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Abstract.—As genomic sequence data become increasingly available, inferring the phylogeny of the species as that of
concatenated genomic data can be enticing. However, this approach makes for a biased estimator of branch lengths and
substitution rates and an inconsistent estimator of tree topology. Bayesian multispecies coalescent (MSC) methods address
these issues. This is achieved by constraining a set of gene trees within a species tree and jointly inferring both under a
Bayesian framework. However, this approach comes at the cost of increased computational demand. Here, we introduce
StarBeast3—a software package for efficient Bayesian inference under the MSC model via Markov chain Monte Carlo. We
gain efficiency by introducing cutting-edge proposal kernels and adaptive operators, and StarBeast3 is particularly efficient
when a relaxed clock model is applied. Furthermore, gene-tree inference is parallelized, allowing the software to scale with
the size of the problem. We validated our software and benchmarked its performance using three real and two synthetic data
sets. Our results indicate that StarBeast3 is up to one-and-a-half orders of magnitude faster than StarBeast2, and therefore
more than two orders faster than *BEAST, depending on the data set and on the parameter, and can achieve convergence
on large data sets with hundreds of genes. StarBeast3 is open-source and is easy to set up with a friendly graphical user
interface. [Adaptive; Bayesian inference; BEAST 2; effective population sizes; high performance; multispecies coalescent;
parallelization; phylogenetics.]

Existing methods for testing macroevolutionary and
macroecological questions have not kept pace with
the explosion of next-generation sequence data now
available (Blom et al. 2016b; Bragg et al. 2017; Stenson
et al. 2017). Despite burgeoning databases of within-
and between-species genomic diversity (Blom et al.
2016b; Bragg et al. 2017; Stenson et al. 2017), it is still
common practice to ignore the gene-tree discordance
that underlies any species phylogeny inferred from
multilocus sequences and instead infer species ancestry
based on concatenated sequence data taken to represent
all underlying gene histories (Degnan and Rosenberg
2009; Heled and Drummond 2010; Jones 2017; Ogilvie
et al. 2017; Rannala and Yang 2017). While this approach
can perform well for inferring topologies when branches
are long and incomplete lineage sorting (ILS) is absent,
these conditions are rarely met.

Species trees inferred from concatenated sequences
are often topologically incorrect (Degnan and Rosenberg
2009; Heled and Drummond 2010; Ogilvie et al. 2017),
provide biased estimates for branch lengths and sub-
stitution rates (Kubatko et al. 2011; Ogilvie et al. 2016;
Mendes and Hahn 2016), and underestimate uncertainty
in tree topology, resulting in an unjustified degree of
confidence in the wrong tree (Heled and Drummond
2010; Ogilvie et al. 2017). Such biases are exacerbated
by subsampling of incongruent genes (Edwards et al.
2016; Mendes and Hahn 2016) and hold even for deep
splits in the tree (Oliver 2013). These are crucial concerns
in themselves and, more generally, can lead to biased
estimates and erroneous inferences about fundamental
evolutionary and ecological processes that require accur-
ate phylogenetic trees, such as rates of speciation and
extinction (Cadena et al. 2011; Rowe et al. 2011; Pepper

et al. 2013), rates of substitution in DNA sequences
(Bouckaert et al. 2013) and morphological characters
(Pepper et al. 2013), species ancestry and ancestral age
estimation (Mitchell et al. 2014), geographical history and
origins (Lemey et al. 2009; Bouckaert 2016), and species
delimitation (Yang and Rannala 2010; Grummer et al.
2013; Leaché et al. 2014; Yang and Rannala 2014).

The multispecies coalescent (MSC; Maddison 1997;
Edwards 2009; Liu et al. 2009) is an approach designed
to minimize these potential biases by modeling mac-
roevolution as a distribution of gene trees constrained
by a species tree (Degnan and Rosenberg 2009; Heled
and Drummond 2010; Jones 2017; Ogilvie et al. 2017;
Rannala and Yang 2017). In doing so, the MSC provides
a more biologically realistic framework for phylogenetic
inference that captures the process of ILS underlying
most multilocus phylogenies. Furthermore, by explicitly
modeling both species and gene trees, the MSC can
address questions that cannot be addressed under
a concatenation approach—such as automatic species
delimitation (Fujita et al. 2012), with important implic-
ations for biodiversity assessment and conservation
(Bickford et al. 2007).

A number of software packages have implemented
the MSC in various ways (see review by (Liu et al., 2015)).
Our work at the Centre for Computational Evolution
at the University of Auckland has led the development
of *BEAST (STARBeast; Heled and Drummond 2010)
and StarBeast2 (Ogilvie et al. 2017)—full Bayesian MSC
frameworks for species-tree estimation from multilocus
sequence data—and UglyTrees for visualizing these
models (Douglas 2020). By explicitly modeling the MSC
and avoiding the biases associated with concatenation
methods (Heled and Drummond 2010; Ogilvie et al.

901

http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-0371-9961


Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[10:57 3/6/2022 Sysbio-OP-SYSB220009.tex] Page: 902 901–916

902 SYSTEMATIC BIOLOGY VOL. 71

FIGURE 1. Depiction of the multispecies coalescent model, with k =2 gene trees constrained within a single species tree S with n=8 species.
In this depiction, node heights (age) run along the y-axis and species-tree node widths are proportional to effective population sizes (arbitrary
units). The relative molecular substitution rate of each species-tree branch is proportional to line thickness. Tree was built from a Gopher data
set (Belfiore et al. 2008) and visualized using UglyTrees (Douglas 2020).

2016, 2017), an analysis using either of these software
packages can significantly improve the conclusions
drawn from data.

However, despite some advances in computational
efficiency of the full Bayesian MSC (Jones 2017;
Ogilvie et al. 2017; Rannala and Yang 2017), these
complex models remain computationally intractable
for large next-generation sequence data sets of 100’s
of sequenced loci across hundreds of individuals (i.e.,
104–106 samples×loci). As a result, existing applications
of the approach have tended to consider smaller data
sets (Kang et al. 2014; Blom et al. 2016a) or to ignore
much of the available data (Blom et al. 2016b; Bragg et al.
2017; Stenson et al. 2017), which reduces accuracy and
increases uncertainty in species-tree estimates (Song
et al. 2012; Ogilvie et al. 2017). One approach to this
problem has been the development of much simpler
summary coalescent methods that utilize distributions
of estimated gene-tree topologies as input to rapidly
process large data sets (Liu et al. 2015). These include the
rooted triplet method MP-EST (Liu et al. 2010) and the
quartet method ASTRAL (Mirarab et al. 2014). However,
summary coalescent methods are sensitive to gene-tree
errors (Mirarab and Warnow 2015; Xi et al. 2015) and
produce trees in coalescent units, and thus time and
population size estimates used by downstream analyses
are confounded.

Here, we aim to perform Bayesian inference on large
data sets using the Markov chain Monte Carlo (MCMC)
algorithm as our workhorse. As illustrated in Figure 1,
the number of parameters involved is quite large, as
is the accompanying state space. We develop a set of
new MCMC proposals to explore state space in a much
more efficient way than previous implementations and
demonstrate we can handle data sets several times faster
than *BEAST and StarBeast2. The resulting software
package StarBeast3 is available as an open-source BEAST
2 package (Bouckaert et al. 2019).

METHODS

The MSC
Our objective is to develop efficient methods in a

Bayesian framework for analyzing models where there
is a phylogeny, S, such as a species or language tree,
that forms a constraint on a set of k trees G={g1,...,gk},
such as gene trees. Each taxon within G is assigned to
a single taxon within S, from some fixed individual-to-
species mapping function (Fig. 1). Species tree S= (TS,tS)
consists of a topology TS and divergence times tS, as does
the set of gene trees G= (TG,tG).

All trees are assumed to be binary rooted time trees,
where branch lengths describe the passing of time
from the root of the tree down to the tips. Taxon
node heights are assumed to be fixed and are typically
extant (with height 0). Each gene tree gi consists of
2ngi −1 nodes and 2ngi −2 branches for taxon count ngi ,
while S consists of 2nS −1 nodes and 2nS −1 branches,
including a root branch, for species count nS. Gene-
tree taxa are associated with data D={D1,...,Dk}, for
example, nucleotide sequences or cognate data. Let � be
a set of model parameters, for instance, those related
to the speciation or nucleotide substitution processes.
Consider the posterior density function p(S,G,�|D):

p(S,G,�|D) = 1
Z︸︷︷︸

normalization constant

speciestreeprior︷ ︸︸ ︷
p(S|�) ×

gene tree prior︷ ︸︸ ︷
k∏

i=1

p(gi|S,�) ×

parameter hyper prior︷︸︸︷
p(�) ×

gene tree likelihoods︷ ︸︸ ︷
k∏

i=1

p(Di|gi,�). (1)
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The MSC model is therefore hierarchical. S can
follow a range of tree prior distributions p(S|�), such
as the Yule (Yule 1925) or birth–death models (Nee
et al. 1994). Whereas, each gene tree gi is assumed to
follow the MSC process (Degnan and Rosenberg 2009;
Heled and Drummond 2010; Jones 2017; Ogilvie et al.
2017; Rannala and Yang 2017), under which species-
tree branches are associated with independently and
identically distributed (effective) population sizes Ne
which govern the coalescent process of G, where |Ne|=
2nS −1. Gene trees are thus assumed to be contained
within S (Fig. 1).

Site evolution is assumed to follow a continuous-
time Markov process (Felsenstein 1981) under some
substitution model and clock model:

p(Di|gi,�)=p(Di|gi,�i,r,�). (2)

�i can adopt a range of molecular substitution
models, such as the HKY nucleotide evolution model
(Hasegawa et al. 1985) or the WAG amino acid evolution
model (Whelan and Goldman 2001). Tree gi has relative
molecular substitution rate �i ∈�i. Branches in S are
associated with substitution rates r, which govern the
rate of site evolution of G along the respective branch,
where |r|=2nS −1 (Fig. 1). Branch rates r are assumed
to be independently and identically distributed under
a log-normal distribution with standard deviation �
(i.e., the MSC relaxed clock model; Drummond et al.
2006; Ogilvie et al. 2017). Lastly, the clock rate � can be
estimated when accompanied by time-calibration data,
such as ancient fossil records (Sauquet et al. 2011; Heled
and Drummond 2012; Ballesteros and Sharma 2019),
or left fixed when no such data are available. Overall,
the total substitution rate of any given branch in gi is
the product of �i, �, and a subset of the elements in
r (weighted by their coverage of the gene-tree branch;
Ogilvie et al. 2017).

In this article, we develop tools that allow the MSC
to be applied to large data sets using complex models
of evolution. Although we focus on MSC models, we
anticipate that in the future other models of the form
expressed in Eq. (1) will be developed, for example,
models that allow some lateral gene transfer and
therefore allow some gene-tree branches to cross species
boundaries in the species tree. We design a number of
MCMC operators which generate proposals that explore
the state space more efficiently—using a Gibbs sampler
for population sizes, a combination of Bactrian (Yang
and Rodríguez 2013; Thawornwattana et al. 2018) and
adaptable variance multivariate normal (Baele et al. 2017)
proposal kernels, a parallel operator for sampling gene
trees and substitution model parameters, and an MCMC
operator which selects other operators based on their
exploration efficiency (Douglas et al. 2021b). Moreover,
in the special case of the multispecies relaxed clock
model (Ogilvie et al. 2017), we introduce methods for
operating on the species tree, the gene trees, and the
clock model simultaneously (Zhang and Drummond
2020; Douglas et al. 2021b).

Effective Population Size Gibbs Operator
The StarBeast2 (Ogilvie et al. 2017) and DISSECT

(Jones et al. 2015) packages have the capability of
integrating effective population sizes Ne when using
an inverse gamma distributed prior on Ne, based on a
technique introduced by (Liu et al., 2008) and detailed
out by (Jones, 2017). This approach greatly reduces
the state space. However, consequently the posterior
Eq. 1 can no longer be broken down in a product over
components over individual gene trees:

k∏
i=1

p(gi|S,�)=
∫

Ne

k∏
i=1

p(gi|S,Ne)dNe. (3)

Thus, the technique is not suitable for gene-tree
operator parallelization, and therefore, we estimate Ne
instead.

Suppose that Neb ∈Ne, for species-tree branch b, fol-
lows an inverse gamma prior distribution Inv-�(�N,�N),
where the shape �N is fixed at 2 and therefore the
scale �N is the expected value (because E(Neb )= 	

�−1 ).
Following the results by (Jones, 2017), the posterior of
Neb follows an inverse gamma Inv-�(�N

′,�N
′), such that

�N
′ =�N +a and�N

′ =�N +c where a is the total number
of coalescent events of all gene trees in branch b and
c=∑

j
1
pj

∑
i cjbi

(njb−i
2

)
. Here, pj is the ploidy of gene gj,

cjbi the size of the ith coalescent interval for gene gj in
branch b, and njb the number of lineages of gene tree gj
at the tip-side of branch b (so that njb −i is the number of
lineages at the start of the ith coalescent interval for gj).

Instead of integrating Ne, our GibbsPopulation
operator samples from the posterior. All 2nS −1 elements
in Ne are proposed simultaneously. As demonstrated
later, this turns out to be more efficient than standard
Ne random walk operators, with the added advantage
of sampling effective population sizes—which may
be a parameter of interest—as well as the ability to
parallelize gene-tree proposals. This technique is readily
applicable for periodically sampling and logging Ne to
implementations that do integrate this term out.

Bactrian Operators for Trees
The step size of a proposal kernel should be such

that the proposed state x′ is sufficiently far from the
current state x to explore vast areas of parameter space,
but not so far that the proposal is rejected too often
(Gelman et al. 1997). The Bactrian distribution (Yang
and Rodríguez 2013; Thawornwattana et al. 2018) has
minimal probability mass around the center, and a
higher concentration flanking the center, akin to the
humps of a Bactrian camel (Fig. 2; left). This distribution
is a preferred alternative to standard uniform- or normal-
distributed random walk kernels, as it places minimal
probability on step sizes that are too large or too small,
and has successfully improved phylogenetic inference in
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FIGURE 2. Depiction of random walks �→�′ under varying proposal kernels. Left: The random walk occurs from the origin between the two
modes, where the vertical axis shows the probability density function of the kernel p(�′|�) (Yang and Rodríguez 2013). Right: A 2D random walk
on inversely correlated parameters �= (�1,�2) with different domains (Baele et al. 2017). Contours describe the joint probability density function
p(�1,�2) under a transformed multivariate normal distribution learned during MCMC.

previous studies (Yang and Rodríguez 2013; Zhang and
Drummond 2020; Douglas et al. 2021b).

In this article, we apply Bactrian proposals to trees.
The standard set of tree node height proposals in BEAST
2 consists of a Scale operator which embarks all
nodes in the tree on a random walk (in log-space), a
RootScale operator which does so for only the root of
a tree, an UpDown operator which changes species/gene
node heights and various continuous parameters simul-
taneously (Drummond et al. 2002), a SubtreeSlide
operator which slides a node up or down branches
(Hohna et al. 2008), and constant distance operators
when a relaxed clock model is applied (Zhang and
Drummond 2020). Each operator would normally draw
a random variable from a uniform distribution, but
here we instead use a Bactrian distribution and apply
appropriate transformations. We also introduce the
Interval operator, which transforms parameters with
lower- and upper-bounds (such as tree node heights)
by applying a Bactrian random walk in their real-space
transformations.

Adaptive Variance Multivariate Normal Operator
An adaptive variance multivariate normal (AVMN)

operator (Baele et al. 2017) provides proposals for a
set of real-space parameters by learning the posterior
throughout the run of the MCMC algorithm and
approximating it as a multivariate normal distribution
to capture correlations between parameters (Fig. 2;
right). The space spanned by such a set of continuous
parameters may need to be transformed (in order to
satisfy the assumption that all parameters lie in real-
space), by applying a log-transformation to parameters
with positive domains (such as substitution rates), or
a log-constrained sum transformation to multivariate
parameters with unit sums (such as nucleotide fre-
quencies), for instance. AVMN has been demonstrated
to be more efficient in estimating phylogenetic para-
meters than standard random walk or scale operators

(Baele et al. 2017; Bouckaert 2020; Douglas et al.
2021b).

Consider a single gene tree gi and its substitution
model�i, consisting of substitution rates and nucleotide
frequencies for instance. Performing a single proposal
for any single parameter would require a full recalcu-
lation of the tree likelihood p(Di|gi,�i,r,�) (see peeling
algorithm by (Felsenstein, 1981)). Therefore, proposing
all site model parameters �i simultaneously can reduce
the number of likelihood calculations required and thus
lower the computational runtime.

Parallel Gene-Tree Operator
During MCMC, operators are typically sampled pro-

portionally to fixed weights (or proposal probabilities),
to ensure the chain is ergodic. Here, we present an
alternative method, where a single gene tree gi and its
substitution model �i is selected, and Np operators are
sequentially sampled and applied to gi and �i, before
returning to the full parameter space. This is equivalent
to running a small MCMC chain of Np steps—applying
only gene tree and substitution model operators on gi
and �i—and then accepting the resulting gi

′ and �i
′

afterwards with probability 1, as if it were a single Gibbs
sampling operation (Geman and Geman 1984).

Observe that because only gi and its associated
parameters change, part of Eq. (1) can be rewritten as:

gene tree likelihoods︷ ︸︸ ︷
k∏

i=1

p(Di|gi,�i,r) ×

gene tree priors︷ ︸︸ ︷
k∏

i=1

p(gi|S,Ne)

=

gene tree posteriors︷ ︸︸ ︷
k∏

i=1

p(Di|gi,�i,r)×p(gi|S,Ne). (4)
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Thus, the posterior distribution can be decomposed
into the product of contributions of individual gene
trees and their substitution models. Assuming that
substitution model parameters �i are distinct for each
gene tree gi, an Np-step MCMC chain could be run for
each of gi and gj for (i �= j) in parallel, and the resulting gi

′
and gj

′ each accepted with probability 1, as if two Gibbs
operators were sequentially applied. Because the pos-
terior density for gi is proportional to p(Di|gi,�)p(gi|S,�)
and that of gj proportional to p(Dj|gj,�)p(gj|S,�) then
provided that any shared parameters (such as r, S, and
Ne) are not being operated on, these two Np-step MCMC
chains can run in parallel.

Where there are Nt threads available, the k gene
trees are split into Nt groups (assuming k ≥Nt). The Nt
sets of Np-step MCMC chains are run in parallel and
the resulting gene trees g are accepted into the main
MCMC chain. Here, we introduce a parallel operator
ParallelGeneTreeOperator(G,�). This operator
partitions gene trees into Nt threads and operates on
their topologies, node heights, and substitution models.
Tree node height proposals employ the Bactrian kernel
where applicable (Fig. 2), and substitution model pro-
posals invoke the AVMN kernel (Fig. 2). The chain length
Np of each thread is learned during MCMC (Fig. 3).

Since each small MCMC chain for a thread can be
considered a single Gibbs proposal, for Nt threads
in principle Nt steps should be added to the main
chain. If the operator is selected just before logging
a state, in principle some threads may need to be
disregarded before logging in order to maintain exactly
equal intervals in the trace log. Due to the low frequency
at which the operator is selected, and the logging
intervals being orders of magnitude larger than the
number of threads, this does not appear to be a problem
in practice.

Species Tree Relaxed Clock Model Operators

The constant distance operator family exploits the
negative correlations between divergence times and
branch substitution rates by proposing both terms simul-
taneously (Zhang and Drummond 2020). This technique
has yielded a parameter convergence rate of one to two
orders of magnitude faster, particularly for large data sets
that come with peaked posterior distributions (Douglas
et al. 2021b). Under the MSC relaxed clock model used
by StarBeast2, the branch rate of gene-tree branch b
is the length-weighted branch rate r of all species-tree
branches that contain b (Ogilvie et al. 2017). Moreover,
effective population sizes Ne are positively correlated
with divergence times, so this correlation could also be
readily exploited.

Extending the work by (Zhang and Drummond, 2020),
we introduce the ConstantDistanceMSC operator.
This operator proposes a node height tX for species-
tree internal node X, the three branch rates (elements
of r) and population sizes (elements of Ne) incident to
X, and heights for all gene-tree non-leaf nodes that are

contained within these three incident branches (Fig. 4).
tX is embarked on a Bactrian random walk (Yang
and Rodríguez 2013) to give t′X , then r and the node
heights in G are proposed such that all genetic distances
are conserved following the change in tX , and Ne is
proposed such that the positive correlation between
itself and the branch lengths incident to X is respected
(see Algorithm S1).

Previously, we introduced the narrow exchange rate
(NER) operator (Douglas et al. 2021b). This operator
combined the simple NarrowExchange operator (i.e.,
a proposal which swaps a subtree with its uncle subtree;
(Drummond et al., 2002)) with theConstantDistance
operator (Zhang and Drummond 2020), by applying
a small topological change to the tree and then
recomputing branch substitution rates such that
evolutionary distances are preserved. We demonstrated
that this operator assisted the traversal of tree topology
space on longer alignments compared with shorter ones.

Here, we combine this work with the
CoordinatedExchange operator implemented
by (Ogilvie et al., 2017)—based on work by (Jones,
2017) and (Rannala and Yang, 2017)—and introduce
the coordinated narrow exchange rate (CNER) operator.
This operator exchanges a species-tree node with its
uncle node adjusts gene-tree topologies g to preserve
compatibility with S, and proposes three nearby branch
rates in r to preserve genetic distances (Algorithm S2).

Adaptive Operator Weighing
Previously, we developed the AdaptableOperator

Sampler(x) operator (Douglas et al. 2021b). This oper-
ator learns the weights (or proposal probabilities) behind
a set of suboperators during MCMC, by rewarding
operators which bring about large changes to parameter
x in short computational runtime, with respect to some
distance function: Euclidean distance when x is real, and
RNNI distance (Collienne and Gavryushkin 2021) when
x is tree topology. This approach can account for the
scenario when an operator’s performance is conditional
on the data set. When a data set contains very little
signal with respect to a certain parameter x and its
prior distribution, then resampling that parameter from
its prior distribution using the SampleFromPrior(x)
operator may be more efficient than embarking x on
a random walk, for instance (Douglas et al. 2021b). In
contrast, data sets with more signals are likely to prefer
smarter operators which account for correlations in the
posterior distribution, such as the constant distance or
NER operators (Zhang and Drummond 2020; Douglas
et al. 2021b).

Here, we have applied the AdaptableOperator
Sampler to seven areas of parameter space: the species
and gene-tree node heights (ts and tG), the relaxed
clock model rates r and standard deviation �, the mean
effective population size �N , the species-tree birth rate

 (assuming a Yule speciation model; Yule 1925), and
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FIGURE 3. Optimization of gene-tree parallel operator chain lengths. Top: The time limit of each parallel MCMC chain is randomized on each
call so that the overhead (intercept) and time-per-proposal (slope) can be learned as a linear regression model. Bottom: The linear regression
model is applied, and parallel MCMC chain lengths are set such that the slowest thread attains the user-specified target overhead (i.e., the bottom
thread has attained 20% overhead in the example above).

the species-tree topology TS. These operator schemes are
explicated in Tables 1 and 2.

RESULTS

In this section, we first validate the correctness of
StarBeast3 through a well-calibrated simulation study.
Then, we demonstrate that StarBeast3 is efficient at doing
Bayesian inference on large data sets compared with
StarBeast2. We did not compare to *BEAST directly, since
it does not provide relaxed clock models on species
trees, but note that (Ogilvie et al., 2017) benchmarked
StarBeast2 against *BEAST for strict clocks and found
StarBeast2 to be an order faster than *BEAST, so any gain
over StarBeast2 will be more so over *BEAST.

Validation
In order to validate the correctness of StarBeast3,

we performed two well-calibrated simulation studies.

These were achieved by simulating nucleotide align-
ments (of two varying sizes) using parameters directly
sampled from the prior distribution, and then recovering
the posterior estimates of these parameters by doing
Bayesian inference on the simulated alignments using
StarBeast3. For each study, the 95%-coverage of each
parameter was approximately 95% (meaning that the
true parameter estimate was within the 95% highest
posterior density interval approximately 95% of the
time). Therefore, these experiments provide confidence
in StarBeast3’s correctness and are presented in Figure 5
and Section S4 of Supplementary material available on
Dryad at http://dx.doi.org/10.5061/dryad.f1vhhmgzk.

Performance Benchmarking
We evaluated the performance of StarBeast3 for its

ability to achieve multispecies coalescent parameter
convergence in a Bayesian framework, compared with

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syac010#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syac010#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syac010#supplementary-data
http://dx.doi.org/10.5061/dryad.f1vhhmgzk
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FIGURE 4. An example of an ConstantDistanceMSC proposal, acting on species nodes X and its two children L and R. First, the height
of X (tX) is increased to t′X . Then, the relative substitution rates of branches L (rL) and R (rR) are decreased to rL

′ and rR
′, and rX is increased to

rX
′. These compensations in branch length ensure that the genetic distance of each branch (X, L, and R) is maintained. The thicknesses of the

species node lines are proportional to these substitution rates. Finally, the effective population size of L and R are increased to NeL
′ and NeR

′,
while that of X is decreased to NeX

′. These compensations in node height ensure that the ratio between branch length and branch population size
are maintained. Species node widths are proportional to their effective population size. During this operation, gene-tree nodes always remain
constrained by the species tree. Figure was generated by UglyTrees (Douglas 2020).

that of StarBeast2. Although it is a nontrivial problem
to determine if an MCMC chain has converged, the
effective sample size (ESS) can serve as a useful metric.
Thus, we computed the number of effective samples
generated per hour (ESS/h) across multiple replicates
of MCMC, using three real and two simulated data sets
(Table 3). The ESS of any parameter should be over 200
in order to estimate its posterior distribution (Tracer;
Rambaut et al. 2018). To allow both software packages
to perform at their best, effective population sizes
were integrated by StarBeast2, but were estimated by
StarBeast3. This section provides a general comparison
of StarBeast3 and StarBeast2; however, the performances
of individual operators can be found in Sections S5 and
S6 of Supplementary material available on Dryad.

The ESS/h was evaluated in five distinct areas of para-
meter space. First, we considered generic summaries of
convergence: the ESS/h of the posterior density p(�|D),
the likelihood p(D|�), and the prior density p(�). Second,
species tree S convergence was evaluated in terms of
its height hS, its length lS, and hyperparameters 
—
the Yule model birth rate (Yule 1925)—and �N—the
mean effective population size. In the case of StarBeast3,
where effective population sizes are estimated, we also
measured the mean ESS/h associated with species-tree
leaf nodes of Ne. Third, gene-tree convergences were
evaluated by their heights hG, their lengths lG, and
the RNNI distances (Collienne and Gavryushkin 2021)
to their UPGMA DUPGMA (Sokal 1958) and neighbor-
joining DNJ trees (Saitou and Nei 1987). As there are
multiple gene trees, we only considered the mean ESS/h
of each term. Fourth, substitution model convergence
(HKY substitution model; Hasegawa et al. 1985) was
measured from the transition–transversion ratio �, nuc-
leotide frequencies f , and gene-tree substitution rates

�, where the ESS/h of each term was averaged across
all k substitution models. Lastly, relaxed clock model
convergence was evaluated by considering the mixing
of branch rate empirical mean r̄ and variance var(r), as
well as the relaxed clock standard deviation parameter �.

These results showed that, depending on the data
set, the “slowest” parameter generally converged con-
siderably faster for StarBeast3 than it did for StarBeast2
(see the min term in Figs. 6 and 7). On the smallest
data set considered (Frog), StarBeast2 and 3 performed
comparably well overall (and no significant difference in
min). However, StarBeast3 performed better on all of the
other data sets, with the “slowest” parameter converging
between 4 and 37× as fast, and the posterior density
p(�|D) converging between 2 and 36× as fast, often at a
statistically significant level. For StarBeast3, the absolute
time needed to converge varied a lot across the data sets,
and even across multiple replicates of the same data
set (see final column of Table 3). The fastest data sets
—Frog and Simulated(12)—required 1–2 days to con-
verge, while the Spider data set required over a month.

Notably, relaxed clock model parameters converged
up to 35× as fast under StarBeast3. This was credited
to the use of a real-space branch rate parameterization
(where branch rates are real numbers as opposed to
discrete bins, as implemented in StarBeast2) as well
as constant distance operators, which adjust branch
rates and divergence times simultaneously (Zhang and
Drummond 2020; Douglas et al. 2021b). The disparity
between StarBeast3 and StarBeast2 was less extreme for
the smaller k =26 gene tree Frog data set (Barrow et al.
2014), consistent with previous experiments (Douglas
et al. 2021b).

Substitution model parameters� generally converged
faster for StarBeast2 than they did for StarBeast3. Note,

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syac010#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syac010#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syac010#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syac010#supplementary-data
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TABLE 1. StarBeast3 operator scheme, assuming a Yule tree prior on the species tree with birth rate 


Operator Weight Reference

Species tree
NodeReheight(TS,tS,TG,tG) 30 Ogilvie et al. (2017)
CoordinatedUniform(tS,tG) 30 Ogilvie et al. (2017), Jones (2017)
CoordinatedExponential(tS,tG) 15 Ogilvie et al. (2017), Jones (2017)
SubtreeSlide(TS,tS)

a 15 Hohna et al. (2008)
WilsonBalding(TS) 15 Drummond et al. (2002)
WideExchange(TS) 15 Drummond et al. (2002)
AdaptableOperatorSampler(TS) 15

NarrowExchange(TS) Drummond et al. (2002)
CoordinatedExchange(TS,TG) Ogilvie et al. (2017)
NER(TS,r) Douglas et al. (2021b)
CNER(TS,r,TG) Species Tree Relaxed Clock Model Operators

Uniform(tS)
a 3

RootScale(tS)
a 3

Interval(tS)
a 3 Bactrian Operators for Trees

AdaptableOperatorSampler(tS) 100
Uniform(tS)

a

TreeScale(tS)
a

Interval(tS)
a Bactrian Operators for Trees

ConstantDistanceMSC(tS,tG,r,Ne)a Species Tree Relaxed Clock Model Operators
CoordinatedUniform(tS,tG) Ogilvie et al. (2017), Jones (2017)
CoordinatedExponential(tS,tG) Ogilvie et al. (2017), Jones (2017)
UpDown([tS,tG,Ne,�N], [�,
,�])a Drummond et al. (2002)

Gene trees/site models
ParallelMCMC(TG,tG,�) 3.42 Table 2

Tree hyperparameters
GibbsPopulation(Ne) 50 Effective Population Size Gibbs Operator
AdaptableOperatorSampler(�N) 5

Scale(�N)a

UpDown([tS,tG,Ne,�N], [�,
,�])a Bouckaert et al. (2019)
SampleFromPrior(�N) Douglas et al. (2021b)

AdaptableOperatorSampler(
) 5
Scale(
)a

UpDown([tS,tG,Ne,�N], [�,
,�])a Bouckaert et al. (2019)
SampleFromPrior(
) Douglas et al. (2021b)

Relaxed clock model
AdaptableOperatorSampler(r) 30

Scale(r)a

ConstantDistanceMSC(tS,tG,r,Ne)a Species Tree Relaxed Clock Model Operators
SampleFromPrior(r) Douglas et al. (2021b)

AdaptableOperatorSampler(�) 5
Scale(�)a

SampleFromPrior(�) Douglas et al. (2021b)

Notes: The ParallelMCMC operator weight was set such that it is sampled 1% of the time. Further operator details can be found in Drummond
and Bouckaert (2015).
aBactrian kernel applied to random walk (Yang and Rodríguez 2013).

however, that this is by design. The total operator
weight assigned to � parameters was 50% smaller in
StarBeast3, in order to ensure balanced convergence
across all areas of parameter space. In all data sets
considered, substitution models converged significantly
faster than any other area of parameter space, despite
receiving relatively little operator weight, and therefore
computational resources that were being spent on the
substitution model were better off spent in “slower”
areas of parameter space, such as gene-tree node heights.

The AdapableOperatorSampler operators
(Table 1) confirmed the value in the NER and
ConstantDistanceMSC operators for operating
on their respective areas of parameter space. The
ConstantDistanceMSC operator almost always

outperformed other operators at proposing species
node heights tS (Table 4). The exception to this was
the Skink data set, for which the UpDown operator
was superior at proposing branch lengths, and the
Frog data set, for which ConstantDistanceMSC,
CoordinatedExponential, and UpDown were
all on a par. In general, very little operator
weight was rewarded to the Uniform, Interval,
TreeScale CoordinatedUniform, and
CoordinatedExponential operators for their
abilities to propose species node heights. Similarly,
among NarrowExchange variants evaluated by
AdaptableOperatorSampler(TS), the NER operator
was marginally favored by all data sets (Table 5). This
was due to the operator making larger or more
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TABLE 2. StarBeast3 parallel operator scheme for gene trees and their associated site models (assumed to be an HKY model with
transition–transversion ratio � and nucleotide frequencies f )

Operator Weight Reference

ParallelMCMC(TG,tG,�) Parallel Gene-Tree Operator
Gene trees
∀i∈1,...,k WilsonBalding(Tgi) 15 Drummond et al. (2002)
∀i∈1,...,k WideExchange(Tgi) 15 Drummond et al. (2002)
∀i∈1,...,k NarrowExchange(Tgi) 15 Drummond et al. (2002)
∀i∈1,...,k SubtreeSlide(Tgi ,tgi)

a 10 Hohna et al. (2008)
∀i∈1,...,k Uniform(tgi) 30
∀i∈1,...,k RootScale(tgi)

a 10
∀i∈1,...,k Interval(tgi)

a 10 Bactrian Operators for Trees
∀i∈1,...,k AdaptableOperatorSampler(tgi) 100

TreeScale(tgi)
a

Uniform(tgi)
a

SubtreeSlide(Tgi ,tgi)
a Hohna et al. (2008)

EpochOperator(tgi)
a Bouckaert (2021)

Site models
∀i∈1,...,k AVMN(�i,tgi) 5 Baele et al. (2017)
∀i∈1,...,k Scale(�i)a 0.5
∀i∈1,...,k Scale(�i)a 0.5
∀i∈1,...,k DeltaExchange(fi) 0.5

Notes: Each operator is applicable to a single gene tree gi or its site model �i. AVMN(�i,tgi) generated proposals for the site model and complete
set of tree node heights simultaneously. Operator weights are normalized into proposal probabilities within a single MCMC chain called by
ParallelMCMC. Further operator details can be found in (Drummond and Bouckaert, 2015).
aBactrian kernel applied to random walk (Yang and Rodríguez 2013).

frequent topological changes to the species tree, in
faster computational runtime, especially compared
with CoordinatedNarrowExchange and CNER.
Overall, this experiment reinforced the value of learning
operator weights on a problem-by-problem basis. A full
breakdown of the remaining four adaptive operators
can be found in Section S6 of Supplementary material
available on Dryad.

Lastly, we evaluated the effect of threading on
StarBeast3, by comparing its performance under 1, 2, 4, 8,
and 16 threads allotted to the ParallelMCMC gene-tree
operator (Fig. 8). There was a positive-but-modest cor-
relation between the number of threads and the overall
rate of convergence among the terms considered, with
an overall log-linear slope coefficient of 0.19. This can be
interpreted as follows: across the range of threads and
data sets considered, doubling the number of threads
was associated with an increase in mixing by 14%. Mul-
tithreading provided the strongest boost for the Skink
and Spider data sets and made little difference to the
simulated data set (48 taxa). This is an unexpected result,
because the Skink and Spider data sets have fewer genes
(k =50 compared with k =100), and may be due to the
former data sets having more taxa and thus larger trees.

Benchmarking on Large Data Sets
We benchmarked the performance of StarBeast3 on

simulated data sets with increasingly large numbers
of gene trees k, ranging from 250 to 1000 genes. Each
gene was 200 nucleotides in length. In order to achieve
convergence in a timely manner, we performed inference
under a strict clock model (i.e., all branch rates fixed
r=1) and with a small sample size (ns =4 species nG =
12 taxa). These experiments showed that StarBeast3

required more time to produce one sample for larger k,
and therefore more time to produce one effective sample,
as expected (Fig. 9). The k =250 gene data set would
require ≈10 h for the average ESS to exceed 200 in all
areas of parameter space, while the k =1000 gene data set
would require ≈40 h. Furthermore, we confirmed that
gene-tree parallelization gave a noticeable-but-modest
improvement to runtime (Fig. 9). Although the trees
were small, this experiment showed that StarBeast3 is
indeed capable of running on large data sets with several
hundred genes.

DISCUSSION

The Next Generation of Bayesian MCMC Operators
In recent years, Bayesian MCMC proposals have

advanced significantly beyond that of the unidimen-
sional random walk. The use of adaptive algorithms and
advanced proposal kernels have become increasingly
prevalent (Haario et al. 2001; Vihola 2012; Yang and
Rodríguez 2013; Benson and Friel 2018). In phylogenetic
inference in particular, tree proposals have been guided
by conditional clade probabilities and parsimony scores
(Höhna and Drummond 2012; Zhang et al. 2020), and
mirror kernels learn target distributions which act
as “mirror images” (Thawornwattana et al. 2018), for
instance.

Here, we introduced a range of recently developed
MCMC operators to the MSC, including Bactrian pro-
posal kernels (Yang and Rodríguez 2013), which have
been successfully applied to bird phylogeny (Maliet
et al. 2019), and tree “flex” operators (BICEPS; Bouckaert
2021), which have been applied to coronavirus disease-
2019 genomic data (Douglas et al. 2021a). We also

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syac010#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syac010#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syac010#supplementary-data
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FIGURE 5. Well-calibrated simulation study analyzing nS =16 species, nG =48 taxa, and k =50 genes. One-hundred simulations were performed
to recover the coverage between “true” simulated values and their estimates under the posterior distribution. 95% highest posterior density
(HPD) intervals of parameters are represented by vertical lines. Each line represents a single simulation, and is colored blue when the true value
was contained within the 95% interval, or red otherwise. The top of each plot shows the coverage of each parameter (i.e., the number of MCMC
simulations for which the “true” parameter value was contained within the 95% HPD).

invoked a series of more meticulous operators which
account for known correlations, such as the AVMN
kernel (Baele et al. 2017), constant distance operators
(Zhang and Drummond 2020), and the NER operator

(Douglas et al. 2021b), as well as adaptive operators
that improve over the course of MCMC, such as the
adaptable operator sampler (Douglas et al. 2021b),
parallel gene-tree operators, and the AVMN kernel
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TABLE 3. Benchmark data sets
Data set No. of species nS No. of taxa nG No. of gene trees k Time (h)

Frog (Barrow et al. 2014) 21 88 26 25–41
Skink (Bryson Jr et al. 2017) 10 59 50 30–54
Spider (Hamilton et al. 2016) 36 83 50 660–1100
Simulated (12) 4 12 100 24–100
Simulated (48) 16 48 100 440–950

Notes: Fifty gene trees were subsampled from the Skink and Spider data sets. The simulated data sets were directly sampled from the model
specification used during Bayesian inference (described in Section S3 of Supplementary material available on Dryad). In the final column, we
estimate the time required for the MCMC chain to converge using StarBeast3 with 16 threads (min–max across 5 MCMC replicates). These terms
were approximated as the time to achieve an effective sample size of 200 for the posterior density p(�|D), with a 20% burn-in.

FIGURE 6. Performance benchmarking the two simulated data sets. Each point is the geometric-mean ESS/h across five replicates, for either
StarBeast2, or StarBeast3 with 16 threads. The geometric-mean relative performance of StarBeast3, compared with StarBeast2, is indicated above
each term, and a * is present if the difference across five replicates is significant according to a Student’s t-test. Note that the y-axis is in log-space.

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syac010#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syac010#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syac010#supplementary-data
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FIGURE 7. Performance benchmarking the two biological data sets. See Figure 6 caption for figure notation.

(Baele et al. 2017). Indeed, these operators have yielded a
software package which outperforms StarBeast2 by up to
one-and-a-half orders of magnitude, depending on the
data set and the parameter.

While StarBeast3 provides a clear advancement to the
problem, Bayesian MCMC is still lagging behind the
volumes of next-generation genomic data. Therefore,

the continued development of efficient, meticulous, and
adaptive MCMC operators is essential.

Efficient Parallelized Bayesian Inference under the MSC
As genomic data becomes increasingly available,

concatenating genomic sequences and inferring the
phylogeny of the species as that of the genes can
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TABLE 4. Learned weights of the suboperators of AdaptableOperatorSampler(tS), averaged across five replicates

Data set Uniform Interval ConstantDistanceMSC TreeScale CUnif CExp UpDown

Frog 0.06 0.0078 0.34a 9.8e-05 0.04 0.22 0.33
Simulated (12) 1.1e-05 0.00013 0.99a 2.6e-05 0.00043 8e−04 0.0061
Simulated (48) 4.3e-05 0.00055 0.98a 5.1e-06 0.0011 0.00029 0.016
Skink 0.008 0.0087 0.34 4.8e-05 0.013 0.04 0.59a

Spider 0.0019 0.0034 0.84a 1.5e-05 0.0063 0.0025 0.15

Notes: The operator which attained the highest proposal probability is indicated by a.

TABLE 5. Average species tree RNNI distance between before and after each proposal/operator runtime for the suboperators of
AdaptableOperatorSampler(TS), averaged across five replicates

Data set NE NER CNE CNER

Frog 0.0091/0.29 ms 0.0091/0.29 msa 0.0091/0.4 ms 0.0091/0.39 ms
Simulated (12) 0.003/0.091 ms 0.0032/0.094 msa 0.0028/0.19 ms 0.0028/0.19 ms
Simulated (48) 0.00043/0.77 ms 0.00043/0.62 msa 0.00047/1 ms 0.00047/0.83 ms
Skink 0.021/0.3 ms 0.021/0.3 msa 0.021/0.5 ms 0.021/0.48 ms
Spider 0.019/1.6 ms 0.019/1.2 msa 0.019/1.8 ms 0.019/1.3 ms

Notes: Note that the timer starts at the beginning of the proposal and ends when the proposal has accepted or rejected. NE = narrow exchange;
NER = narrow exchange rates; CNE = coordinated narrow exchange; CNER = coordinated narrow exchange rates. The operator which was
rewarded the highest proposal probability for each data set is indicated by a.

FIGURE 8. Effect of threading on StarBeast3 performance. Each point represents the ESS/h of the posterior density P(�|D) (averaged across
five replicates), for the indicated thread count and data set. These terms are normalized to enable comparison across data sets, by dividing it
by that of one thread. A linear model was fitted to the ESS/h and number of threads, each in log2 space, and is reported at the top of the plot.
The positive coefficient of the slope indicates that performance increased with the number of threads, across the range of threads considered.
Parallel MCMC chain lengths were optimized using the adaptive scheme presented in Figure 3.

become enticing. However, this approach makes for
an inconsistent estimator of topology when divergence
times are small (Pamilo and Nei 1988), and a biased
estimator of species divergence times and substitution
rates when ILS is present (Arbogast et al. 2002; Mendes
and Hahn 2016; Ogilvie et al. 2016). MSC methods
address these issues, but at the drawback of their
demanding computational runtimes.

Therefore, as multithreading technologies become
increasingly affordable, the appeal in parallelizing
multispecies inference becomes clear. StarBeast3 exploits
the assumption of conditional independence between
gene trees, by doing Bayesian inference on gene trees

in parallel, and therefore it scales with the size of the
problem. StarBeast3 can handle large data sets (with
hundreds of genes) and achieve convergence several
times faster than its predecessors.

A Balanced Traversal Through Parameter Space

All areas of parameter space should be explored
approximately evenly during MCMC. If one area of
parameter space is being explored more rapidly than
another, then computational resources allotted to the
former should be diverted to the latter. This is best exem-
plified by the phylogenetic substitution model which,
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FIGURE 9. Performance of StarBeast3, across varying gene-tree sizes k and varying thread counts. Fifteen replicates of MCMC were run under
each setting. Top: mean time taken to produce one effective sample (averaged across the ESSes of the following terms: p(�|D), p(D|�), p(�), hS, lS,

, Ne, �N , lG, hG, Dupgma(G), Dnj(G), �, f , and �), ±1.96 se. Means and standard errors were computed in log space. Bottom: time required to
produce one state in the MCMC chain.

despite requiring relatively little attention to converge,
still requires full recalculation of the tree likelihood
upon every proposal (Felsenstein 1981). Conversely,
tree topologies often converge rather poorly and can
require significant attention to be rescued from local
optima. By fine tuning our MCMC operator proposal
probabilities, we have achieved a balanced traversal
through all areas of the MSC parameter space. Although
some parameters converge slower for StarBeast3 than
they do for StarBeast2 (such as those in the substitution
model), the slowest parameters converge significantly
faster for the former; up to 37× as fast (see the min term
in Figs. 6 and 7).

For StarBeast3, we employed adaptable operators
which are able to learn the proposal probabilities of
other operators based on their ability to explore a
single area of parameter space (Douglas et al. 2021b).
However, there would be a great benefit in an adaptable
operator scheme which learns and applies a balanced
exploration across different areas of parameter space on
a problem-by-problem basis.

CONCLUSION

Here we introduce StarBeast3—a software package
for performing efficient Bayesian inference on genomic
data under the MSC model. We verified StarBeast3’s cor-
rectness and we benchmarked its performance against
StarBeast2, which is an order of magnitude faster than
its still popular predecessor *BEAST. We showed that
StarBeast3 is significantly faster than StarBeast2. Notably,
relaxed clock parameters converged between 3 and
30× faster, but most importantly even the “slowest”
parameters converged up to 36× faster. Our adapt-
ive operator scheme allows proposal probabilities to
be learned on a problem-by-problem basis, making
StarBeast3 suitable for a range of data sets. By estim-
ating effective population sizes (instead of analytically
integrating the term out), we were able to parallelize
gene-tree proposals and demonstrated that doubling
the number of allotted threads was associated with an
increase in performance by around 14%. StarBeast3 is
highly effective at performing fast Bayesian inference on
large data sets with over 100 genes.
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SOFTWARE AVAILABILITY

StarBeast3 is available as an open-source BEAST
2 package with an easy-to-use graphical user inter-
face. Instructions for downloading and running
StarBeast3 can be found at https://github.com/
rbouckaert/starbeast3.

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository:
http://dx.doi.org/10.5061/dryad.f1vhhmgzk.
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