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Abstract
This paper addresses the lack of proper Learning from Demonstration (LfD) architectures for Sign Language-based Human–
Robot Interactions to make them more extensible. The paper proposes and implements a Learning from Demonstration 
structure for teaching new Iranian Sign Language signs to a teacher assistant social robot, RASA. This LfD architecture 
utilizes one-shot learning techniques and Convolutional Neural Network to learn to recognize and imitate a sign after seeing 
its demonstration (using a data glove) just once. Despite using a small, low diversity data set (~ 500 signs in 16 categories), 
the recognition module reached a promising 4-way accuracy of 70% on the test data and showed good potential for increas-
ing the extensibility of sign vocabulary in sign language-based human–robot interactions. The expansibility and promising 
results of the one-shot Learning from Demonstration technique in this study are the main achievements of conducting such 
machine learning algorithms in social Human–Robot Interaction.

Keywords  Human–Robot Interaction (HRI) · Social Robotics · Sign Language · One-shot Learning · Convolutional Neural 
Network (CNN)

1  Introduction

According to the World Health Organization (WHO), in 
2019, over 466 million people (5% of the world’s popula-
tion) had disabling hearing loss [1]. Correspondingly, the 
2011 National census reported that about 135,000 Iranians 
had some kind of hearing or speech difficulties [2]. This 
sizeable community uses sign language (SL) as one of its 
most comprehensive ways of communicating [3]. SL is a 
language utilizing hand gestures and non-manual signs (such 
as facial expressions) to transfer messages.

A rich and diverse research literature on automatic sign 
language recognition is to be expected considering the Deaf 
community’s population, cultural diversity, and needs. 
One of the first works in this field was conducted by Kim 
et al. in 1996 [4]. They used a pair of Data-Gloves and a 
fuzzy min–max neural network for the online classification 

of Korean Sign Language. Liang and Ouhyoung, 1998 [5] 
concentrated on making sign recognition real-time, contin-
uous, and functional for large vocabularies. This research 
also utilized Data-Gloves for data acquisition and Hidden 
Markov Models (HMM) as a recognition algorithm. The 
authors used features like posture, orientations, and move-
ments to recognize Taiwanese Signs. They reached an 80.4% 
average recognition rate. The main concern of Vogler and 
Metaxas’ research in 1999 [6] and 2001 [7] was develop-
ing scalable solutions for American Sign Language auto-
matic recognition. They referred to Liddell’s research on 
SL phonology and used parallel HMMs to detect each sign. 
They applied multi-camera processing systems to extract 
arm movements. Also, in 2001, Kim and Chien [8] used 
Data-Gloves and HMMs for hand gesture recognition. They 
decompose gestures into several "strokes" such as right to 
left or clockwise movements and used them as phonemes to 
recognize defined gestures. They reported a 96.88% recogni-
tion rate. The major contribution of Yang et al.’s research in 
2009 [9] was designing a threshold model in a Conditional 
Random Fields model to increase its recognition rate. They 
used image processing techniques for data acquisition. In 
later research in 2009, Cho et al. [10] used semi Markov 
models for variable-length signs. In a 2016 study, Paudyal 
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et al. [11] proposed a wearable platform for sign recognition 
called SCEPTRE. SCEPTRE used two Myo armbands [12] 
to collect electromyography, gyroscope, and accelerometer 
data and then utilized Dynamic Time Warping (DTW) algo-
rithms to classify the performed signs. In recent years some 
researchers used deep neural networks for sign recognition, 
such as Cui et al. in 2019 [13]. As can be seen, there is 
no one widely accepted approach in the field, and existing 
studies have used different algorithms and data collection 
methods. Also, one of the greatest problems in this field is 
the extensibility of these algorithms. Most of these works 
have been tested on only limited sets of signs.

Some researchers have focused on designing SL-based or 
Gesture-based Human–Robot Interaction (HRI). The most 
significant researches addressing this issue are as follows: In 
2010, Nandy et al. developed an Indian Sign Language based 
HRI for HOAP-2, an advanced humanoid robotic platform 
[14]. The system employed several image-processing tech-
niques to extract features from videos of the user’s hands. 
Another Indian Sign Language based HRI was developed in 
2017 by Baranwal et al. [15]. This research employed NAO 
robots as its target platform and used multiple algorithms for 
sign recognition. After detecting the signed commands, the 
researchers used the NAO’s API and a MATLAB program to 
engage the user and robot in a conversation with predefined 
sentences. In 2015, Russo et al. developed a novel telecom-
munication system for deaf-blind users [16]. The system 
consists of a robotic hand on one end and a Kinect sensor 
on the other end. The robotic hand imitates the hand gestures 
perceived via the Kinect sensor allowing the deaf-blind user 
to understand the sign by touching it.

Gesture-based HRIs for service robots have a richer 
research background. One of the first mentions of this sub-
ject was in Waldherr et al.’s paper on developing an HRI for 
a service robot, AMELIA, in 2000 [17]. After implementing 
their system, the robot was able to detect and obey some 
gestures common to service robots (Stop, Follow, etc.). Xiao 
et al.’s notable research in 2014 [18] used a combination 
of a CyberGlove and Kinect Sensor as a data acquisition 
setup and various KNN classification algorithms (includ-
ing Large Margin Nearest Neighbor) to facilitate an upper-
body gesture-based interaction between a human user and a 
humanoid robot, Nadine. The research covered many kinds 
of interaction, including shaking hands and reacting to the 
user’s actions such as drinking, reading, etc. The extensibil-
ity problem of SL detection algorithms is also a common 
problem in this field, as these proposed HRIs were all cre-
ated and tested on limited sets of data.

To solve the extensibility problem presented in SL-based 
HRIs, we believe that such an HRI should also contain the fol-
lowing properties: (1) The recognition module structure must 
change to a more extensible structure with algorithms capable 
of learning new signs, and (2) An LfD architecture must be 

added as a routine to enable the robot to learn new signs from 
demonstrated signs. To this end, in this paper, we are present-
ing a solution to improve the human–robot interaction and 
enhancing the Deaf users’ experience by design and imple-
mentation of a meaningful gestures learning architecture for 
robots. A combination of Learning from Demonstration (LfD) 
and one-shot learning techniques in the architecture’s design 
would enable an SL-based HRI to extend its SL vocabulary 
(in both recognition and regeneration). This technique would 
(hopefully) help to develop an appropriate architecture using 
machine learning algorithms for social Human–Robot Inter-
action. Unlike the typical situation for applying deep learning 
algorithms with a large number of training data, the LfD-based 
algorithm used in this study appropriately works with a limited 
number of input data.

LfD has shown promising results in aiding the robotic 
learning process in different areas (such as teleoperation 
[19–21], rehabilitation [22, 23], robot surgery [24–26], indus-
trial assembly [27], navigation [28–30]) and it has shown 
suitable effects on the quality of the performance of a social 
robots’ tasks [31, 32]. The LfD design challenge is how to 
generalize and learn new policies from a small amount of new 
data. Some good examples of LfD applications can be seen 
in Calinon et al. researches [33–36], where they try different 
approaches to teach various robots to recognize and regenerate 
different kinds of gestures. Another example can be found in 
[35], where Calinon and Billard use HMMs to teach a robot 
to recognize and reproduce the English alphabet written by 
hand movements. Like SL recognition, there is not a com-
monly accepted algorithm or method in the field of LfD, and 
completely different algorithms (from probabilistic methods 
to neural networks) have been used in similar problems. How-
ever, in recent years, meta-learning algorithms (like one-shot 
learning) have become more popular [37–39]. The research 
done by Finn and colleagues [37] is one of the first examples of 
using meta-learning techniques in LFD to teach a robot manip-
ulator’s various tasks (including reaching, pushing, and plac-
ing) in different conditions. Ref. [39] is another more recent 
example where a robot has been taught to classify objects by 
seeing only a few examples.

In the following sections, we first become familiar with the 
robotic platform used in the paper. Then, we design the LfD 
architecture based on the robot’s characteristics and imple-
ment it using neural networks. Lastly, we discuss the results 
and point out some limitations of the study and suggest some 
points for future work in line with the current study.
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2 � Methodology

2.1 � RASA Robot

Utilizing social robots for children with special needs is 
increasing in the last decade [40–44]. RASA is a novel 
social robotic platform whose purpose is to facilitate 
teaching Iranian Sign Language (ISL) to deaf and hard 
of hearing Iranian children (Fig. 1). The robot features a 
cartoon-like face and an attractive exterior. Its interaction 
modules were designed based on child-robot interaction’s 
requirements. With its 32 Degrees of Freedom (29 DoF 
in the upper body), its active fingers, and expressive face, 
RASA can perform comprehensible ISL signs [44, 45]. At 
the beginning of the current study, RASA had an ISL sign 
library of about 60 signs.

A customized Cognitive Architecture (CA) has also 
been developed for RASA [46]. The CA has a highly spe-
cialized and modular structure. It has four main modules:

•	 Perception Unit: accountable for receiving and process-
ing data from the environment.

•	 Logic Unit: plans for and decides the desired outputs 
based on the perceived data.

•	 Action Unit: executes the desired outputs planned by the 
Logic unit.

•	 Memory Unit: simultaneously acts as a central junction 
for data transferring between other units and as a store 
for structured object-oriented learned data.

In this way, the CA can interact reciprocally with the user 
through the Perception Unit (as input) and the Action Unit 
(as output). An overview of the designed CA is shown in 
Fig. 2 [46]. We used this architecture as a framework for 
programming the HRI.

2.2 � Overview of the LfD Architecture

As is mentioned, RASA is a teaching assistant robot used 
to help teach ISL to deaf children. It can be employed in a 
variety of scenarios and interact in many different ways with 
children or teachers. In this study, we do not restrict the pos-
sible HRI experiences, but we assume that in all cases, the 
robot needs to understand the signs performed for him and 
answer back in correct distinguishable signs. Our aim is to 
design an LfD architecture to allow the robot to extend its 
limited vocabulary.

To teach a new sign to RASA, the teacher needs to wear 
the data glove and perform the sign (at least once) to pass 
the corresponding word to the robot. A pre-trained neural 
network converts the sign to an embedded vector. New signs 
will be recognized by comparing them to these embedded 
vectors. This is the learning process for the sign recogni-
tion portion. The sign imitation is done by mapping the per-
formed sign to the robot’s kinematics in a way similar to 
[47] (see Fig. 3).

We use one-shot learning techniques in pre-training the 
neural network. The network’s output is an embedded vector 
and not categorical in order to enable it to perform in new 
categories outside of the training output. In the training pro-
cess, we train this network on a diverse dataset to expose it 
to many kinds of features and force it (with the aid of a loss 
function) to map the input data in clusters with sufficient 
margins. In this way, the network can map new signs in new 
vectors, and hopefully, they will form new clusters. Then, 

Fig. 1   The RASA Robot Fig. 2   The general overview of RASA’s cognitive architecture [46]
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the classification can be done by other criteria such as the 
Nearest Neighbor.

2.3 � Implementation of the LfD Architecture

2.3.1 � Data Collection

We chose a Neuron Lite glove from Noitom Ltd. for this 
study [48]. It is a single-arm sensor glove using six sensors, 
each with a 3-axis accelerometer, 3-axis gyroscope sensor, 
and 3-axis magnetometer. The sensors are located on the 
middle of the arm, on the wrist, on the back of the hand, 
and on the tip of the thumb, index, and middle fingers of the 
right hand. So it can detect the movements of the right hand 
including its three fingers. The outputs of the glove are in 
the form of joint positions and rotations. The glove connects 
to a proprietary software called "Axis Neuron" [49]. Axis 

Neuron can save motions (in various file formats) for offline 
use. In addition, it can use various communication protocols 
to broadcast motion data (in BVH format) in real-time.

In the next step, we chose 16 ISL signs. All of the 
selected signs were distinguishable from features that could 
be extracted by the 3-finger data glove. We also preferred 
to have different categories of signs: static signs, dynamic 
signs with simple motions, and signs with periodic motions. 
The selected signs are comprised of several color signs and 
common signs, including yes/no and greetings (Fig. 4).

Due to COVID-19 limitations, we have gathered a narrow 
dataset. After teaching 12 hearing adults (unfamiliar with 
sign language) the signs, we asked them to perform selected 
signs. Each sign was performed 3 times in different order. 
We recorded these performances with the Axis Neuron and 
saved them to a dataset as ".BVH" files. After removing bad 
demonstrations, each sign has more than 30 performances 

Performed 

Sign
Data 

Glove
State Image

Long Term Memory (LTM)

Kinematic 

Mapping

Convolutional 

Neural Network

Trajectory

Embedded 

Vector 

Sign Name Sign Name

Recognition Module

Regeneration Module

Fig. 3   An overview of the proposed LfD architecture in this study. A 
user gives a sign’s name to the robot and performs that sign using a 
Data Glove. The architecture converts the performed sign to a state 
image and feeds it to its recognition and regeneration modules. The 
recognition module feeds the incoming state image to a pre-trained 
convolutional neural network and stores its vector output alongside 

the given name in the robot’s Long Term Memory (see Fig. 2). The 
regeneration module maps the given state image to the robot’s kin-
ematics and stores the output trajectory in the memory. This is the 
learning process. Now the robot can retrieve the trajectory or the 
embedded vector for recognizing or regenerating that sign in the 
future

Fig. 4   Iranian Signs selected for 
the HRI [3]
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and thus the final dataset had approximately 500 signs in 16 
categories.

2.3.2 � State Images

The recorded BVH files contain full data for every joint in 
the participants’ body for the whole performance duration. 
As the glove only gathers data from the right arm and the 
performers paused many times between the signs, a good 
deal of the files’ contents are unnecessary. Therefore, a 
necessary step is trimming, segmenting files, and feature 
selection.

For feature selection, we refer to Stokoe’s theory. In 
Stokoe’s theory [50, 51], every (manual) sign consists of four 
basic elements: Hand Shape, Palm Orientation, Hand Loca-
tion, and Movements (changes in the first three elements). 
Therefore, unlike a spoken language, the phonemes of signs 
in SL are occurring simultaneously. Since there are not 
enough studies on ISL structure, the current study assumes 
that Stokoe’s theories are extensible to ISL. Amongst all the 
possible features of these elements, we chose:

•	 Hand location (a height-normalized 3d vector from the 
shoulder toward the hand in the Cartesian coordination).

•	 Palm orientation (as a quaternion).

•	 Handshape (normalized angles representing the fingers’ 
flexion).

In the next step, we have scaled and resampled all dem-
onstration times so we could make a 12 × 50 matrix repre-
senting each demonstration. These image-like matrixes are 
called State Images [52, 53]. In Fig. 5, readers can see their 
structure and a sample State Image of the sign “Orange”. 
These images are the inputs of our models.

2.3.3 � Network Architecture

To classify the performed signs, we used a simple Con-
volutional Neural Network to map each State Image to a 
512-dimensional vector. The proposed structure is shown 
in Fig. 6.

The chosen structure was kept as simple as possible to 
allow us to train it with our limited dataset of ~ 500 signs in 
the meta-learning phase. As our purpose is to have an expan-
sible vocabulary, the network also maps the state images 
to an embedding vector instead of returning a categorical 
result or one-hot.

The proposed architecture has 2,462,912 trainable param-
eters, which is very large for our limited dataset. We chose 
the Siamese networks [56] with cosine triplet loss [57] to 

Fig. 5   State Image. a The structure of the State Images. b State 
Image sample of the sign “Orange” [54]. In the "Orange" sign the 
handshape and palm direction are fixed so the last 9 rows of the 
image do not show significant changes in their values over time. The 
thumb and index are closed so the 7th and 8th rows (from top) are 

slightly darker than the rows beneath them. The hand moves in a cir-
cle in the x–y plane so the sinusoidal movement in the 1st and 2nd 
rows are clear, but there is no change in the 3rd row (associated with 
the z-axis)
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train the CNN with the smaller amount of data from this 
dataset. In this architecture, we have three parallel CNNs 
with shared weights. We feed three images simultaneously to 
them and compute the triplet loss of the vectors produced by 
them. The first image is called the anchor image. The second 
image (also known as the positive images) must be an image 
with the same label, and the third image (also known as the 
negative image) must belong to a different class. Using this 
method, we have more than eight million data entries.

The loss function is as follows (Eq. 1):

where d(x, y) is the distance of x and y (predicted vectors of 
images X and Y, respectively) and is calculated as (Eq. 2):

This loss function tries to maximize the distance between 
anchor images and negative images while keeping anchors 
and positives close enough together. α is a margin parameter 
to eliminate the chance of converging to a trivial answer 
(mapping all images to zero vectors). Following the results 
in [58], we chose α = 0.2.

(1)loss(a, p, n) = max(0, d(a, p) − d(a, n) + �)

(2)d(x, y) = 1 − x̂.̂y, x̂ =
x

|x|

2.3.4 � Training

The designed architecture was implemented using the Keras 
library [59]. We used stochastic gradient descent (without 
momentum and with a learning rate of 0.001) as the opti-
mizer. Google Colab platform [60] is used to train the model 
(batch size = 128). Moreover, we used the following methods 
to improve the performance and prevent overfitting issues:

•	 Reducing the learning rate by 80 percent after 4 steps of 
no improvements on validation loss;

•	 Implementing early stopping with the patience of 10 
steps on validation loss; and

•	 Feeding negative images based on their current distance 
to the anchor image (nearest to the anchor image).

To check the extensibility of the model, we trained the 
model 16 times, and each time we exclude one class from 
the training process to be used as test data (~ 6% of all 
of the data). We also separated ~ 20% of the remaining 
data (equally distributed in 15 remaining classes) as the 
validation data.

Fig. 6   The chosen CNN Architecture [55]
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2.3.5 � Evaluation

We check the model’s accuracy using n-way accuracy 
(n = 4, 8, 12, and 16). In this method, we repeat a test-
ing procedure 1000 times. In each round, we randomly 
select an anchor image within the target data and then ran-
domly draw n other images as benchmark images. These 
benchmark images consist of one positive image (an image 
with the same label as the anchor image) and n-1 nega-
tive images (images with different labels than the anchor 
image). We calculate the similarity between the anchor 
image and benchmark images in terms of d(x, y) . We con-
sider this round a "True" case if the nearest benchmark 
image to the anchor image is a positive image; otherwise, 
it is considered a "False" case. After completing the proce-
dure, the accuracy was computed by dividing the number 
of "True" cases by the number of rounds (i.e., 1000). To 
better understand the model’s extensibility, we perform 
this test within two groups: first, the validation data within 
the classes present in the training data, and second, the test 
data (from the excluded class). The test is performed four 
times for each group in all 16 training sessions.

3 � Results and Discussions

The main result of the implementation of the proposed struc-
ture is an LfD plugin that enables the robot to learn new 
signs just by watching it once. We can see the performance 
of the one-shot sign recognition module in Table 1. The full 
results are presented in Table 2 in Appendix.

It can be seen that as a general trend, the accuracy in both 
trial modes decreases when the n in the n-way procedure 
increases, which is expected but may raise concerns about 
the performance after the expansion of the signs library. 
There was no significant difference (p > 0.05 in all cases) 
between the mean accuracies in the test and training tri-
als, which is quite appropriate. Although in terms of the 
Standard Deviations (SD), we observed some meaningful 
differences. In general, the SD of the training data trials is 
less, which shows the robustness of the architecture in the 
absence of some data in the meta-learning phase. Trials of 
the test data show more SD, which is expected because the 
module is testing against signs it has not seen before. Hence, 

some signs are less likely to be recognized by the module 
(such as Pink and Purple), and some (such as Black and 
Orange) are more recognizable by the module. We assume 
this is because of some unique features in the more recog-
nizable signs (i.e. unique movements of hands in Black and 
unique hand shape in Orange) and the lack of similarity of 
the less recognizable signs to the training signs.

While using one-shot learning strategies in LfD is not 
unheard of [61, 62], meaningful gesture learning research is 
so uncommon that we have yet to come across any. There-
fore, due to the lack of similar papers in this field, it is 
somewhat impossible for us to do a thorough comparison 
between the findings of this study and other related works. 
Nevertheless, the expansibility and promising results of the 
one-shot Learning from Demonstration technique are in line 
with other researches [61, 62] which are the main achieve-
ments of conducting such machine learning algorithms in 
social Human–Robot Interaction. In terms of accuracy, the 
implemented system is weaker than many of state of the art 
researches [63–66]; however, due to the small size of the 
dataset and other limitations, this is justifiable and promis-
ing. It should be noted that the same level of accuracy is 
reported in recent papers in the literature (such as [13]).

4 � Limitations and Future Work

This study had serious limitations (partly because of the 
COVID-19 pandemic) in the dataset size (less than 600 
demonstrations), diversity (just 16 signs), and gathering 
process (lack of deaf community presence and limited data 
glove). Despite these limitations, the results show promise 
that with a richer and more diverse base dataset, we can 
reach an accurate and extensible LfD architecture. Also, 
we wish we could have conducted in vivo HRI experiments 
to investigate the users’ opinions about this framework and 
their experience while using it. But unfortunately, due to 
COVID-19 restrictions, it was not possible for us to con-
duct experiments.

The ultimate goal of the current research line is to 
enable RASA to act as a teaching assistant robot in SL 
teaching environments. The present study followed this 
line; therefore, we suggest future works along the subse-
quent line in order to make RASA faultless in learning and 
teaching new signs and interacting with people using its 
knowledge in SL. Keeping these main goals in mind, the 
recommended directions in extending the current study 
lies in the following routes:

•	 Removing the limitations: focusing on making a richer, 
more diverse dataset with more signs and more dem-
onstrations, more demonstrators familiar with sign 
language, and better equipment to record more com-

Table 1   Summary of the recognition module’s accuracy (percentage) 
including the mean and the standard deviations of all the trials (For 
more details, see Table 2 in the Appendix)

16-way 12-way 8-way 4-way

45.89 ± 9.84 50.54 ± 9.69 57.81 ± 9.16 70.83 ± 8.02 Test
46.75 ± 2.88 51.55 ± 2.93 58.25 ± 2.33 71.66 ± 2.06 Train
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plex signs; conducting HRI based trials to measure 
the acceptability, ease of use, and desirability of the 
results.

•	 Enhancing the recognition module: trying to make the 
module more accurate or more extensible by using bet-
ter data or trying other algorithms and techniques (such 
as data augmentation).

•	 Enhancing the imitation module: implementing meth-
ods with more natural results than just mimicking the 
movements (such as GMM/GMR approaches in [33–
36], Variational Auto-Encoders (VAE) or Generative 
Adversarial Networks (GAN)).

5 � Conclusion

Using one-shot learning strategies and Convolutional Neu-
ral Networks, we introduced and implemented an LfD-
based system to teach new ISL signs to a teacher assistant 
robot in this research. The proposed architecture can learn 
to recognize and imitate a sign after just one demonstra-
tion using a data glove. The reorganization module reached 

a 4-way accuracy of 70% on the test data, and while this 
is not a very high accuracy level, it was still promising if 
we consider the small size and low diversity of the data 
set used in this study. The module showed good poten-
tial to make the HRIs more extensible. The main point is 
that the presented results have been obtained from a small 
number of training data in contrast to the typical deep 
learning algorithms which need big datasets. The expan-
sibility and promising results of the one-shot Learning 
from Demonstration technique are the main achievements 
of conducting such machine learning algorithms in social 
Human–Robot Interaction.

Appendix

See Table 2.
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Table 2   Recognition module’s 
accuracy (percentage) in Detail 
for all the trials. (Color figure 
online)

Test Class 

Test Train 

4-

way 

8-

way 

12-

way 

16-

way 

4-

way 

8-

way 

12-

way 

16-

way 

Word #1: “Hi” 

75.8 62.2 55.2 49.9 71.9 55.0 50.5 47.7 

76.6 63.0 53.1 48.6 69.6 58.1 51.9 48.8 

74.6 62.6 52.8 49.7 70.7 58.4 54.0 50.2 

73.7 61.2 51.9 48.2 71.5 60.3 56.1 46.9 

Word #2: “Bye” 

76.7 58.8 48.7 45.1 70.1 57.4 53.5 52.2 

76.4 59.7 47.2 47.2 70.7 58.6 53.7 50.3 

76.6 59.7 47.0 46.4 72.7 59.1 48.7 46.3 

75.8 60.1 50.3 43.4 71.7 59.2 54.6 48.9 

Word #3: “True” 

70.2 58.8 50.8 44.2 72.8 57.7 52.0 50.3 

69.8 56.0 49.4 45.9 73.9 61.6 56.2 49.9 

66.257.746.645.274.560.752.847.4

70.255.448.543.475.960.253.850.2

Word #4: “False”

71.961.149.646.071.959.551.745.9

73.158.252.946.972.857.851.647.2

73.359.953.244.472.557.851.245.9

75.960.750.345.572.256.450.445.7

Word #5: “Yes”

67.452.445.741.670.256.344.844.0

66.451.046.340.570.556.150.345.3

67.053.846.244.170.255.747.641.8

67.254.446.643.272.655.348.244.6

Word #6: “No”

69.656.445.443.471.759.949.844.8

67.353.948.338.774.257.453.145.5

68.856.346.640.870.758.752.547.0

70.950.944.442.668.557.949.445.4

Word #7: “Resign”

71.061.253.551.369.055.549.747.0

72.160.956.250.568.758.147.545.0

68.060.153.450.570.856.450.046.7

73.960.056.848.569.460.150.446.6

Word #8: “Back”

66.749.840.237.172.155.952.346.4

68.152.343.035.672.058.052.843.2

66.250.643.035.568.956.052.746.0

66.049.043.337.271.059.453.748.3

Word #9: “Black”80.468.360.355.269.054.946.441.1



	 International Journal of Social Robotics

1 3

Table 2   (continued) 80.867.360.559.167.054.045.241.2

78.968.863.656.468.558.648.641.2

79.866.461.056.568.554.946.939.7

Word #10: “Red”

66.053.447.244.476.664.058.150.9

66.954.448.742.773.764.456.350.7

67.055.047.644.075.864.757.953.0

65.652.946.445.975.561.557.054.0

Word #11: “Green”

72.060.258.046.170.657.552.044.9

72.260.654.249.070.559.850.346.7

74.961.954.147.870.159.553.447.9

72.858.050.046.272.760.050.347.9

Word #12: “Brown”

76.867.160.452.769.056.848.244.5

78.165.859.952.868.755.949.644.1

78.467.359.555.170.456.347.444.1

77.065.060.553.569.254.547.645.5

Word #13: “Blue”

66.454.946.243.074.262.952.848.0

64.354.346.940.872.959.655.248.5

67.052.546.644.974.460.654.846.0

64.551.047.040.472.458.954.447.0

Word #14: “Pink”

52.835.733.124.772.459.653.445.5

48.839.229.525.772.359.752.748.6

50.738.729.826.573.957.751.548.6

50.237.934.527.672.457.950.551.0

Word #15: 

“Orange”

87.680.075.373.473.256.452.247.5

89.981.076.469.272.057.152.949.2

87.879.876.071.972.160.150.149.1

84.879.974.374.473.457.748.643.7

Word #16: “Purple”

64.046.839.237.770.856.851.246.2

65.948.738.536.171.556.154.244.0

64.849.842.437.072.356.350.044.0

62.849.040.735.274.159.152.346.3
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