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Abstract

Background

High rates of species discovery and loss have led to the urgent need for more rapid assess-
ment of species diversity in the herpetofauna. DNA barcoding allows for the preliminary
identification of species based on sequence divergence. Prior DNA barcoding work on rep-
tiles and amphibians has revealed higher biodiversity counts than previously estimated due
to cases of cryptic and undiscovered species. Past studies have provided DNA barcodes
for just 14% of the North American herpetofauna, revealing the need for expanded
coverage.

Methodology/Principal Findings

This study extends the DNA barcode reference library for North American herpetofauna,
assesses the utility of this approach in aiding species delimitation, and examines the corre-
spondence between current species boundaries and sequence clusters designated by the
BIN system. Sequences were obtained from 730 specimens, representing 274 species
(43%) from the North American herpetofauna. Mean intraspecific divergences were 1% and
3%, while average congeneric sequence divergences were 16% and 14% in amphibians
and reptiles, respectively. BIN assignments corresponded with current species boundaries
in 79% of amphibians, 100% of turtles, and 60% of squamates. Deep divergences (>2%)
were noted in 35% of squamate and 16% of amphibian species, and low divergences (<2%)
occurred in 12% of reptiles and 23% of amphibians, patterns reflected in BIN assignments.
Sequence recovery declined with specimen age, and variation in recovery success was
noted among collections. Within collections, barcodes effectively flagged seven mislabeled
tissues, and barcode fragments were recovered from five formalin-fixed specimens.

Conclusions/Significance

This study demonstrates that DNA barcodes can effectively flag errors in museum collec-
tions, while BIN splits and merges reveal taxa belonging to deeply diverged or hybridizing
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lineages. This study is the first effort to compile a reference library of DNA barcodes for her-
petofauna on a continental scale.

Introduction

Reptiles and amphibians are collectively the most threatened groups of vertebrates. Moreover,
their species richness is currently underestimated as the rate of new and cryptic species discov-
ery remains high [1-4]. Traditional morphology-based methods for species delimitation and
description are time-consuming, and results are often unclear. In some cases, this provokes the
inappropriate prioritization of species for conservation and in other cases, this slow work flow
leads to the disappearance of a species before its description [5-7]. The rapid and objective
documentation of diversity in the herpetofauna will facilitate species discovery, and will help to
ensure that conservation programs are properly targeted. Therefore, there is an urgent need for
a standardized protocol enabling rapid and effective species identification, especially given that
conservation goals are based on species-level designations [8]. DNA barcoding, the preliminary
identification of species using sequence diversity in a segment of the mitochondrial cytochrome
¢ oxidase subunit 1 (COI) gene [9], has facilitated species delimitation and discovery in many
organisms, including the herpetofauna [10-14]. However, no prior DNA barcoding study has
aimed to acquire comprehensive coverage for the reptile and amphibian fauna of an entire con-
tinent. The Barcode Index Number (BIN) system [15] employs an algorithmic approach to
objectively delineate sequence clusters that often correspond to species boundaries based on
sequence variation at COI Although the BIN system can aid species delimitation [16] and has
been an effective tool for cryptic species discovery in various taxa [17,18], its performance
remains to be thoroughly tested on vertebrates.

Canada and the United States (hereafter North America) host 292 amphibian and 348 rep-
tilian species, approximately 8% of the global fauna [19]. North American taxa present an ideal
opportunity to test the effectiveness of DNA barcoding because they have been the subject of
intensive phylogenetic and morphological studies. Additionally, large collections of specimens
are available, allowing for the sampling of rare or endangered species [20,21]. Because most
reptilian and amphibian type specimens are more than a century old and many have been
stored in formalin, the recovery of DNA sequences from them is problematic [22]. However,
little effort has been made to recover DNA from the barcode region of formalin-fixed tissue
through the recovery of partial fragments [23,24]. By coupling the analysis of tissue samples
from museum specimens with the high-throughput workflows of DNA barcoding, this project
performs a continent-wide analysis that integrates museum collections, morphological identifi-
cations, and DNA barcoding.

Reptiles and amphibians present an interesting challenge for species identification using
DNA barcoding because introgressive hybridization and incomplete lineage sorting have
resulted in barcode sharing by some closely related taxa [25-27]. Amphibians present an addi-
tional challenge as prior studies [26,28] have suggested that PCR amplification of COI is com-
plicated by the presence of sequence variation at primer binding sites. Past attempts to test
primers for the barcode region in amphibians have usually been limited to one genus or family,
and have often examined taxa at a small geographic scale (e.g. [25-27,29,30]). Because COI has
been adopted by the global research community as the barcode standard for the animal king-
dom, a serious effort needs to be directed towards overcoming technical obstacles associated
with barcoding herpetofauna. This project addresses this challenge by examining the efficacy
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of sequence recovery and species delimitation with DNA barcodes using the North American
herpetofauna.

This study has the primary goal of compiling a reference library of DNA barcodes for the
North American herpetofauna, as well as examining the correspondence between sequence
clusters delineated by the BIN algorithm [15] and currently recognized species boundaries, the
results of which provided an opportunity to detect labeling errors in museum collections. This
study also tests the recovery of DNA sequence information from formalin-fixed specimens
with primer sets that target short segments of the barcode region, and investigates tissue sample
age and institution as factors that may influence sequence recovery from museum collections.

Materials and Methods
Specimen acquisition

Work began with the compilation of a species list for all reptiles and amphibians of North
America using the resources provided by the Center for North American Herpetology (www.
cnah.org). A total of 832 specimens from 814 species (576 reptiles, 169 species; 256 amphibi-
ans, 126 species) were subsequently obtained from frozen or ethanol-preserved tissue collec-
tions at seven museums, while 208 formalin-fixed samples (71 amphibian species, 52 reptilian
species) were analyzed from the Smithsonian’s National Museum of Natural History and the
Harvard Museum of Comparative Zoology. To examine the universality of the primer sets
designed in this study, 55 specimens (32 species) of reptiles originating from outside North
America were also examined. Two datasets provide specimen details, including photos,
sequences and trace files; they can be retrieved on the Barcode of Life Data system (BOLD)
using a DOI for North American herpetofauna (dx.doi.org/10.5883/DS-NAHERPS) and non-
North American reptiles (dx.doi.org/10.5883/DS-EANAQ) (www.boldsystems.org) [31], with
sequence data also available on GenBank (S1 Table).

DNA extraction, amplification, and sequencing

Tissue lysis, DNA extraction, PCR, and sequencing of all specimens followed standard proto-
cols employed by the Canadian Centre for DNA Barcoding [32]. Dilution factors (S2 Table)
and PCR regimes (S3 Table) were altered depending on the primer sets used. Because the
AmphF2_t1+AmphR3_t1 primer set had the highest initial sequencing success overall and
recovered full length barcodes, it was adopted for the initial round of PCR for all specimens
(Table 1). In addition, the performance of existing primer sets for anurans and caudates [29]
were tested on all amphibians. If the initial primer sets failed to generate an amplicon, two
additional PCR reactions were performed which aimed to generate 307bp and 407bp ampli-
cons (AmphF2_t1+MLepR2 and MLepF1+AmphR3_t1, respectively). Finally, when only one
of these reactions generated a product, primer sets amplifying a 295bp or 189bp amplicon
(MLepF2_t1+MicroLepR2 and AncientLepF2+MLepR2, respectively) were used with the goal
of recovering a sequence that was sufficiently long (>487bp) to meet barcode compliance
(Table 1). Due to the highly degraded state of DNA in formalin-fixed tissues, the reverse proto-
col was performed on these specimens, with primer sets generating the shortest amplicons
(MLepF2_t1+MicroLepR2 and AncientLepF2+MLepR2) being run first. If successful, subse-
quent attempts at amplifying longer sequences were made using first AmphF2_t1+MLepR2
and MLepF1+AmphR3_tl, followed by AmphF2_t1+AmphR3_t1.

CodonCode Aligner version 3.7.1.2 (CodonCode Corporation) was used for Clustal W and
manual sequence alignment. Sequences were translated to amino acids and examined for stop
codons as a check for pseudogene amplification. Prior to uploading sequences acquired
through the concatenation of several amplicons, each sequence was validated using the BOLD
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Table 1. Details for primer sets used in this study.

Primer sequence (5-3) Name Source
Forward

TYT CWA CWA AYC AYA AAG AYA TCG G Chmf4 [29]

AYT CAA CAA ATC ATA AAG ATA TTG G COI-C02 [29]

T GTA AAA CGA CGG CCA GTT TCA ACW AAY CAY AAA GAY ATY GG AmphF2_t1* This study
GCT TTC CCA CGA ATA AAT AAT A MLepF1 [73]

TGT AAA ACG ACG GCC AGT GCW TTC CCM CGW ATA AAT AAT ATA AG MLepF2_t1* [40]

ATT RRW RAT GAT CAA RTW TAT AAT AncientLepF2 [40]
Reverse

ACY TCR GGR TGR CCR AAR AAT CA Chmr4 [29]

ACY TCR GGR TGA CCA AAA AAT CA COI-C04 [29]

CA GGA AAC AGC TAT GAC TAD ACT TCW GGR TGD CCR AAR AAT CA AmphR3_t1* This study
GT TCA WCC WGT WCC WGC YCC ATT TTC MLepR2 [40]

C AGG AAA CAG CTA TGA CGT AAT WGC WCC WGC TAR WAC WGG MicroLepR2 [40]

*Use of M13 primers for sequencing reaction.

doi:10.1371/journal.pone.0154363.t001

identification engine [31], as well as the Basic Local Alignment Search Tool (BLAST) at NCBI
[33] to ensure that no chimeric sequences had been generated.

Data analysis

Pairwise distances, inter- and intraspecific distance comparisons, sequence composition, and
BINs were calculated using tools on BOLD [31], and further group-specific examinations were
made using the SpeciesIdentifier package in the TaxonDNA program [34]. A neighbor-joining
(NJ) tree [35] was constructed using pairwise sequence divergence estimated using the
Kimura-2 parameter (K2P) distance model [36], and sequences were visually inspected for
insertions and deletions using MEGAS5 [37]. The relationship between maximum intraspecific
sequence divergence and nearest neighbor divergence in conjunction with the NJ tree was then
examined to detect potential errors in tissue samples analyzed from the Royal Ontario
Museum.

Using linear regression, the collection dates for specimens (when available) were compared
with sequence length to determine if sequence recovery decreased with age, with institution as
an additional predictor variable [22,38]. Chi-square tests of homogeneity were used to deter-
mine whether there were differences in both overall sequencing success rates and barcode com-
pliant sequence recovery between institutions for amphibians and reptiles separately. All linear
regressions and chi-square tests of homogeneity were performed using R. DAMBES5 [39] was
employed to compare the relative frequencies of transitions and transversions against K2P
sequence divergences considering all three codon positions.

Results
Sequence recovery

A total of 730 sequences were recovered from 832 specimens (88% success) representing 274
species or 43% of the North American herpetofauna. Although most (533) sequences were bar-
code compliant (>487bp, <1%N), sequence lengths ranged from 123bp-658bp, reflecting the
length of the target region for the different primer sets (S2 Table). Barcode compliant
sequences were obtained from 38 of 55 specimens (69% success) of non-North American
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reptiles including representatives of 29 species using the AmphF2_t1+AmphR3_t1 primer set.
The newly developed primer set (AmphF2_t1+AmphR3_t1) was the most successful for rep-
tiles (S2 Table). However, the primer sets designed previously [29] performed best for amphibi-
ans, and successfully recovered barcodes from three specimens that were over 100 years old.

Formalin-fixed specimens. Five sequences from one reptile and four amphibians were
recovered from the 208 formalin-fixed specimens. Although four of these sequences were not
barcode compliant (sequence lengths ranged from 166bp-221bp) as they were amplified using
the AnctLep+MLepR2 primer set [40], one barcode (Rana hecksheri, MCZ Herp A-37209) was
amplified using the primers designed in this study (AmphF2_t1+AmphR3_t1). Not only was
this sequence barcode compliant (length = 556bp), but it was assigned to a BIN providing a
basis for the tentative identification of other specimens of this species.

Factors influencing sequence recovery

A significant decrease in sequence length was observed with increasing specimen age (F statis-
tic = 8.446 on 6 and 528 degrees of freedom, p <0.0001) (Fig 1). This relationship was

Institution
= . —
H [} o, ..'2'!.'1 5% ! e e |AMNH
[ ] o) 3 ] o:. i —
¢ s o . | - | ° FMNH
600 $ ’ s R o]
° L] . e |KU
L] ° —
\ Mvz
. ¢ o (ROM
. ® [SDNHM
§ L]
;’ LI . °
D400{ ° . o 3 .
2
[]
L]
g . I
g Y L] L]
® :
o
>
o
[*]
(]
4
200
0 ° ° ° ° e ceo o @ °
1 10 100

Specimen age (log years)

Fig 1. Relationship between sample age and recovered sequence length from six collections in reptiles and amphibians. AMNH: American Museum
of Natural History; FMNH: Field Museum of Natural History; KU: University of Kansas Biodiversity Institute; MVZ: Museum of Vertebrate Zoology; ROM:
Royal Ontario Museum; SDNHM: San Diego Natural History Museum; UAHC: University of Alabama, Alabama Museum of Natural History Herpetological

Collection.

doi:10.1371/journal.pone.0154363.g001
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doi:10.1371/journal.pone.0154363.9002

unchanged even following the incorporation of institution as a predictor variable, although
specimens from the Royal Ontario Museum had significantly higher sequence recovery than
the other six institutions (p = 0.02311) (S4 Table). Chi-square tests of homogeneity revealed
that although overall sequencing success was uniform across institutions in both classes
(Amphibia: ¥* = 5.35, p = 0.37; Reptilia: * = 7.02, p = 0.32), barcode compliant sequence
recovery was significantly different among six institutions for amphibians (x* = 40.69,
p<0.0001) and among all seven for reptiles (x* = 45.49, p<0.0001) (Fig 2). There was signifi-
cantly lower success in overall sequence recovery (x> = 140.9, p<0.0001) as well as in recovery
of barcode compliant sequences (y* = 108.5, p<0.0001) from amphibians than reptiles.

COl sequence variation

Intra- and interspecific distances varied widely in reptiles and amphibians, with interspecific
sequence divergence as low as 0% in both classes and intraspecific divergence as high as
21.22% in squamates. Barcode sharing was not observed between different species in either
class. However, cases of low interspecific divergence (<2%) occurred in eight pairs of compari-
sons between two species of reptile (12%) and seven pairs of comparisons in amphibians

PLOS ONE | DOI:10.1371/journal.pone.0154363 April 26,2016 6/15



el e
@ : PLOS ‘ ONE DNA Barcoding North American Reptiles and Amphibians in Natural History Collections

w
N T B
® Reptiles
A Amphibians
® Museum errors
o _| 2
3% ® Re-sequenced specimens
o
N
K4
X v |
St -~
[}
(%)
c
©
8
2
T
1
o
I
5 2
[
[
-
[}
<
®©
Q
=
o -
[ J
o — [ ] (]
T T
30 40

Maximum interspecific distance (%K2P)

Fig 3. The barcode gap and institutional errors. Comparison of maximum intraspecific sequence divergence with minimum interspecific sequence
divergence for amphibians and reptiles. Points above the 1:1 line indicate that a barcode gap is present; points below the line indicate its absence. Points
representing museum errors and re-sequenced specimens came from the Royal Ontario Museum.
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(23%), with six of the latter cases belonging to the family Plethodontidae. Deep intraspecific
divergence (>2%) was observed in 47 of 133 reptilian species (35%), but in only 10 of 62
amphibian species (16%).

Using the barcode gap comparison in conjunction with a NJ tree (S1 & S2 Figs), seven speci-
mens from the tissue collection of the Royal Ontario Museum were flagged due to either very
low interspecific distances or high intraspecific distances (museum errors in Fig 3). After
ensuring that these errors were not due to contamination during DNA extraction, the Royal
Ontario Museum sent additional subsamples from the same tissue samples. When these tissues
were sequenced, all seven original sequences were found to be incorrect (re-sequenced speci-
mens in Fig 3), with the new sequences clustering within other members of respective species
(S1 & S2 Figs). It was subsequently determined that five of the erroneous initial results were
due to incorrect labeling of tissue samples while the last case involved mislabeling of the actual
sample vial in the Royal Ontario Museum’s tissue collection.

The barcode region in both reptiles and amphibians possessed a high GC content
(mean = 43.97%). No significant relationship was observed between family-level nearest neigh-
bor distance and mean GC content in amphibians (R* = 0.01, p = 0.40) or reptiles (R* = 0.13,

p = 0.10). Similarly, there was no significant relationship between nearest neighbor distance and
mean GC content in the third codon position (R* = 0.0009, p = 0.47 in amphibians; R* = 0.12,
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p =0.11 in reptiles). No insertions or deletions were observed in the aligned sequences. Substitu-
tion saturation occurred at approximately 10-11% sequence divergence for amphibians and at
9-10% for reptiles when considering all three codon positions (S3 Fig).

Correspondence between BINs and species

There was a correspondence between recognized species boundaries and BIN assignments for
133 of the 195 species (68%), while the discordances largely involved BIN splits. Because the
number of splits (one species assigned to two or more BINs) was higher than the number of
merges (a single BIN assigned to more than one species), there were 53 more BINs than the
corresponding species count for both classes [15] (Fig 4; Table 2). Caudates had the highest
number of mixes: merges and splits within the same species (4), while squamates had the high-
est number of merges (5) and splits (43), the latter of which represented 35% of the total BINs
assigned to this order (Table 2). In the reptilian species with BIN splits, sequence divergence

Table 2. Distance (%K2P) with standard error, Barcode Index Number (BIN), and sequence composition summary for barcode-compliant

sequences.
Class Order Sequences Species BINs Mean intraspecific distance (%) Mean congeneric distance (%) Mean GC content (%)
Amphibia  Anura 24 19 19 2.83(0.75) 16.53(0.11) 44.57(0.41)
Caudata 100 43 47 1.34(0.04) 16.18(0.01) 40.84(0.31)
Reptilia Squamata 378 123 172 2.96(0.01) 13.80(0.002) 44.94(0.14)
Testudines 31 10 10 0.19(0.01) 6.82(1.57) 41.71(0.28)

doi:10.1371/journal.pone.0154363.1002
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was significantly correlated with geographic distance (R* = 0.18, p<0.0001). Despite not having
a barcode compliant length, 47 specimens (seven species) within both classes were assigned to
the correct BIN (range = 359-427bp, mean = 390bp). Additionally, due to the flexible threshold
employed by the BIN algorithm, two species of plethodontid salamander with a pairwise dis-
tance lower than 2% were assigned to separate BINs (Desmognathus ocoee and D. marmoratus),
while five species of reptiles with greater than 2% intraspecific sequence divergence were placed
in the BIN corresponding to the other members of their species (Agkistrodon contortrix, Lam-
propeltis getula, Nerodia erythrogaster, Storeria dekayi, and Thamnophis cyrtopsis).

Discussion
Barcode recovery and composition in North American herpetofauna

The “universal” amphibian primer sets [29] were the most effective option for barcode recovery
from North American amphibians. Contrary to earlier suggestions that single primer pairs
have high failure rates for amphibians [26], these primers consistently recovered sequences
across the class. However, in reptiles, our new primers (AmphF2_t1+AmphR3_t1) were the
most successful, suggesting that different primer sets should be used for each class to maximize
sequence recovery [41].

Saturation of transitions and transversions, considering all three codon positions, occurred
at a divergence of 9-11% in both reptiles and amphibians, consistent with previous findings
that sequences become saturated in these organisms at approximately 10-13% genetic diver-
gence [3,28,29,42,43]. The lack of insertions and deletions reinforces earlier evidence for their
absence in salamanders from the family Hynobiidae [29] and in Korean herpetofauna [44].

The utility of DNA barcoding in museum collections

The length of sequence recovered decreased for both reptiles and amphibians with increasing
specimen age in seven collections, although success rates were consistently high for 30 years
after collection, particularly in reptiles. Differences in the recovery of barcode compliant
sequences among samples from different institutions likely reflects differential storage condi-
tions (many in ethanol, others frozen). In the case of cryocollections, there was poor documen-
tation of the timing between tissue collection and its transfer into cryostorage.

Although the negative impacts of formalin fixation on DNA sequence recovery are well
known (e.g. [16,20,45]), the PCR regime employed in this study led to sequence recovery from
5 of 208 formalin fixed specimens. Further work to improve success from formalin-fixed speci-
mens is justified (e.g. [46]) since so many important specimens, such as holotypes and para-
types, are preserved in this medium [20,47]. Although most of the sequences recovered in this
study from formalin-fixed tissues were not barcode compliant, it is important to note that
these records can still be very informative for tentative species identification [24,48].

Museum collections have proven a key resource for building DNA barcode reference librar-
ies in earlier studies on insects [21,40], and they could certainly aid the identification of speci-
mens whose morphological diagnosis is difficult or when defining phenotypic characters have
deteriorated with age, such as in the North American plethodontid salamanders [42,49]. In
fact, this approach detected labeling errors in 2.4% of the specimens from the Royal Ontario
Museum—an incidence close to an estimated 5% error rate for museum collections [50].

Cases of low interspecific divergence and deep intraspecific divergence

The wide variation in sequence divergence for both congeneric and intraspecific compari-
sons was consistent with prior barcoding studies on reptiles and amphibians that revealed
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substantial overlap between intra- and interspecific distances [3,25,26,28,29,42,43] (Table 2).
Despite this overlap, most (70.4% in reptiles, 87.7% in amphibians) of the intraspecific diver-
gences in this study were less than 3%. The mean intraspecific sequence divergences for both
amphibians and reptiles were higher than mean values in birds [51,52], mammals [53,54],
and fishes [55,56], mostly due to high maximum distances, and perhaps reflecting over-
looked species as indicated by extreme population subdivision and deeply divergent lineages
in some taxa [57].

Although BIN clusters did not always correspond to currently recognized species bound-
aries, exceptions involved previously reported cases of either hybridization or deep divergence.
In every instance of BIN split, specimens belonged to a species that showed deep intraspecific
divergence, often reflected by population subdivision linked to geographic isolation. The high-
est incidence of splits were detected in reptiles, whose members belong to old lineages with
broad distributions, such as the desert iguana (Dipsosaurus dorsalis) and the common chuck-
walla (Sauromalus ater) [58]. This result is corroborated by the strong correlation between geo-
graphic distance and COI divergence, a pattern also observed in other vertebrates (e.g. bats
[59]). The species with the highest intraspecific divergence (21.22%) and three BIN splits—the
lesser earless lizard (Holbrookia maculata)-may include multiple species. Deep mitochondrial
divergence was detected in specimens collected in close geographic proximity [60] and repro-
ductive isolation owing to differential mate preference has been suggested [61]. Similarly, splits
in amphibians, mostly in salamanders such as Plethodon caddoensis, occurred in species with
high genetic variability and population subdivision over small geographic ranges [57,62].

BIN mergers occurred in species that are known to hybridize, including the recent diver-
gence and subsequent introgression of Desmognathus fuscus and D. ochrophaeus, as well as the
recent speciation of Pseudacris triseriata and P. maculata [63-66]. Additionally, single BIN
assignment occurred in four closely allied species pairs of reptiles that exhibit introgression
and hybridization: Aspidoscelis tesselata and A. neotesselata, Sceloporus undulatus and S. gra-
ciosus, Plestiodon gilberti and P. fasciatus, and Thamnophis radix and T. butleri [67-72].

Conclusions

This study represents an important first step towards a comprehensive DNA barcode library
for North American reptiles and amphibians. By developing a new primer set that facilitates
barcode recovery from reptiles, and by confirming the effectiveness of existing primers [29] for
amphibians, this study highlights the feasibility of developing barcode coverage for all taxa.
The BIN system was effective in recovering established species boundaries in about two thirds
of all species, with exceptions involving BIN sharing by species that are known hybridize and
BIN splitting in taxa with extensive population subdivision. Consequently, the BIN system can
be an effective tool to highlight species suspected of hybridizing, as well as those that may actu-
ally represent a species complex. Importantly, in cases where only partial barcodes can be
recovered because of DNA degradation, sequences greater than 300bp allow for BIN assign-
ment and usually a reliable identification.

The present results confirm that DNA barcodes have an important role in aiding quality
assurance in natural history collections, and provide a simple way to verify that tissues received
from cryo-repositories are actually the desired taxon. In groups such as the herpetofauna,
where collection permits are often hard to obtain, a method to quickly validate specimen iden-
tifications and to detect incorrect database entries is essential. Additionally, DNA barcoding
provides a simple approach in the field, where a swab or biopsy sample, ideally paired with
accurate locality data and photo vouchers, would be sufficient for preliminary species
identifications.
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