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Abstract

In current practice, when dating the root of a Bayesian language phylogeny the researcher

is required to supply some of the information beforehand, including a distribution of root

ages and dates for some nodes serving as calibration points. In addition to the potential sub-

jectivity that this leaves room for, the problem arises that for many of the language families

of the world there are no available internal calibration points. Here we address the following

questions: Can a new Bayesian framework which overcomes these problems be introduced

and how well does it perform? The new framework that we present is generalized in the

sense that no family-specific priors or calibration points are needed. We moreover introduce

a way to overcome another potential source of subjectivity in Bayesian tree inference as

commonly practiced, namely that of manual cognate identification; instead, we apply an

automated approach. Dates are obtained by fitting a Gamma regression model to tree

lengths and known time depths for 30 phylogenetically independent calibration points. This

model is used to predict the time depths of both the root and the internal nodes for 116 lan-

guage families, producing a total of 1,287 dates for families and subgroups. It turns out that

results are similar to those of published Bayesian studies of individual language families.

The performance of the method is compared to automated glottochronology, which is an

update of the classical method of Swadesh drawing upon automated cognate recognition

and a new formula for deriving a time depth from percentages of shared cognates. It is also

compared to a third dating method, that of the Automated Similarity Judgment Program

(ASJP). In terms of errors and correlations with known dates, ASJP works better than the

new method and both work better than automated glottochronology.

Introduction

The assignment of age to a proto-language has long been a desideratum in historical linguis-

tics, and with [1] and in subsequent works by Swadesh a quantitative method was developed

based on the hypothesis that the replacement of core lexical items is approximately constant

over time. This method has been criticized extensively, mainly through examples showing that
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lexical replacement rates can vary dramatically [2]. Debates over glottochronology [3–5] can-

not be regarded as settled since little is known statistically about the variability of lexical

change across the world’s languages. We therefore include as part of this paper an extensive

test of a modern version of glottochronology. As a matter of fact, a recent Bayesian phyloge-

netic study [6] found that a Turkic languages dataset supports a strict clock model, which

assumes a constant rate of change, over the commonly used relaxed clock model, which allows

for variable rates of change, suggesting that the assumptions of glottochronology can still be

valid within the Bayesian phylogenetic dating framework. Holman and collaborators [7] intro-

duced an alternative to glottochronology that used automatically measured string similarities

rather than cognate counts as input to a linear formula for deriving dates. Another objective of

the present paper is to also include this method in a performance comparison. Meanwhile, the

related field of biology has seen application of Bayesian methods for inferring ages of species

based on molecular data. In particular, there have been methodological developments in terms

of increasing model complexity starting from a constant rate assumption to the development

of models that handle varying rates across the branches [8, pp. 361-388]. The third and most

important focus of this paper is to test whether Bayesian dating of languages can meaningfully

be carried out in a framework which, like the ASJP method, is generalized in the sense that

every language group is approached in the same way.

Early Bayesian linguistic phylogenetic studies of the Indo-European [9] and Austronesian

[10] language families inferred dates using a combination of outgroups, rate smoothing meth-

ods, and calibration points associated with internal nodes. The next generation of Bayesian lin-

guistic phylogenetic studies employed tip dating or node dating [11] techniques to jointly infer

divergence times and phylogenies. These approaches have been applied to the Indo-European

[12–14], Dravidian [15], and Sino-Tibetan [16, 17] language families. The success of Bayesian

approaches as applied to language data has traditionally been dependent on the availability of

information regarding an ancestral language (e.g., Old English), a language pertaining to a

branch no longer represented by extant languages (e.g., Hittite), or an internal node which can

be associated with archaeological (e.g., Iranian) or historical (e.g., Romance) evidence for the

diversification of the corresponding group of languages.

Vagaries of Bayesian dating

Bayesian methods for dating groups of related languages are popular, but the results are often

debated, and the debates are rarely resolved—for instance, see [9, 12–14, 18] for debates con-

cerning the Indo-European family. While the literature points to some degree of consensus on

the fruitfulness of Bayesian approaches to the dating of language groups, the results of these

approaches are less prone to consensus. The information used to construct dated phylogenies

normally comes from laboriously assembled, manually curated cognate data, and researchers

have relied on dates from archaeology or attestations of ancient languages as priors in the dat-

ing procedure—information which is only available in a minority of cases. Thus, only a small

handful of language families have been dated through these methods in spite of the existence

of 233 families [19] of spoken languages and an ever-present need for both individual informa-

tion on each of the world’s human populations and systematic studies of the dynamics of

human populations on a worldwide scale.

The choice of priors, differences in manual cognate judgments, and choices relating to cali-

bration can all influence the age estimates produced by Bayesian phylogenetic inference meth-

ods leading to widely differing conclusions. In the case of the Indo-European family, the

application of different tree priors (assumptions about the evolution of phylogenies, specifi-

cally ‘coalescent’ [20] vs. ‘birth-death’ [21]) on the same dataset produced root age estimates
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that differed by 2, 000 years [13]. Manually produced cognate sets have nearly always consti-

tuted the input data to the Bayesian approaches, but judgments about cognacy may vary

among scholars and these judgments directly influence the structure and quality of the phylog-

eny inferred. For instance, correction of the lexical data [12] for both lexical errors and cognate

judgments showed that the corrected datasets can lead to ages that are different—both younger

and significantly different in terms of the Bayes Factor criterion [22]—from the original ages

inferred based on the original dataset [14]. This result has been confirmed in [13], a paper that

used a different set of tree priors but nevertheless reached similar conclusions as [12]. In the

case of the Sino-Tibetan language family, a comparison of two recent papers [16, 17] shows

that the choice of cognate sets, language sample, and calibration points produces root age esti-

mates differing by 1500 years. Finally, different tree calibrations can yield different root ages,

as illustrated by a case study of Uralic [23], where the calibrations used in a previous paper

[24] were revised, yielding a 850 year (15+%) increase in the age estimate and a 3000 year wid-

ening of the credible interval (i.e., the 95% highest posterior density [HPD] interval).

Research questions

For the vast majority of the world’s language families calibrating internal nodes based on

archaeology and history will not be applicable, and even when such calibrations are possible,

they are fraught with difficulties related to subjective judgments. In this paper, we are inter-

ested in looking at whether Bayesian dating of language groups can be brought on a more gen-

eralizable and objective footing. Specifically, we want to (1) infer ages for a language family

with no calibration points; (2) replace the manual work on identifying cognates with an auto-

mated procedure. Through (1)–(2), Bayesian phylogenetic dating would be turned into a con-

sistent and objective instrument, and, importantly, its results can now be evaluated across

language groups since the input is no longer specific to the researcher choosing priors and cali-

bration points and making cognacy decisions. The new approach, which we refer to as Gener-

alized Bayesian Dating (GBD), would combine the strengths of the Bayesian and the ASJP

approaches: like the Bayesian approach, it assumes an explicit model of lineage diversification,

uses cognate sets and phonological information, handles across-site and among-branch varia-

tion, and produces estimates of uncertainty through posterior tree samples; like the ASJP

approach, it can be applied for a language family even when there is no calibration information

regarding some of the internal nodes in the tree.

Materials and methods

Materials

We perform all our experiments using Version 18 of the ASJP dataset, which is available online

[25]. This dataset has word lists for more than 5,000 languages of the world, making it the larg-

est online lexical database available in terms of language coverage. In order to develop and test

a generalized method for dating language group divergence, a set of language groups for which

there is information about when their shared proto-language was spoken is needed. Such a set

of (fifty-two) calibration points is already available [7]. Dates for the various groups come

from historical, archaeological or epigraphic evidence. We also use those dates here, but not all

of them. Rather, we apply four selection criteria as described in the following paragraph.

For a tree-based approach to dating it is sensible to require at least three taxa since three

taxa would constitute a rooted phylogeny. More specifically, (1) for a calibration point to be

used we require that the pertinent data include at least three taxa carrying different ISO-639-3

codes. In general, more taxa make for better age estimates. Thus, the second of our criteria is

to (2) choose a more inclusive group when the choice between a less or more inclusive group
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would lead to the same number of calibration points. Another criterion, (3) is to have as many

calibration points as possible, but (4) without getting overlaps in terms of the doculects that

they contain.

As regards the last criterion we differ from the authors of the ASJP study [7], who included

among their calibration points some groups contained in larger groups. For instance, not only

were Indo-European subgroups such as Brythonic, East Slavic, and Germanic included in

their analysis, but also Indo-European (minus Anatolian and Tocharian), the wider family

containing those groups. In the present study, in contrast, Indo-European was excluded as a

calibration point. Out of the 52 calibration points, 8 points are excluded because they are not

represented in our data by three or more doculects with different ISO 639-3 codes (Cham, Ga-

Dangme, Goidelic, Sorbian, Northern Roglai Tsat, Ket-Yugh, Southwest Tungusic, Czech-Slo-

vak); Khoe-Kwadi was taken out because the only member of one of the two major branches,

Kwadi, is excluded for being extinct. A language group corresponding to Swahili could not be

included since it is a subgroup of the larger Benue-Congo group, selected here because it has a

greater number of languages than Swahili (23). By criteria (1-4) we arrived at the 30 core

groups given in Table 1.

The present analyses were carried out using the 40-item Swadesh lists of the ASJP database

[25]. Only lists that are at least 70% complete (containing 28 or more items) were used and no

extinct languages or creoles were admitted. Following the Glottolog classification [19], we

have aimed at maximizing the number of subgroups represented in the data while, for reasons

of computational load, restricting the number of doculects for any given family to a maximum

of 400. The choice of working with the short, 40-item word lists of the ASJP database [25]

rather than longer word lists is a motivated one. We considered using publicly available data-

sets that have cognate sets for longer lists of meanings, including databases of Indo-European

[12] (210 items), Bantu [26] (100 items), Austronesian [10] (210 items), and Pama-Nyungan

languages [27] (200 items). However, these datasets are limited to a few language families, do

not cover all calibration points listed in Table 1, and do not share the same set of meanings.

Thus, for maximal coverage and a meaningful comparison across language groups, we only

work with the ASJP database.

Table 1. Language groups representing calibration points, family membership, number of doculects in the data (N), and known age. The known age sometimes repre-

sent means of intervals given in the sources of the estimates.

Group Family N Known Age Group Family N Known Age

Benue-Congo Atlantic-Congo 148 6500 Mississippi Valley Siouan Siouan 8 2475

Brythonic Indo-European 3 1450 Mongolic Mongolic 8 750

Chinese Sino-Tibetan 16 2000 Ongamo-Maa Nilotic 4 1150

Cholan Mayan 5 1600 Oromo Afro-Asiatic 5 460

Dardic Indo-European 28 3550 Pama-Nyungan Pama-Nyungan 68 4500

East Polynesian Austronesian 18 1050 Romance Indo-European 49 1729

East Slavic Indo-European 4 760 Romani Indo-European 26 650

English-Frisian Indo-European 3 1550 Saami Uralic 6 1750

Ethiopian Semitic Afro-Asiatic 17 2450 Scandinavian Indo-European 10 1100

Hmong-Mien Hmong-Mien 38 2500 Southern Nilotic Nilotic 14 2500

Inuit Eskimo-Aleut 6 800 Southern Songhai Songhay 5 550

Iranian Indo-European 26 3900 Temotu Austronesian 10 3200

Ma’anyan-Malagasy Austronesian 44 1350 Tupi-Guarani Tupian 12 1750

Malayo-Chamic Austronesian 32 2400 Turkic Turkic 55 2500

Maltese-Maghreb Arabic Afro-Asiatic 3 910 Wakashan Wakashan 6 2500

https://doi.org/10.1371/journal.pone.0236522.t001
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Raw data and code for selecting word lists and performing cognate identification is pro-

vided as separate folders in S1 File.

Methods

Generalized Bayesian dating. Automated cognate detection. There is a rich literature on

developing automated cognate detection methods [28, 29] for the purpose of detecting cog-

nates and inferring phylogenetic trees [30, 31]. The automated cognate detection methods

compute a similarity between two words based on hand-crafted phonetic similarity measures

[32, 33], linear classifiers using word similarity scores [34, 35] or phoneme n-grams as features

for training [36, 37] on hand-annotated training data, and neural networks [38]. Subsequently,

the systems apply different clustering algorithms such as InfoMap [39] or UPGMA [40] to

infer cognate clusters. Research on the performance of different clustering algorithms at the

task of cognate detection [29, 41] shows that tuning the threshold can improve the results even

for the simplest one, which is the average linkage clustering algorithm.

A recent paper [42] introduced a new clustering algorithm for cognate detection inspired

by the Chinese Restaurant Process (CRP) [43], which does not require any threshold for form-

ing cognate clusters. The CRP algorithm forms cognate clusters by linking a word to the clus-

ter to which it has the highest similarity or to itself, where the self-similarity in a singleton

cluster is penalized by multiplying it by a discount parameter α(> 0). The α parameter is

tuned through a Metropolis-Hastings step for each meaning separately. Overall, the paper

shows that the clusters formed by the CRP algorithm are of higher quality than the clusters

using the Infomap algorithm, which works with a single threshold for all the meanings. The

CRP algorithm has been evaluated on word lists belonging to the Austronesian, Austro-Asi-

atic, Pama-Nyungan, Indo-European, and Sino-Tibetan language families. Approaches [44]

that infer trees based on an explicit model of sound change do not perform cognate detection

at all and therefore cannot be applied to Swadesh list data but only to cognate data from ety-

mological dictionaries; or else, they are not yet scalable for datasets consisting of hundreds of

languages [45].

Recent research in computational historical linguistics [30, 46] has shown that the trees

inferred using cognates inferred from automated methods are as good as those inferred from

expert annotated cognate judgments. We believe that the next area for application of these cog-

nate detection methods is in linguistic dating, because the dating process has traditionally

been heavily dependent on manual cognate detection, which is time consuming, potentially

biased, and not yet available for most of the world’s language families.

Using both cognate and sound class data. Bayesian phylogenetic studies typically use cognate

classes to infer phylogenies, but it has been shown [46] that using both cognates and sound

classes give better results for phylogenetic inference when drawing upon (an earlier version of)

the ASJP database. We employ the automated cognate identification system described above

[42] to assign cognate judgments to word lists. The choice of using such a system is supported

by the results from two studies [30, 46], which show that automatically inferred cognates can

yield high quality phylogenetic trees. In addition to the cognate characters, we operate with

sound class characters, which are extracted as follows. Each word representing a given mean-

ing is transformed into a set of characters representing the presence or absence of each of the

sound classes found across words belonging to the given meaning. For instance, Swedish hund
and English “dog” would yield a total of 7 characters, each representing a sound class in the set

{o, u, d, g, h, n}.

Bayesian phylogenetic inference. All phylogenetic analyses were performed with MrBayes

[47]. Cognate characters and sound class characters were treated as separate partitions and
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were subjected to a partition analysis. We used a birth-death model derived from the fossilized

Birth-Death tree prior [48] with fossilization rate set to 0 since there are no extinct languages

in the data. The birth-death model handles incomplete language sampling through a parame-

ter ρ = n/N, where n is the number of languages in the sample and N is the total number of

extant languages in the family. For families represented by more than 400 doculects we

restricted the sample size to 400 doculects for reasons of processing time. The families in ques-

tion and the number of selected vs. available doculects are: Austronesian (355/1254), Atlantic-

Congo (265/1500), Afro-Asiatic (151/364), and Indo-European (205/462). In these cases the

doculects were selected so as to maximize the phylogenetic diversity. Specifically, we applied

the following procedure: first we selected the best documented doculect (the one with the larg-

est number of words or a random one in case of ties) from the subgroups at the deepest level of

the Glottolog classification and checked the size of the sample. If it was still greater than 400

we went up one level, again selecting one doculect per subgroup. This continued until the sam-

ple was below 400. Moreover, we corrected for extant taxa sampling bias through diversified

sampling correction [49] implemented in [48]. We used the number of extant doculects in the

ASJP database as representing the number of extant taxa, N, and fixed n (the number of sam-

pled taxa) to be the number of doculects in the sample. In the case of families of size less than

400, we included all the doculects and assumed ρ = 1. Setting N to the number of extant docu-

lects in the database and using ρ = 1 for smaller families are both approximations. But they are

motivated by the facts that the database contains 7655 doculects and the number of languages

in the world is 7570 by a widely used estimate [50], so it would be a fair approximation on

average. Moreover, a consistent and objective criterion for counting languages vs. dialects [51]

has not yet been applied in any language catalogue, so setting these parameters will in any case

involve approximations. The birth-death prior used in this paper is conditioned on the root

height, which has to be specified beforehand. Since the tree is uncalibrated, the root height is

drawn from a Gamma distribution with rate and shape parameters set to 1.

Lexical substitution model. We model variation across sites for each partition separately.

The Bayesian partition analysis assumes that each partition has a different rate (drawn from a

symmetric Dirichlet distribution), which enters the calculation of the likelihood for a site

through its multiplication with the branch lengths in the tree. In this paper, we employ a con-

tinuous time Markov chain process model for binary states (binCTMC) with site rates drawn

from a four category discrete gamma distribution (binCTMC+Γ model) in all phylogenetic

analyses, correcting for all-absence sites [52]. We prefer binCTMC model over other alterna-

tive substitution models such as covarion and stochastic Dollo for the following reasons. The

binCTMC model is a single parameter model whereas the covarion model has three parame-

ters, with binCTMC being a special case of the covarion model. In the stochastic Dollo model,

a cognate can be gained only once, which prohibits regaining of a cognate through a process

such as internal borrowing. The suitability of these substitution models has been shown to be

variable, with binCTMC being the best suited for Indo-European [12] and covarion the best

suited for Sino-Tibetan [17], and a comparative study of different substitution models on four

different language families, including Indo-European [53], suggest that there is no clear win-

ner between binCTMC and covarion models. Thus, we selected the binCTMC+Γ model for its

simplicity and competitiveness against the more complex covarion model.

Branch lengths. A branch length in a time tree is the product of calendar time units and

clock rate. The clock rate, c, measures the average number of substitutions that can occur per

year per site and is assigned a prior. If the clock rate is assumed to be constant for the whole

tree the model it is a strict clock rate. It is normal to relax this assumption since branches can

have varying rates of evolution. The branch lengths, then, are further multiplied by a factor

drawn from a distribution which is parameterized in terms of the original branch length.
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There are multiple relaxed clock rate models [54] employing different assumptions for deriv-

ing the multiplicative factor. In this paper, we use an Independent Gamma Rate [54] relaxed

clock model (IGR) where each branch’s rate comes from different Gamma distributions whose

mean is 1.0 and variance is proportional to the inverse of the branch length. We fix the clock

rate to 1 but allow the branches to have different rates drawn from the IGR model, thereby

allowing the branch rates to deviate from the strict clock assumption.

In this paper, we assume that the joint prior probability of the branch lengths under a birth-

death process is conditioned on the tree height which in turn is drawn from a Gamma distri-

bution with mean and variance set to 1. Does the tree prior assumption have any bearing on

distribution of tree lengths? While we could not find any research showing a relation between

tree length (in a birth-death process) and a known probability distribution, there are results

[55] showing that the tree length in a Yule process (pure birth process) conditioned on tree

height is dependent on a Gamma distribution, whereas the same Yule process, if conditioned

on the number of extant languages, follows a Gamma distribution. (The Yule process, inciden-

tally, is not a realistic model for languages since it is well known that languages may die out.)

We acknowledge that the statistical properties of tree length in a birth-death tree conditioned

on tree height is not yet known.

Topological constraints. As in most previous Bayesian phylogenetic studies we employ topo-

logical constraints, but unlike our predecessors we introduce as many constraints as possible

since we are not concerned with language classification but only with the dating of recognized

subgroups. A recent study [46] using the maximum likelihood phylogenetic software RAxML

[56] showed that trees inferred from word lists in the ASJP database largely agree with the

Glottolog [19] classification in terms of quartet distances [57]. We therefore find it justifiable

to not take the extra step of inferring all nodes in the phylogenies but rather to fix most of the

nodes of the tree based on the Glottolog classification. The limit on constrained nodes are

determined by the data: as mentioned earlier, we require that each constrained node should

suspend at least three doculects. All in all we extracted 1171 topological constraints from

Glottolog.

Monte-Carlo Markov chain settings. For each family, we did two independent runs and sam-

pled parameters by running one cold and two hot chains in parallel. The hot chains allow the

MCMC chain to explore the parameter landscape efficiently by moving across the peaks and

not get stuck in a local optimum. We ran the chains for different numbers of generations

depending on the number, N, of doculects in a family: 107 for N< 100, 3 × 107 for 100 <

N< 200 and 6 × 107 for N> 200. The chain was sampled at every 1000th generation in order

to reduce auto-correlation. We assessed the convergence of branch lengths using the Potential

Scale Reduction Factor [58], whose value should approach 1 across independent runs should

the runs converge. The independence between the samples for parameters such as tree height,

birth-death rates, and the IGR variance parameter is assessed using Estimated Sample Size,

which is normally required to be at least 100 for all our parameters [58]. The rate variation

across sites is modeled using a discrete Gamma distribution with four rate categories [59].

The Nexus files and MrBayes command files are provided in the folder Nexus_MrBayes
folder in S1 File. The output of MrBayes is available for download here: https://figshare.com/s/

a2ba6dbb656b6cb0b9bb.

Gamma regression. Gamma regression is a special case in the Generalized Linear Model

(GLM) framework [60], where the response variable follows a Gamma distribution. An explor-

atory data analysis showed that a log-log plot of known age vs. median tree length (MTL) is lin-

ear. We choose Gamma distributed ages over normally distributed ages for the following

reasons: (1) The age of a language group is always positive, (2) The assumption of constant var-

iance is not realistic because there is a difference in the variance in the ages of the language
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families, (3) A linear regression model on a log-log scale implies that the response variable has

constant variance and is not on the original scale. These problems can be solved with a

Gamma distribution with ν and λ as shape and rate parameters whose mean (μ = ν/λ) and vari-

ance are μ2/ν.

The Gamma distribution has positive support, non-constant variance, and removes the

need for logarithmic transformation. The GLM framework features a smooth, invertible func-

tion that links the response variable with the predictor, which is a log function here. The

parameters (coefficients: β0 and β1, and the shape parameter ν) can be estimated using an

MCMC sampler in the Bayesian framework. The priors for β0 and β1 are uniform distributions

in the range of −100 to 100. The ν parameter is always positive and the prior is a uniform dis-

tribution ranging from 0 to 100. The posterior distribution of the parameters are obtained by

running the MCMC chain for 106 generations and sampling at every 100th generation to

reduce auto-correlation. The initial 25% of the generations are discarded as burn-in and the

independence of the samples is assessed using the Estimated Sample Size (> 1000) for all the

parameters in our experiments. All MCMC samplers are implemented using the RevBayes

programming language [61].

In the following, we evaluate the choice of the Gamma regression model against the linear

regression model using AICM (Akaike’s Information Criterion through MCMC [62]), where

the best model has the lowest AICM. The prior for variance (in the linear regression model) is

exponentially distributed with mean 1. The AICM values are estimated using the Tracer soft-

ware [63] from the post-burnin (25% discarded) samples for the four models. The model with

the lowest AICM (shown in bold) is the best fit for the data. The first three models assume that

the age of a family follows a Gamma distribution whereas the last line shows a model where a

known age is distributed normally. The null model for Gamma regression has a poor fit

whereas the regression model with normally distributed ages shows the worst fit to the data.

The results of the model evaluation are presented in Table 2. The AICM values show that

Gamma distributed age model is better than a normally distributed age model.

Inferring ages. The MCMC procedure yielded 7500 Gamma regression parameters sets. We

employed each set of parameters to compute the age distributions using the median tree length

for the topological constraint. Subsequently we report the median and 95% HPD intervals for

the ages from the computed ages.

Although the sum of the branch lengths is used to compute the tree length of a language

group, the relaxed clock setting (Independent Gamma Rates; IGR) applied in the tree inference

procedure works with a slightly modified branch length called effective branch length, which

is obtained by multiplying a branch length with a rate drawn from a Gamma distribution. The

effective branch length is used to compute the likelihood of the tree using the pruning algo-

rithm. We experimented with regard to the relation between the median effective branch

lengths and the median branch lengths through a scatterplot for all the topological constraints.

A linear trendline between both types of branch lengths shows a slope of 1.031, an intercept of

Table 2. AICM values for different models. The first four lines show Gamma regression models using different pre-

dictors. The last line shows a linear model with logarithm of MTL as predictor.

Model AICM

Age * Intercept (Null model) 507.521

Age * log(MTL) 490.108

Age * MTL 493.199

Age * log(MTL) (Normally distributed Age) 854.408

https://doi.org/10.1371/journal.pone.0236522.t002
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−0.004 and R2 = 0.94. We therefore use the unmodified branch lengths to compute the tree

lengths.

The choice of median tree length as opposed to mean tree length is motivated by the fact

that median tree length corresponds to the length of one actual tree, whereas the mean is a

more abstract number, being computed from the sample of tree lengths. The two are in any

case highly correlated for the 116 language families (R2 = 0.997). We always report the median

statistic for all ages and branch lengths.

The exponential function’s parameters, a = 1843 and b = 0.35, follow from the median esti-

mates of β0, β1 which are 7.52 and 0.35. The formula is t = 1843 ×MTL0.35. When MTL tends

towards 0, as is the case of close dialects, the age of the most recent common ancestor also

tends towards 0.

In earlier exploratory experiments (not reported in detail here), R2 is almost zero when tree

height is used as a predictor for the 30 groups rather than tree length. So, we adopted tree

length which is clearly to be preferred over tree height.

The Means, medians, standard deviations and 95% HPD intervals for these dates are given

in S1 Table. In addition, consensus trees for all language families annotated with inferred dates

are provided in Consensus_Trees_Ages folder in S2 File.

Non-Bayesian approaches. We tested two non-Bayesian approaches: the published ver-

sion of ASJP chronology [7] and a version of traditional glottochronology [64] which is mod-

ernized so as to draw upon automated rather than manual cognate counts and where the

calibration of cognate percentages and age comes from the same 30 calibration points used in

our Bayesian dating experiment rather than a few language pairs from the literature [65]. In

both cases, for each group, a flat classification structure consisting of the same major sub-

groups assumed in the paper introducing ASJP chronology [7] was defined. These subgroups

are usually the same as in Ethnologue [50], but in a few cases a date is found in the literature

for a language group not considered a subgroup in that classification although it is still com-

patible with it. In such cases the classification followed here will differ from [50], but it will be

the same as in [7]. The classification divides doculects into sets for the purpose of computing

an average cognate count or average twice-modified Levenshtein distance (LDND) between all

pairs of doculects whose members belong to different sets. When there is no internal classifica-

tion of a group, such as in the case of Chinese, the sets are defined following the ISO-639-3

standard. Thus, for instance, for Wakashan an average is found for all pairs where one doculect

pertains to Northern and another one pertains to Southern Wakashan. For Chinese, however,

the sets are defined as [cdo], [cmn], [cpx], etc., and the average is found for all doculects per-

taining to different sets of this kind.

ASJP chronology. The procedure for ASJP chronology is described in [7] and will only be

briefly summarized here. The basic input to the method is the twice-modified Levenshtein dis-

tance called LDND (Levenshtein Distance Normalized Divided) used in many papers of the

ASJP project and extensively discussed in [66]. This is turned into a similarity, LSND

(Levenshtein Similarity Normalized Divided), by subtracting LDND from 100%. LSND can be

abbreviated s. The LSND (or s) can be directly converted into an age estimate through a for-

mula t = (log(s) − log(s0))/2log(r), where s0 is similarity at t = 0, r is a retention rate, and s is the

measured similarity. Here we use the values s0 = 92% and r = 0.72 that were established in [7]

using 52 calibration points. Thus, our application of ASJP chronology is strictly orthodox. We

use the original, published software for computing dates—Holman’s asjp62c.exe at

https://asjp.clld.org/software (alternatively our own R software at https://github.com/Sokiwi/

InteractiveASJP01 could be used). Holman’s program requires standard ASJP-style input files

and looks for the Ethnologue classification, which is located between | and @ in the first line of

metadata for each language. Since we use the Glottolog classification here, we have moved that
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to between | and @. Moreover, the program takes as part of its input the level of a given classifi-

cation for which one wants to produce dates. This level can be set to 1 for the top level pro-

vided that the classification string starts at the level one is interested in. This is the practice

followed for files given as input for asjp62c.exe. For the sake of replicability these input

files are provided in the S3 File along with the outputs. The dates extracted from the outputs

are listed in Table 6.

Automated glottochronology. Automated glottochronology is highly similar to traditional

glottochronology except that the cognate counts are based on automatically inferred cognates.

Moreover, while we infer a constant rate of change through a linear model calibration, as did

[65], we allow the intercept to not be equal to 0, taking the insight from [7] that languages have

internal variation such that lexical similarity at 0 years of separation is not necessarily 100%.

Finally, we do not adopt a retention rate from the glottochronological literature, something

which would probably disadvantage the method. Instead, for each of the 30 language groups

we fit a linear model in a leave-one-out fashion, basing the linear model on the remaining 29

calibration points. The cognate proportions for each language group represent the number of

cases where two doculects have the same cognate class for a given meaning divided by the

number of meanings for which both doculects have attested words. The final score for a lan-

guage group represents an average over pairs whose members belong to the different Glottolog

subgroups. All relevant files and an R-script executing each step towards computing the final

dates are included in S4 File.

The purpose of the exercise is not to revive glottochronology but to evaluate the method and

derive a baseline for evaluating the performance of the other dating methods.

Results

GBD validation

What is the quality of the predictions made by GBD? In the following subsection we compare

the predictions with those of other methods. In the present subsection we answer the question

through leave-one-out validation. We exclude each calibration point successively and then fit a

Bayesian Gamma regression model based on the rest of the 29 calibration points. Then we use

the inferred parameters from the 29 points based model to predict the age ranges for the

excluded calibration point. Overall, we fit 30 models and perform predictions based on each

model. The predictions of these experiments are given in Table 3. We report the difference

between the median predicted age and the known age as well as the 95% HPD interval of the

age predictions.

The largest errors of the model are for Benue-Congo and Mongolic, where Benue-Congo is

the oldest point and Mongolic is a younger data point. For several points, such as Dardic, Ira-

nian, and Mongolic, the known ages are outside the predicted age range. The mean absolute

error and the root mean square error are 770 years and 936 years respectively.

Since tree length is highly dependent on the number of tips in the tree, which are in turn a

predictor of the age of the root, it is legitimate to ask whether the method is actually using the

lexical data and is not just predicting the age of the language family based on its number of

extant descendants. In order to investigate this we applied the same leave-one-out procedure

using the logarithm of the number of doculects in the sample as a predictor. That produces a

mean absolute error is 822 years and a root mean squared error of 1012 years. Since the error

is considerably larger using the number of doculects than using MTL as a predictor we can

conclude that MTL is not simply a function of the number of doculects and that using the lat-

ter in a dating procedure is not going to be productive.
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Comparison against other methods

Using the GBD method we obtained 116 dates for families or around 10 times as many dates

for families including subgroups. These are provided for the record in S1 Table. Here we con-

centrate on the evaluation of the results and compare them to the results for ASJP dating and

glottochronology for the 30 calibration groups.

Table 4 shows mean absolute error (absolute difference between an inferred and known

date), root mean square error, and Pearson correlation for the results for GBD, ASJP, and glot-

tochronology shown in Table 5. By any of these measures, ASJP shows better performance

than GBD and GBD better performance than glottochronology. None of the methods’ differ-

ences, whether mean absolute error or root mean square error are used, are not significant by

a Wilcoxon signed rank test, however.

Discussion

Comparison between GBD results and published Bayesian dates

A comparison (Table 6) between the root ages as inferred in prominently published Bayesian

dating analyses for five language families and our Generalized Bayesian dating method shows

good agreement. The predicted median root age (4800 years) of the core Indo-European

group (i.e., excluding Tocharian and Anatolian) is very close to the age (*4800) inferred in

the Bayesian study [12], which dated the Indo-European tree through the input of tip dates

from 17 non-extant languages. In the case of Austronesian, our method predicts a median root

age of 5600 years whereas the Bayesian study [10] employing different internal calibration

Table 3. Difference between the predictions from leave-one-out validation and the known ages. We report the median age difference and 95% HPD interval of the

prediction.

Subgroup Difference and Range Subgroup Difference and Range

Benue-Congo 2414 [6182-2548] Mississippi Valley Siouan 736 [2033-1450]

Brythonic 390 [1377-778] Mongolic -2037 [3442-2214]

Chinese 101 [2238-1576] Ongamo-Maa 192 [1315-690]

Cholan 371 [1527-960] Oromo -776 [1564-972]

Dardic 1313 [2713-1862] Pama-Nyungan 695 [5199-2469]

East Polynesian -530 [1894-1280] Romance -926 [3247-2113]

East Slavic -348 [1494-874] Romani -1218 [2166-1564]

English-Frisian 637 [1215-627] Saami 108 [1915-1350]

Ethiopian Semitic 735 [2010-1412] Scandinavian -375 [1747-1181]

Hmong-Mien -924 [4558-2365] Southern Nilotic 524 [2354-1688]

Inuit -952 [2069-1454] Southern Songhai -917 [1763-1216]

Iranian 1340 [3129-2049] Temotu 1595 [1928-1359]

Ma’anyan-Malagasy -686 [2399-1715] Tupi-Guarani -136 [2214-1595]

Malayo-Chamic 259 [2605-1784] Turkic -806 [4452-2431]

Maltese-Maghreb Arabic -92 [1348-695] Wakashan -262 [3428-2151]

https://doi.org/10.1371/journal.pone.0236522.t003

Table 4. Comparison between GBD, ASJP, and glottochronology based on different evaluation measures.

Measures GBD ASJP Glottochronology

Mean absolute error 695 606 728

Root mean square error 858 823 1039

Pearson’s r 0.76 0.78 0.61

https://doi.org/10.1371/journal.pone.0236522.t004
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points inferred an only slightly younger mean age of 5300 years. For Sino-Tibetan our

approach infers a median root age of 5100, which is not far from the 5900 years inferred in one

recent study [17], although further from the 7100 years inferred in another [16]. The median

root age of 3919 years found for Pama-Nyungan is younger than the published date of 5671

years but close to the age range of 4000–5000 years given by experts based on archaeological

and linguistic correlations [7]. Finally, our age for Dravidian is within the range given in the

publication for that family [15], even if close to the margin.

Typically, the lower bounds of the 95% HPD intervals inferred by the Generalized Bayesian

method are younger than those of Bayesian dates we list in Table 6. This is due to the fact that

the oldest calibration point’s upper bound acts as a lower bound for the root age in the tradi-

tional Bayesian approaches, whereas we do not operate with such internal calibration points.

For instance, in the Dravidian study [15], an age of 2250 years corresponding to Old Tamil

inscriptions is employed as an internal calibration point, which forces the inferred family age

to be at least as old as this internal calibration point.

Does GBD have a potential to outperform ASJP chronology?

It is prudent to inspect invited critical comments on the ASJP paper [7] to look at the extent to

which they carry over the present approach. More than one critic was dissatisfied with the

Table 5. Language groups representing calibration points, known ages, and inferred ages using GBD, ASJP, and glottochronology. (‘M.V’ in M. V. Siouan stands for

Mississippi Valley).

Group Known Age GBD ASJP Glot.chron. Group Known Age GBD ASJP Glot.chron.

Benue-Congo 6500 4496 4781 2965 M. V. Siouan 2475 1760 1725 2404

Brythonic 1450 1085 1144 973 Mongolic 750 2683 2002 1684

Chinese 2000 1910 3066 2251 Ongamo-Maa 1150 977 1083 1678

Cholan 1600 1246 1142 1599 Oromo 460 1174 2086 2606

Dardic 3550 2276 1917 1984 Pama-Nyungan 4500 3905 4470 3653

East Polynesian 1050 1556 985 1070 Romance 1729 2608 1672 1208

East Slavic 760 1092 1124 1080 Romani 650 1823 614 919

English-Frisian 1550 982 1826 996 Saami 1750 1638 1532 1277

Ethiopian Semitic 2450 1717 2235 2587 Scandinavian 1100 1453 1172 954

Hmong-Mien 2500 3326 3957 3473 Southern Nilotic 2500 2007 2911 3273

Inuit 800 1710 945 1328 Southern Songhai 550 1437 594 859

Iranian 3900 2651 2344 2136 Temotu 3200 1670 3762 3405

Ma’anyan-Malagasy 1350 2016 2096 2300 Tupi-Guarani 1750 1879 1830 1979

Malayo-Chamic 2400 2162 2036 1714 Turkic 2500 3206 3414 2210

Maltese-Maghreb Arabic 910 999 1477 1689 Wakashan 2500 2760 3626 4070

https://doi.org/10.1371/journal.pone.0236522.t005

Table 6. Comparisons between published Bayesian dates for different language groups and our results. We show

the median and the 95% HPD intervals for each language family. The median and HPD intervals are obtained by using

the parameter distribution of the Gamma regression from the formula shown in Methods section.

Language Family Generalized Bayesian Dating Published Bayesian Dates

Indo-European 4826 [7213-3074] 4818 [5528-4123] [12]

Austronesian 5647 [8831-3314] 5230 [5800-4750] [10]

Sino-Tibetan 5111 [7799-3199] 5900 [7800-4200] [17]

7184 [9568-5093] [16]

Pama-Nyungan 3905 [5403-2676] 5671 [6966-4455] [27]

Dravidian 3293 [4285-2375] 4500 [6500-3000] [15]

https://doi.org/10.1371/journal.pone.0236522.t006
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classification used, which is alleviated in the present paper because of the high-quality Glotto-

log classification which has since become available. ASJP dates for Mixe-Zoquean, Mayan,

Austronesian, and Uralic were criticized as being too young, while the date of Insular Celtic

was said to be exaggerated (cf. comments by Adelaar, Blust, and Nichols). All these dates have

shifted in the right directions in the present paper. For some ASJP dates it happens that a

mother node is younger than a daughter node. This is no surprise given the uncertainty of the

estimates, but is still awkward, as noted by Campbell and Adelaar. In the present, tree-based

approach this phenomenon does not occur. As regards methodological comments, we avoid

using calibration points with overlapping languages, as advised by Adelaar, and we incorporate

quantification of error as advised by Blust. Some improvements still called for in the set of

comments would be the improvement of dates for Afro-Asiatic and Semitic, which are proba-

bly too young in the ASJP and in the present one as well (cf. comments by Nichols). This

might be achieved by the development of new methods to include data from the equivalent of

biological fossils—extinct languages. Finally, as advocated by Embleton, longer word lists are a

desideratum. While the ASJP approach, which makes use of a single, aggregated distance mea-

sure, might actually not benefit appreciably from longer word lists, it has been shown that the

number of cognate classes required for optimal performance of Bayesian classification is

directly proportional to the number of languages classified [67]. It is likely, then, that our

Bayesian age estimates would also improve with additional lexical data. Fortunately, word lists

longer than 40 items are presently being compiled by research groups working on languages in

several different parts of the world, so it is likely that the present study can be replicated,

expanded, and significantly refined within around a decade from now. Meanwhile, we leave

the question contained in the title of this subsection open, but we believe that, as far as a gener-

alized approach to the world-wide dating of language groups is concerned, the method applied

and the data drawn upon are not easily paralleled.

Shortcomings of GBD

Both the leave-one-out errors reported in Table 3, the errors from comparison against other

methods in Table 5, and the age ranges given in Table 6 (complete list given in S1 Table) are

quite large. We will first look at previous Bayesian studies and attempt to determine whether

the kind of error is unique to GBD or is expected from Bayesian dating methods in general. To

the best of our knowledge, only the study of [12] examines the systematic effect that each cali-

bration point has on the Bayesian phylogenetic analysis. The study of [12] uses calibration

points and lexical cognate data from eight ancient languages (cf. Table 7) to perform Bayesian

dating analysis. The authors analyze the effect of leaving out a calibration point on the

Table 7. Age ranges for some ancient languages inferred in [12] through a leave-one-out analysis. Calibration

points whose inferred median age does not fall within the known age range is indicated by a †. The third column

shows how the root age ranges are affected by exclusion of an ancient language point.

Language Known age range Inferred age range Inferred Root age range

Old Irish † 1300–1100 1603 [2363–988] 6120 [7390–5070]

Latin† 2200–2100 1797 [2457–1270] 5770 [6990–4780]

Old West Norse 850–750 839 [1200–506] 5930 [7270–4920]

Old English† 1050–950 1093 [1473–760] 6090 [7410–5040]

Old High German† 1100–1000 944 [1275–635] 5970 [7230–4970]

Ancient Greek† 2500–2400 1900 [2976–939] 5910 [7270–4850]

Classical Armenian 1600–1300 1544 [2291–835] 5970 [7360–4890]

Vedic Sanskrit 3500–3000 3150 [3848–2454] 5930 [7350–4590]

https://doi.org/10.1371/journal.pone.0236522.t007
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phylogenetic analysis through a leave-one-out analysis and allow the Bayesian phylogenetic

program to infer the age of the ancient language. We provide the inferred dates from the

paper’s supplementary material along with the known age of a language. The table shows that

the median ages for five of the eight languages do not fall within the known age ranges. More-

over, the authors also show that Vedic Sanskrit, the oldest calibration point, improves the

model fitness 20 times strongly [22] in terms of Bayes Factor. The main conclusion from this

analysis is that a temporally deep calibration point is important for improving model fitness

and the errors can be quite large even in the case of a language family with well-attested lan-

guage dates.

The root age ranges from previously published Bayesian studies using calibration points

vary between 1000 years and 4500 years (cf. Table 6). It has to be noted that none of the

inferred root ages is evaluated since we do not know the exact period during which the root

languages actually split. We only conclude that the age ranges inferred by GBD are not worse

than the published dates and more studies are urgently required to determine the shortcom-

ings of the dating methods [68].

Conclusion

In this paper we have introduced a new method called Generalized Bayesian Dating (GBD) for

inferring dates of language groups from lexical and phonological data. It was tested against

ASJP chronology and glottochronology. Both in terms of mean absolute error with respect to

30 known dates, root mean squared error, and correlations between those dates and the

inferred ones, the rank of performance is such that ASJP works better than GBD, which works

better than glottochronology. The results suggest that glottochronology is not worth pursuing

further. As for the two best performing methods, it should be taken into account when evaluat-

ing them comparatively that GBD has certain potential advantages over ASJP, including a

greater potential for future improvements using more extensive data.

While the results of any of the three methods are not as good as we would like them to be,

there are similarly large error bars associated with Bayesian dates even when trees are supplied

with internal calibration points. Thus, it is generally true that dating in historical linguistics is

a tough problem, and in order to progress in this field it is better to expose the problems than

to ignore them. Moreover, it is important to develop standards of comparison in order to be

able to test different methods. This is the first paper that has attempted a comparative test of

different methods using a large dataset, a single classification, and no prior assumptions spe-

cific to different language groups. If nothing else, we hope that the present work may inspire a

new culture of scientific rigor in replicability and performance testing in the area of linguistic

dating.

Supporting information

S1 File. Input generation for GBD: Code, cognate datasets and nexus files. Python code for

extracting data from ASJP word lists, cognate identification, and conversion to nexus files.

Word lists annotated for cognacy for all families. Nexus files and MrBayes command files for

all families.

(ZIP)

S2 File. Gamma regression model fitting and dates prediction. Python code for extracting

median tree lengths for each constraint, generation of consensus trees, RevBayes code for per-

forming Gamma regression and linear regression, and Python code for predicting ages. Age
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annotated consensus tree files for all the families.

(ZIP)

S3 File. Input and output files for ASJP dating method. The word lists for 30 calibration

points required for running the asjp62c program. The dates for each calibration point are

also supplied along.

(ZIP)

S4 File. Glottochronology data and output. Files, including an R script, for producing glotto-

chronology dates from the output of the automated cognate detection procedure.

(ZIP)

S1 Table. GBD age predictions. Excel file containing GBD dates for all the 116 families and

1171 constrained subgroups.

(XLSX)
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