a scaffold and organi-
zational cues for endothelial cells, (3) control and orchestration of the endothelial cells’
cytoskeleton via integrin-dependent signal transduction pathways, (4) tubulogenesis and
three-dimensional remodeling of endothelial cell sheets, and (5) vessel maturation and
stabilization [127].

Endothelial cell morphogenesis follows a programmed stepwise chain of events that
starts with basement membrane breakdown, followed by cellular migration and prolifera-
tion, and ending with lumen formation and stabilization [128,129]. The concept of “fire
and ice” was introduced to describe the role of endothelial ECM in vascular biosynthe-
sis, remodeling, morphogenesis, and stabilization [127]. In fact, there is an ECM-based
signaling balance which dictates when endothelial cells are activated or stabilized [127].
The process of activation will eventually lead to basement membrane degradation, cellular
invasion, proliferation, migration and lumen formation. Both collagen (via interaction with
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α1β1, α2β1 integrins), fibrin, and fibronectin (via interaction with α5β1 and αVβ3 integrins)
are essential for the “fire” chain of events, in conjunction with VEGF (Figure 8) [127].
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During new blood vessel sprouting from pre-existing vasculature, membrane-type
matrix metalloproteinases (MT-MMPs) are important regulators of cellular invasion into
adjacent collagen or fibrin matrices due to their role in degrading ECM proteins at the cell
surface–ECM interface [128,130–132]. MMPs themselves are regulated by tissue inhibitors
of metalloproteinases (TIMPs), including TIMP-1, TIMP-2, TIMP-3, and TIMP-4, and it is
the balance between MMPs and TIMPs that controls membrane degradation [132,133]. For
instance, the “tip cell” utilizes MT1-MMP to degrade the surrounding ECM [134]. TIMP-2
and TIMP-3 are then subsequently produced when “stalk cells” contact pericytes in an
attempt to halt the MT1-MMP induced ECM degradation [135].

Endothelial cells must then structurally adhere to the adjacent ECM in order to mi-
grate [136]. The process of adhesion to ECM is mediated via specific surface integrins
and ensures endothelial cell proliferation, survival and directional motility [137–140].
Endothelial cell proliferation is potentiated by activation of the p44/p42 (Erk1/Erk2)
mitogen-activated protein kinase (MAPK) signal transduction pathway, which is itself
activated by adhesion to fibronectin, a key ECM component [141–143]. Endothelial cell
survival is also ensured by their adhesion to the ECM, which is a powerful regulator of
Fas-induced apoptosis [144]. When attached to the ECM, endothelial cells are protected
from apoptosis [144]. ECM modulates Fas-mediated apoptosis by altering the expression
of Fas and c-Flip, an endogenous antagonist of caspase-8, which is a proteolytic enzyme
involved in programmed cell death [144–146].

ECM also regulates endothelial cell morphogenesis and contractility. The matrix-
integrin-cytoskeletal signaling axis results in both sprouting (= cord formation) and luminal
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vacuolization, which ultimately connect endothelial cells tubular structure
together [127,128]. Collagen I promotes shape changes that lead to precapillary cord
formation witnessed during angiogenesis [147–149]. Endothelial cells cytoskeletal contrac-
tility, which drive cord assembly, is potentiated by collagen I interaction with (1) integrins
α1β1 and α2β1, which suppress the cAMP-dependent protein kinase A [150], and (2)
integrin β1, which activates Src kinase and the GTPase Rho [151].

The interaction between laminin and each integrin α1β1, α2β1, α3β1 and α6β1 in
conjunction with TGF-β are essential for “ice” chain of events which result in endothelial
cell differentiation and stabilization via the cessation of cellular proliferation and related
morphogenic sequelae [125,127,146].

It is important to note that most of the angiogenic pathways described above are
highly conserved and are not unique to human species and their retina. Specifically, many
genes necessary for animal multicellularity including fibronectin [152], cadherin [153],
integrins [154], extracellular matrix domain [155,156], and VEGF machinery [157,158] code
for ancient highly conserved proteins. Interestingly, many of these proteins were conserved
all the way to the “Urmetazoan” [156] and multiple phyla [159]. These demonstrate the
importance of these canonical pathways in vascular biology and, consequently, mammalian
and non-mammalian species development [160–162].

5.2. Angiogenesis and Fibrosis in Proliferative Diabetic Retinopathy

As mentioned above, there is a substantial role for ECM in controlling intussusceptive
angiogenesis, which is the basis for pre-retinal neovascularization seen in PDR [125,126].
This pathologic venous-based angiogenesis is an attempt to re-vascularize the ischemic
retinal areas. In such cases, the cortical vitreous serves as a structural scaffold for pre-
retinal neovascularization, specifically using vitreous ECM as a primary substrate for
their formation [125,126]. Initially, the provisional vascular matrix was found to contain
fibronectin and vitronectin [163], followed by collagen types I and III, which are deposited
by fibroblast-like cells [125,164].

Interestingly, the vitreous normally hosts an anti-angiogenic milieu thanks to ECM
components such as opticin, thrombospondins and endostatin (a fragment of type XVIII
collagen) [125], which are well-known anti-angiogenic mediators [165–167]. In fact, opticin,
which belongs to a family of ECM leucine-rich repeat proteoglycans [168], is a powerful
dose-dependent inhibitor of preretinal neovascularization [169]. Hence, there must be a
pro-angiogenic signaling shift on the collagen fibril surfaces within the vitreous ECM of
PDR eyes. Opticin and other anti-angiogenic mediators could be affected by the enzymatic
degradation of MMPs (1, 2, 3, 7, 8 and 9) and ADAMTS-4 and -5 (a family of extracellular
protease enzymes, short for multi-domain extracellular protease enzyme) [170].

Research in PDR brought up the idea of an ‘angiofibrotic switch’ as a shift in balance
between VEGF and CTGF mediating angiogenesis and fibrosis, respectively [171,172]. The
basis for this work was done primarily on clinical grading and aqueous fluid extracted from
patients. However, membranes removed from patients in a reverse translational, random-
ized controlled trial using VEGF inhibition for end-stage diabetic fibrovascular membranes
demonstrated that VEGF and CTGF were not significantly different between interven-
tion groups despite suppression of VEGF fluid levels in those that received bevacizumab
(Figure 9) [173,174]. CTGF levels in the vitreous and aqueous were also unchanged in
controls and those receiving bevacizumab, but a fair number of these patients had severely
fibrotic, end-stage membranes where a change in CTGF would not have been as likely [174].
This study as well as others found that eyes receiving bevacizumab may have higher levels
of apoptosis [174,175], supporting the notion that VEGF inhibition induces contraction
of blood vessels rather than obliteration of them [176,177]. Endothelial-to-mesenchymal
transition may be involved in diabetic membrane formation as there is evidence that
endothelin-1, a potential vasoconstrictor that promotes fibrosis, is present at higher levels
in diabetic compared to non-diabetic epiretinal membranes [178].



Cells 2021, 10, 687 14 of 27

Cells 2021, 10, 687 14 of 28 
 

 

evidence that endothelin-1, a potential vasoconstrictor that promotes fibrosis, is present 
at higher levels in diabetic compared to non-diabetic epiretinal membranes [178]. 

 
Figure 9. Representative hematoxylin and eosin (H&E) and immunofluorescence images from four 
patients’ membranes in a randomized controlled trial. Co-labeling of antibodies for (A) CD31 
(Green)-CTGF (Red) and (B) cytokeratin (Green)-VEGF (Red). Note the H&E-stained sections do 
not correspond precisely to the cytokeratin-labeled sections. While intravitreal bevacizumab did not 
significantly decrease CTGF (A-top panels) or VEGF (B-top panels) expression in membranes com-
pared to sham group, VEGF was still expressed in membranes of eyes given bevacizumab (B, right 
panels). Scale bar = 100 μm. Abbreviations: CTGF: connective Tissue Growth Factor; VEGF: vascular 
endothelial growth factor. Adapted from Jiao et al. [174]. 

5.3. Choroidal Neovascularization, Autosomal Dominant Radial Drusen and AMD 
In degenerative retinal diseases (whether acquired or inherited), there can be a tip-

ping point at which the degenerative process is accelerated, leading to phenotypic mani-
festations of the disease [4]. This could be represented by the loss of a critical mass of 
retinal ECM [4]. Evidence supporting this hypothesis stems from numerous studies con-
ducted in age-related macular degeneration (AMD), the most common cause of irreversi-
ble blindness in the developed world [179]. Drusen, which are extracellular lipid filled 
deposits between the RPE and the choriocapillaris, are the earliest hallmarks of AMD and 
tend to form over ECM areas with low density or absent choriocapillaris [180–182]. Addi-
tionally, drusen in AMD do not express collagen type IV in contrast to drusen to patients 
with genetic mutation in epidermal growth factor–containing fibrillin-like extracellular 
matrix protein 1 (EFEMP-1) causing autosomal dominant radial drusen (ADRD, aka 
Malattia Leventinese and Doyne Honeycomb Retinal Dystrophy) (Figure 10) [183]. Fur-
thermore, the density of drusen correlates well with the density of “ghost” choriocapillaris 
vessels that is independent of RPE cell height [181,184,185]. 

 
Figure 10. Anti-collagen IV labeling in human donor eyes. Drusen (asterisks) associated with aging 
do not show labeling with antibodies directed against collagen type IV (A–C). Laminae within the 

Figure 9. Representative hematoxylin and eosin (H&E) and immunofluorescence images from
four patients’ membranes in a randomized controlled trial. Co-labeling of antibodies for (A) CD31
(Green)-CTGF (Red) and (B) cytokeratin (Green)-VEGF (Red). Note the H&E-stained sections do
not correspond precisely to the cytokeratin-labeled sections. While intravitreal bevacizumab did
not significantly decrease CTGF (A-top panels) or VEGF (B-top panels) expression in membranes
compared to sham group, VEGF was still expressed in membranes of eyes given bevacizumab
(B, right panels). Scale bar = 100 µm. Abbreviations: CTGF: connective Tissue Growth Factor; VEGF:
vascular endothelial growth factor. Adapted from Jiao et al. [174].

5.3. Choroidal Neovascularization, Autosomal Dominant Radial Drusen and AMD

In degenerative retinal diseases (whether acquired or inherited), there can be a tipping
point at which the degenerative process is accelerated, leading to phenotypic manifestations
of the disease [4]. This could be represented by the loss of a critical mass of retinal ECM [4].
Evidence supporting this hypothesis stems from numerous studies conducted in age-
related macular degeneration (AMD), the most common cause of irreversible blindness in
the developed world [179]. Drusen, which are extracellular lipid filled deposits between the
RPE and the choriocapillaris, are the earliest hallmarks of AMD and tend to form over ECM
areas with low density or absent choriocapillaris [180–182]. Additionally, drusen in AMD
do not express collagen type IV in contrast to drusen to patients with genetic mutation in
epidermal growth factor–containing fibrillin-like extracellular matrix protein 1 (EFEMP-1)
causing autosomal dominant radial drusen (ADRD, aka Malattia Leventinese and Doyne
Honeycomb Retinal Dystrophy) (Figure 10) [183]. Furthermore, the density of drusen
correlates well with the density of “ghost” choriocapillaris vessels that is independent of
RPE cell height [181,184,185].
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Figure 10. Anti-collagen IV labeling in human donor eyes. Drusen (asterisks) associated with aging do
not show labeling with antibodies directed against collagen type IV (A–C). Laminae within the autosomal
dominant radial drusen are immunoreactive with anti-collagen IV antibodies (green fluorescence).
Sections were also labeled with DAPI (blue nuclear fluorescence) and were exposed in the rhodamine
channel (red autofluorescence of the RPE). Scalebar = 50 µm. Adapted from Sohn et al. [183].
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The initial insult driving pathologic changes in AMD is not well understood. Early
pathophysiological changes can be localized to the choriocapillaris, where an abundance
of membrane attack complex (MAC) resulting in aberrant complement activation has
been reported [182,186–189]. MAC based complement injury to choriocapillaries could
be irreversible that leads to uncontrolled angiogenic drive and the formation of choroidal
neovascular membranes (CNV) [185] and geographic atrophy [190]. Acute complement
injuries have been associated with higher levels of MMP-3 and -9 [182].

The pathogenesis of CNV in AMD is complex and several interconnected pathways
including genetic predisposition, oxidative stress, inflammatory/immune mechanism,
and angiogenesis play a role [191,192]. Monogenic inherited retinal diseases directly
affecting extracellular matrix such as ADRD from EFEMP-1 mutation results in early
geographic atrophy and CNV, which is responsive to anti-VEGF therapy [193]. Despite
the overwhelming success of anti-VEGF intravitreal injections (IVI) in treating active CNV
due to exudative AMD [194–196], there is still a subset of incomplete respondents (~15%)
who have persistent sub-retinal fluid (with or without intra-retinal fluid) despite chronic
continued treatment [197–199]. Interestingly, some incomplete responders may initially
show a good response to anti-VEGF IVI but then become treatment resistant and lose
significant vision over time [200–202].

The mechanism of resistance to anti-VEGF IVI treatment is unknown. Tachyphylaxis
was previously proposed as a possible explanation, especially in those eyes that show
initial improvement [203–205]. There may also be a special role of MMP-mediated immune
response in angiogenesis and CNV formation [206–209]. Of note, MMPs are essential in
the degradation of ECM and basement membrane [210,211] and thus are crucial in tissue
remodeling and repair [212,213]. Their major targets are elastin, fibrinogen, gelatin and
various types of collagen molecules, including I, IV and V [214].

Most targets of MMP-9 are structural components of BM, which forms a major an-
giogenic barrier to CNV-based insult in exudative AMD [183,215,216]. There is mounting
evidence of the causal relationship between MMPs, BM pathological remodeling, and CNV
in AMD [215,217–220]. MMPs were reported to be increasingly expressed in pathologically
stressed tissue, such as BM of eyes with AMD [221,222]. Breakdown of BM structural
molecules (specifically elastin and collagen IV) allows for the migration of endothelial cells
during angiogenesis [16,223,224]. Both MMP-9 enzymatic activity and the incidence of
exudative AMD increase with age, suggesting a correlative risk [183,215,216]. MMP-9 is
expressed in choroidal macrophages [225] and has also been found near BM the margins
of CNV membranes [207]. Additionally, MMP-9 was found to increase the RPE VEGF
levels by decreasing levels of pigment epithelium-derived factor (PEDF), which is the main
antagonist of VEGF in the RPE [226–228]. Both VEGF and PEDF are highly expressed in
AMD and their interplay serves as a mediator in the development of CNV [229–233]. A
significant reduction in CNV incidence and severity was reported in MMP-9 knockout
mice artificially subjected to laser injury [234,235]. In addition, inhibition of MMP-9 was
experimentally found to block CNV development [235,236]. In humans, exogenous MMP-9
upregulated the gene expression of VEGF in human RPE cells [237,238]. In their study, Li-
utkevicien et al. showed a significant association between MMP-9 specific single nucleotide
polymorphism and the incidence of AMD at a younger age (<65-year-old) [238]. Chau et al.
also reported three folds higher plasma [239] and aqueous humour [240] levels of MMP-9
in AMD patients compared to healthy controls.

Furthermore, MMP-9 is known to interact with TIMP-3, mutations of which cause
Sorsby fundus dystrophy in which CNV invariably develops patients by their 4th-5th
decade of life [241–243]. Additionally, AMD eyes with marked choroidal thinning due
to geographic atrophy have been reported to have a marked increase in TIMP-3 activ-
ity [244,245]. This is could then hinder the normal choroidal physiological angiogenic
repair and contribute to the observed choroidal thinning [244]. In addition, there is a
genetic association of the MMP-9 locus with exudative AMD, which was found in the
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International AMD Genetics Consortium in a large genome wide association study [245]
and independently confirmed recently in an Iowa cohort of patients with AMD [246].

6. Bruch’s Membrane and Choroid

Bruch’s membrane is a complex, multilayered extracellular matrix compartment. It
is comprised of two layers with salient features of fibrillar collagen surrounding a central
layer of elastin and related molecules (Figure 11). While the basal laminae of the RPE
and choriocapillaris are sometimes considered the inner and outer boundaries of Bruch’s
membrane, increasingly investigators find it useful to consider these separately [247]. Both
the structure and pathology of Bruch’s membrane are reminiscent of the arterial wall in
atherosclerotic disease [248].
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Figure 11. Transmission electron micrograph depicting the layers of Bruch’s membrane from a human
eye. Both the basal laminae of the RPE and choriocapillaris (RPE-BL and CC-BL) are depicted, in addition
to inner collagenous zone (ICZ) and outer collagenous zone (OCZ), occupied by fibrillar collagens, as
well as the elastic lamina (EL), evident by its thick electron dense bundles. Scale bar = 1 µm.

Bruch’s membrane itself has numerous functions: it serves as a barrier to abnormal
neovascularization from the choroid, occupying the interface between the abundant vas-
culature of the choriocapillaris and the avascular outer retina. It contains both structural
proteins and matricellular proteins. An abbreviated list of constituents of this unusual ECM
compartment includes collagens I, III, IV, V, VI, VIII, fibrillin-1, fibulins 3 and 5, TIMP3,
MMPs, and antiangiogenic effectors [249–254]. Several ECM constituents of Bruch’s mem-
brane become greatly reduced during aging and macular disease, concomitant with the
accumulation of lipidic debris [255,256], including the anti-angiogenic matricellular protein
thrombospondin [257]. Age-related structural and biochemical changes in Bruch’s mem-
brane are mirrored by an age-related decrease in hydraulic conductivity [258]. The elastic
layer of Bruch’s membrane further becomes fragmented in AMD, with a loss of elastin
integrity quantifiable both by histochemical staining and ultrastructural appearance [259].
Elastin degradation results in the liberation of elastin derived peptides (EDPs) which have
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been found to be elevated in the circulation of patients with neovascular AMD [260]. Liber-
ated elastin fragments activate choroidal endothelial cells to migrate toward the source of
the peptides, which ECs detect using a heterotrimeric cell surface elastin receptor.

The loss of elastin in Bruch’s membrane (whether due to increased metalloproteinase
activity, macrophage extravasation, increased brittleness due to calcification, and/or other
events) has the potential to both create a physical opening for growing vascular tubes as
well as signaling choroidal endothelial cell migration. Moreover, human primary choroidal
ECs stimulated with elastin fragments increase MMP-9 expression, potentially promoting
further loss of Bruch’s membrane elastin and further amplification of angiogenesis [261].
The reader is referred to several reviews for more information (Figure 11) [216,262,263].

Outside of Bruch’s membrane, the choroidal ECM has been relatively understudied.
The choroid is comprised of several cell types with their own basal laminae, including
endothelial cells (which differ in composition between cells at different positions in the
vascular tree and between the choriocapillaris and RPE) [253], pericytes/smooth muscle
cells surrounding capillaries and large vessels respectively, and Schwann cells [225]. Other
abundant cells such as melanocytes and especially fibroblasts contribute to ECM synthesis.
The choroidal stroma, which occupies the space between and around vascular lumens, in-
cludes abundant fibrillar collagens with a ground substance containing a complex array of
glycosaminoglycans including heparan sulfate and chondroitin sulfate proteoglycans [264].
Choroidal thinning, observed in normal aging and in geographic atrophy, is characterized
by persistence of collagen fibrils and loss of ground substance, with a shift in the balance
of serine protease inhibitors and metalloproteinase inhibitors as described above [244].
Other clinically meaningful aspects of choroidal thickness, such as the changes that oc-
cur in pachychoroid spectrum diseases like central serous chorioretinopathy, remain to
be elucidated.
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