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The process of cartilage destruction in the diarthrodial joint is progressive and irreversible. This destruction is extremely difficult to
manage and frustrates researchers, clinicians, and patients. Patients often take medication to control their pain. Surgery is usually
performed when pain becomes uncontrollable or joint function completely fails. There is an unmet clinical need for a regenerative
strategy to treat cartilage defect without surgery due to the lack of a suitable regenerative strategy. Clinicians and scientists have
tried to address this using stem cells, which have a regenerative potential in various tissues. Cartilage may be an ideal target for
stem cell treatment because it has a notoriously poor regenerative potential. In this review, we describe past, present, and future
strategies to regenerate cartilage in patients. Specifically, this review compares a surgical regenerative technique (microfracture)
and cell therapy, cell therapy with and without a scaffold, and therapy with nonaggregated and aggregated cells. We also review
the chondrogenic potential of cells according to their origin, including autologous chondrocytes, mesenchymal stem cells, and
induced pluripotent stem cells.

1. Introduction

Articular cartilage is a hyaline lining on the articular surface
of bone ends. It cushions external impacts and reduces
friction between bones to enable smooth and painless joint
motion. Chondrocytes are the only resident cell type in
cartilage and comprise 1–5% of articular cartilage. These cells
produce collagen, proteoglycans, and hyaluronic acid, which
are components of the extracellular matrix (ECM) and
underlie the mechanical properties of cartilage [1, 2].

Cartilage damage is characterized by gradual destruction
of articular cartilage, an avascular connective tissue with a
poor regeneration capacity. Damage of articular cartilage
results in pain, swelling, and a limited range of motion
due to its limited intrinsic healing ability. It can be trig-
gered by pathologic changes caused by trauma, aging,
genetic factors, and inflammation. Hypertrophy of chon-
drocytes and synovial membranes, cartilage degeneration,
chronic arthritis, and systemic inflammation can also occur,

leading to varying degrees of chondrocytosis, which is the
growth of chondrocytes [3].

Several attempts have been made to regenerate articu-
lar cartilage. Treatment depends on the condition of the
patient and their degree of cartilage damage. In the case
of complete cartilage degeneration, total joint replacement
is the only option [4]. Microfracture and autologous
chondrocyte implantation (ACI) have been proposed as
surgical options for partial cartilage lesions. For patients with
cartilage degeneration of an intermediate severity, tissue
engineering approaches are emerging as a means to restore
cartilage more effectively than microfracture or ACI.

Mechanical, biological, and chemical scaffolds can miti-
gate the disadvantages associated with cell-based therapy,
such as insufficient integration into host tissues, inaccu-
rate cell delivery, and degeneration of healthy cartilage.
A scaffold-based approach has been developed to better
fill cartilage lesions with autologous chondrocytes. When
chondrocytes are propagated in a 3D environment, less
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dedifferentiation occurs and more hyaline cartilage forms
[5]. The development of hyaline-like cartilage is improved
by implantation of hyaluronic acid scaffolds containing
autologous chondrocytes into defect sites [6, 7]. However,
despite great efforts to mimic the in vivo environment using
biological reactors, exogenous machinery, and biochemical
stimulation, tissue with the same properties as healthy
cartilage has not been generated [4]. Moreover, the limited
number of primary cells (i.e., chondrocytes) reduces the
effectiveness of this treatment. Consequently, stem cell-
based methods have been developed to avoid the disadvan-
tages associated with primary chondrocyte therapy.

Of the various types of stem cells, bone marrow-derived
stem cells (BMSCs) and adipose stem cells (ASCs) have many
advantages for clinical applications due to their chondro-
genic potential [8–14]. It is easier to separate and proliferate
BMSCs and ASCs than primary chondrocytes. These stem
cells can differentiate into bone and cartilage and thereby
regenerate cartilage in vitro and in vivo [14–19]. However,
it is difficult to obtain large numbers of BMSCs and ASCs
via in vitro culture because extensive expansion can alter
their phenotypes [20–23]. In addition, the yield and differ-
entiation capacity of BMSCs decrease with age and in
pathogenic conditions [14, 24, 25]. For these reasons, a
new cell source for cartilage regeneration is needed.

In this regard, induced pluripotent stem cells (iPSCs),
which can proliferate indefinitely and be produced in large
numbers, are of interest. Human iPSCs (hiPSCs) are plu-
ripotent, similar to embryonic stem cells (ESCs), but have
no associated ethical problems. hiPSCs can be produced
without integrating genes into the genome and can differ-
entiate into chondrocytes in vitro [14, 26]. In addition, a
large number of hiPSC libraries prepared from donors,
homozygous for the human leukocyte antigen (HLA), have
been established. Theoretically, a relatively small number
of these HLA-homozygous hiPSC lines would cover the
majority of the population.

Here, we summarize the shortcomings and outcomes of
various cartilage regeneration strategies and describe various
attempts to treat cartilage defects. Moreover, this review
discusses stem cell-based engineering to repair cartilage,
focusing on hiPSCs. Finally, the future use of hiPSCs for
cartilage regeneration is considered.

2. Articular Cartilage

Articular cartilage is an elastic connective tissue that covers
the ends of bones in diarthrodial joints. It is generated by
and composed of chondrocytes. During development, skele-
tal tissues (including cartilage) are derived from the meso-
derm germ layer. Mesenchymal tissues derived from the
mesoderm differentiate into chondrocytes. Chondrocytes
produce ECM proteins that are rich in proteoglycans. The
accumulated ECM proteins lubricate the surface, meaning
it can transmit loads without friction [27]. Articular cartilage
has a complex composition with various cellular and ECM
networks. The characteristics of chondrocytes, the only cell
type in articular cartilage, differ according to their location.
Chondrocytes located at the surface of articular cartilage

produce lubricin, a protein specific to the superficial zone
that lubricates the surface [28]. Chondrocytes in the middle
zone synthesize a large amount of aggrecan [29]. In deeper
regions, most chondrocytes are in a resting state and syn-
thesize proteoglycans. Most synthesized proteins are non-
collagenous; therefore, the turnover rate of type II collagen
is relatively low. This protein has a half-life of 117 years,
unless it is damaged [30].

There are three main types of cartilage: elastic cartilage,
fibrocartilage, and hyaline cartilage. Articular cartilage in
knee joints is mostly composed of hyaline cartilage. The
smoothness and flexibility of hyaline cartilage are intermedi-
ate between those of elastic cartilage and fibrocartilage. After
a lesion is generated in hyaline cartilage, scar-like tissue
(fibrocartilage) forms. It is almost impossible to repair a
hyaline cartilage defect by regenerating hyaline cartilage.
Moreover, articular cartilage is avascular, alymphatic, and
aneural. The lack of blood vessels limits its regeneration
ability. The blockade of blood vessels by the dense ECM
hampers the delivery of nutrients to damaged cartilage.
Chondrocytes receive nutrients by diffusing through the
ECM. The low percentage of chondrocytes (1–5%) also
hinders the recovery of damaged cartilage [1].

OA, which is related to aging, is the most common form
of arthritis and affects millions of people worldwide. Pain is
usually caused by the degeneration of articular cartilage in
joints [31]. Even the smallest lesion can affect the whole
cartilage tissue during the progression of damage. Such
cartilage damage is caused by metabolic imbalances [32].
An imbalance between catabolic and anabolic factors leads
to cartilage degradation [32]. Pathological changes include
cartilage degradation, osteophyte formation, and inflam-
mation. Cartilage degeneration is triggered by sheer stress
generated by mechanical forces at the joint surface. This
stimulates the proliferation of quiescent chondrocytes and
increases their production of ECM proteins and ECM-
degrading enzymes [33]. A disintegrin and metalloprotein-
ase with thrombospondin motifs, collagenases, and matrix
metalloproteinases degrade collagen II and proteoglycans
in the cartilage ECM [2, 34]. This cascade of events
degrades hyaline cartilage, which is eventually replaced
by fibroblast-like cells. Consequently, hyaline cartilage is
replaced by fibrocartilage, leading to stiffness and addi-
tional pain. Various strategies have been developed to treat
the damaged cartilage and are discussed in this review
(Figure 1). A major challenge is to prevent cartilage damage
and to regenerate hyaline cartilage.

3. Current Repair Approaches for
Cartilage Regeneration

3.1. Microfracture. Microfracture surgery creates small frac-
tures in the underlying bone. These fractures induce a healing
response in damaged articular cartilage by releasing BMSCs
[35]. Bone marrow “clots” can firmly adhere to the rough
surface of the fractured bone [36, 37]. This promotes the
healing of articular cartilage with fibrous tissues or hyaline-
like cartilage. Numerous studies report favorable results of
microfracture [36, 38–43]. In the late 90s, Bae et al. detected
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type II collagen at the fracture site in 46 patients with
moderate OA at 1 year after surgery [44]. However, studies
reported mixed results in the short-, medium-, and long term
[45–47]. The quantity and quality of the patient’s BMSCs are
thought to influence the effectiveness of this approach.
Moreover, postoperative rehabilitation is thought to be as
important as the surgery itself. Tissue formed following
microfracture begins to mature at 8 weeks after surgery
[48]. Miller et al. reported that patients who received contin-
uous passive motion (CPM) therapy demonstrated better
recovery after microfracture. They concluded that CPM
therapy should be performed for 8 weeks after this procedure
[49]. Based on this study, CPM for 6–8 hours per day is
recommended for patients who have undergone microfrac-
ture surgery [50]. However, random cell differentiation
induced by microfracture often leads to the formation of
fibrocartilage, which is biomechanically inferior to hyaline-
like cartilage [44, 51]. Without the mechanical rigidity of
hyaline cartilage, the regenerated tissue may deteriorate after
18–24 months and osteophytes may develop due to penetra-
tion of the subchondral bone in 25–50% of cases [4, 52].
Moreover, microfracture is less effective for the restoration
of large lesions (>3 cm2) [53]. Despite these shortcomings,
the Food and Drug Administration (FDA) and many clini-
cians believe that microfracture is a good option for cartilage
recovery [54, 55].

3.2. ACI and Matrix-Induced ACI. ACI is one of the most
promising procedures for long-term cartilage regeneration
[53, 56–60]. This method involves obtaining cartilage from

the low-weight-bearing part of the joint via a punch biopsy.
The isolated cartilage is enzymatically digested to isolate
chondrocytes. These chondrocyte are expanded in vitro,
transplanted into cartilage defects, and sealed with periosteal
flap membranes. Unlike microfracture, ACI is effective
for the treatment of large cartilage defects (>3 cm2). ACI
has yielded favorable clinical and functional results in long-
term studies lasting more than 10 years [61–63]. In addition,
because this process uses the patient’s own cells, potential
immune complications are avoided [64, 65]. Matrix-
induced autologous chondrocyte implantation (MACI) is
an improved version of ACI. Unlike ACI, MACI involves
the culture of autologous chondrocytes on type I or type III
collagen membranes prior to implantation [66, 67]. This
avoids the need to close the defect with watertight sutures
[66]. It also helps to maintain the characteristics of articular
chondrocytes during long-term cultivation and prevents
leakage of chondrocytes inside the joint [68, 69]. However,
ACI and MACI both involve two invasive procedures,
namely, harvesting chondrocytes and transplanting them
back into the patient. Hypertrophy along the flap is also a
problem [53]. Alternative membranes, such as porcine mem-
branes composed of a mixture of collagen and hyaluronic
acid scaffolds, have been used; however, they can increase
the immune response [6, 70, 71]. The effectiveness of these
procedures is also limited by the low number of chondrocytes
in the harvested cartilage. Indeed, chondrocytes constitute
less than 5% of cartilage tissue [60]. Consequently, these cells
must be expanded in vitro. However, chondrocytes cultured
as a monolayer readily dedifferentiate. Chondrocytes lose
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Figure 1: Techniques to regenerate cartilage. Microfracture involves penetrating the osteochondral bone at a depth of 3-4mm, with each hole
separated by 3-4mm. MSCs migrate from bone marrow to the cartilage defect. ACI involves injecting a patient with their own chondrocytes.
MACI involves placing 3D scaffolds, such as those composed of hyaluronic acid or collagen types I and III, into cartilage defects together with
autologous chondrocytes. Biocompatible scaffolds have also been developed. There are also scaffold-free techniques that use chondrospheres
or self-assembling processes. Smaller chondrospheres are expected to improve therapeutic access via intra-articular injection.
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their chondrogenic characteristics when grown in a mono-
layer and start to express fibroblast markers such as collagen
type I. Therefore, tissue regenerated using such autologous
chondrocytes may be fibrocartilaginous [26, 72].

4. Approaches to Improve Chondrogenesis

4.1. Scaffolds. Chondrogenesis is thought to require a three-
dimensional (3D) environment. During development, chon-
drogenesis is a complicated process regulated by various
growth factors and mechanical factors. A scaffold is com-
monly used to facilitate in vitro chondrogenesis for tissue
engineering [73, 74]. Articular chondrocytes and mesenchy-
mal stem cells (MSCs) are the most commonly used cells in
cartilage tissue engineering [75–77]. The structural, mechan-
ical, and biochemical properties of scaffolds can improve cell
survival and differentiation. The type of scaffold (i.e., natural
or synthetic) is also important [78–81]. Natural biode-
gradable polymers include polysaccharides, polynucleotides,
and proteins, whereas synthetic biodegradable polymers
include poly-lactic acid, poly-glycolic acid, and poly-lactic-
co-glycolic acid (PLGA) [82]. Scaffolds should ideally be
absorptive or biodegradable and support cartilage formation.
When creating a scaffold, efforts should be made to ensure it
facilitates cell migration. In addition, the pore architecture,
elasticity, surface energy parameters, molecular mobility,
chemical functionality, pH, and degradation of the scaffold
should be considered, as well as any inflammatory responses
it may elicit [83]. 3D scaffolds are preferable to two-
dimensional (2D) scaffolds for cartilage regeneration. Indeed,
3D structures support cell aggregation, mimic the in vivo
environment, and improve cell communication and ECM
production [84, 85]. However, scaffolds also have disadvan-
tages. Chondrocyte dedifferentiation, cell death, and cell
leakage have been reported in scaffold-based chondrogenesis.
Moreover, an inappropriate cell distribution, poor differenti-
ation, and inadequate integration with host tissues are com-
mon problems associated with cell transplantation using
scaffolds [78, 86, 87]. For example, PLGA scaffolds have been
proposed to structurally support cartilage formation [88].
Although these scaffolds yielded promising results for the
treatment of full thickness cartilage defects with BMSCs
in vivo, their therapeutic efficacy is limited due to the hydro-
phobicity of PLGA. Efforts are being made to improve cell
attachment, function, and differentiation, as well as the
scaffold itself [89–91].

4.2. Scaffold-Free 3D Culture: Pellet and Micromass Culture.
Chondrogenesis is less efficient in a 2D monolayer than in
a 3D culture system [92]. Dedifferentiation of chondrocytes
in conventional monolayer culture is a major issue for
cartilage engineering. In such a system, chondrocytes lose
their original characteristics, acquire a fibroblastic morphol-
ogy, and secrete collagen type I, rather than collagen type II
or aggrecan [93, 94]. However, these changes are reversed
when dedifferentiated chondrocytes become confluent [95].
Before the emergence of scaffolds, scaffold-free 3D culture
systems were generally used for chondrogenesis. These sys-
tems mimic precartilage condensation in the developing limb

bud and allow cells to interact as they do during cartilage
development [96–99]. Cell density significantly influences
chondrogenic differentiation [100]. Pellet culture and micro-
mass culture remain the most widely used method for cell-
based therapy and cartilage research. Pellet culture of growth
plate chondrocytes was first used as an in vitro model of
cartilage mineralization [101, 102]. Subsequent studies used
this system to study the effects of growth factors on chondro-
cyte phenotypes, properties of ECM proteins, and the
bioenergetics of chondrocytes [103–106]. Early studies of
chondrogenesis and hyaline cartilage engineering showed
that pellet culture supports in vitro chondrogenesis using
MSCs or chondrocytes in the presence of growth factors.
Cells differentiated in pellet culture are similar to native
articular cartilage in terms of their distribution, density,
and matrix composition, without cell phenotypical changes
or the assistance of a scaffold [93, 97]. Micromass culture
was first performed with chicken limb bud MSCs and was
recently used for chondrogenesis. Several studies claim that
chondrogenesis is more efficient in micromass culture than
in pellet culture. Collagen types I and X are upregulated in
larger pellets of chondrogenic cells. Cells trapped in the cen-
tral region are often undifferentiated and necrotic [107–109].
Although micromass culture supports efficient chondrogene-
sis, other studies suggest that pellet culture is more suitable
for clinical use because of the limited number of chondro-
cytes generated via micromass culture and their tendency to
dedifferentiate [110]. A higher number of cells are required
to generate a cartilage-like construct without an artificial
scaffold or matrix [111, 112]. Pellet culture and micromass
culture are popular methods for in vitro chondrogenesis
using various cell types.

5. Adult Stem Cell-Based Chondrogenesis

5.1. BMSCs. MSCs can be easily collected from various
tissues; however, they are most commonly isolated from
bone marrow in humans (Figure 2) [113–115]. Bone marrow
stromal cells were first proposed to differentiate into mesen-
chymal cells, including adipocytes and osteoblasts, in the late
80s via a process called mesengenesis, and these cells were
consequently named “BMSCs.” This process has been stud-
ied using various in vitro assays. Moreover, BMSCs have
been used to treat several diseases [116–121]. In post-
traumatic OA models, injection of autologous BMSCs
improves the regeneration of joint cartilage exhibiting articu-
lar degeneration and osteophyte formation. While autolo-
gous chondrocytes are terminally differentiated, BMSCs can
differentiate into various cell types (e.g., fibroblasts and chon-
drocytes) within the joint [122]. The injected BMSCs might
also elicit immunomodulatory effects. However, the multi-
potency of BMSCs is useful for tissue engineering and
cartilage regeneration. After several trials with monolayer
cultures, aggregates of BMSCs cultured in defined medium
were demonstrated to undergo chondrogenic differentiation
[25, 97, 123–125]. One important advantage of BMSCs over
autologous chondrocytes is that they are more easily
expanded in vitro. In vitro chondrogenic differentiation of
BMSCs has been widely studied. Treatment with fibroblast
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growth factor 2 (FGF2) enhances the proliferation and chon-
drogenic potential of these cells [126, 127]. FGF2-treated
BMSCs demonstrate enhanced expansion (increase of 3500-
fold versus nontreated BMSCs), increased accumulation of
proteoglycans, and downregulation of collagen type I expres-
sion. However, BMSCs also have several disadvantages.
Patients can experience pain during bone marrow harvesting,
and a small volume of bone marrow is obtained, yielding a
low number of BMSCs [128]. Only ~1500–3000 fibroblast-
forming colonies are obtained from 1mL of human bone
marrow, and it has been suggested that bone marrow biopsies
larger than 2mL are significantly contaminated by peripheral
blood [129]. Ex vivo expansion is required to obtain a suffi-
cient number of BMSCs for clinical use, especially in elderly
patients and those expected to have few BMSCs [130].
Similar to chondrocytes, most adult stem cells (e.g., BMSCs)
exhibit decreased proliferation and a reduced differentiation
potential after 4–6 passages [20, 131]. Dexheimer et al.
reported that faster proliferation of BMSCs correlates with
the formation of larger pellets, fewer apoptotic cells, and
higher expression of proteoglycans and collagen type II
[132]. Despite the advantages of BMSCs, the slow prolifera-
tion rate of cultivated BMSCs and the small number of cells
obtained from bone marrow must be resolved.

5.2. ASCs. ASCs are obtained by isolating the stromal vascu-
lar fraction (SVF) of fat tissue. This is the cell pellet produced
when a lipoaspirate, the waste product of liposuction surgery,
is digested with enzymes such as collagenase [133]. After
serial passaging, adherent cells are harvested as ASCs. Both
ASCs and SVFs have a therapeutic potential. The less
invasive harvesting procedure and higher yield of ASCs and
SVFs have led to these cells being suggested as alternatives
to BMSCs. A total of 1× 107–5× 108 ASCs are routinely
obtained from 300mL of lipoaspirate, and their viability is
>90% [134–137]. This yield is higher than that from bone
marrow aspirates, and ASCs are also reportedly easier to
culture, proliferate faster, and can be cultivated for longer
before becoming senescent [134, 135, 138–140]. Jo et al.
investigated the therapeutic effects of intra-articular injection
of ASCs for cartilage regeneration in an early phase clinical
trial [141]. While ASCs improved cartilage regeneration,
numerous studies reported that ASCs can differentiate into
cartilage [142–144]. It has been suggested that ASCs have a
greater chondrogenic potential than chondrocytes. Indeed,
ASCs can maintain their chondrogenic potential for more
than 15 passages, longer than chondrocytes [145–147]. How-
ever, another study reported that ASCs regenerate cartilage
less efficiently than BMSCs [148]. Diekman et al. confirmed
that BMSCs expressed a higher level of COL2A1 than ASCs
and synthesized more ECM when cultured in alginate beads
and a scaffold [149]. Winter et al. showed that ASCs are less
sensitive to a chondroinductive environment and that their
differentiation is less complete than that of BMSCs after 2
weeks of culture [148]. Chondrogenesis of BMSCs was better
than that of ASCs in a 3D system. However, gene expression
of aggrecan was higher in ASCs than in BMSCs in the pres-
ence of BMP6, while expression of chondrogenic markers
was higher in BMSCs than in ASCs in the presence of TGFβ.

Hamid et al. suggested that ASCs should be differentiated
prior to passage 4 [150]. Moreover, in that study, expression
of chondrogenic markers was highly upregulated at week 1,
but decreased at weeks 2 and 3. On the other hand, gene
expression of collagen type X was highly unregulated at week
3, indicative of hypertrophy. Chondrogenic induction was
only prominent after 1 week of differentiation, even when
ASCs were used before passage 4.

5.3. Cartilage Regeneration Using Adult Stem Cells. In the
surgically induced cartilage damaged animal model, intra-
articular injection of labeled BMSCs promoted cartilage
tissue regeneration compared to the control group. This
result was possible despite the relatively low detection of
the labeled BMSCs at the cartilage regeneration site [151].
In addition, when injected with BMSCs in porcine models,
cartilage regeneration effect was shown as well [152].

Black et al.’s study assessed the clinical effects of locally
derived MSCs in placebo-controlled trials and showed that
the range of motion was significantly improved after a single
injection of intra-articular adipose-derived MSCs [153].

In mono-iodoacetate-induced rat models, the use of
intra-articular BMSCs allowed the animals to distribute sig-
nificantly greater weight through the affected limb. Despite
this functional enhancement, no statistical significant differ-
ence appeared between the treatment and the control groups.
Also, cartilage and subchondral bone pathology and synovial
inflammation were observed in groups treated with BMSC
injections [154, 155]. Phases I and II trials using ASCs in
the treatment of osteoarthritis (OA) showed MRI evidence
of cartilage regrowth [141]. Histological evaluation of colla-
gen type II revealed that hyaline cartilage was regenerated
after the injection of 100 million MSCs into a single joint,
followed by 6 months of follow-up.

Based on the observed positive preclinical results of
using MSCs with arthroscopic techniques, Saw et al. pub-
lished a randomized controlled trial that included the use
of peripheral blood MSCs with arthroscopic microfracture/
microdrilling of chondral lesions [156]. As a result, histo-
logical analysis and MRI evaluation showed that the qual-
ity of cartilage restoration was significantly improved in
participants who received MSCs. Another study reported
a randomized clinical trial evaluating the efficacy of MSCs
after arthroscopic partial medical meniscectomy [157]. The
study showed improved clinical outcome compared to the
control group and also showed evidences of regeneration of
the meniscus volume. Even though preclinical studies have
shown inconsistent results, the benefits of intra-articular
injection of MSCs or ASCs for improved therapy were
proven through various studies.

6. iPSCs for Chondrogenesis

6.1. iPSCs. hiPSCs were first generated in 2006 by trans-
ducing mouse fibroblasts with four Yamanaka factors (Klf4,
Oct3/4, c-Myc, and Sox2). In 2007, hiPSCs were successfully
produced by introducing KLF4, OCT3/4, SOX2, and c-MYC
or SOX2, OCT3/4, NANOG, and LIN28 into human somatic
cells [158, 159]. hiPSCs have similar characteristics as human
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ESCs. However, while hiPSCs can proliferate indefinitely and
self-renew, they are not associated with the major ethical
issues that complicate the use of ESCs. Therefore, hiPSCs
were recently highlighted as an alternative cell source for
regenerative medicine [14, 160].

Initially, hiPSCs were routinely generated from skin
dermal fibroblasts. However, invasive surgery is required to
obtain such cells. Other somatic cells currently used for
reprogramming, such as blood cells, urine cells, and keratino-
cytes, are easier to obtain [161–166]. Cord blood cells, dental
pulp stem cells, joint synoviocytes, and adult stem cells (e.g.,
ASCs and MSCs) have also been successfully reprogrammed
[160, 167, 168]. While earlier protocols used lentiviral or
retroviral transduction to facilitate integration of Yamanaka
factors, hiPSCs should be produced via nonintegrating
methods for clinical use. Sendai virus, episomal vectors, small
molecules, proteins, and modified RNAs are commonly
employed to avoid integration [169–171]. hiPSCs are now
widely used for regenerative medicine, drug screening, and
even “disease-in-a-dish” modeling.

A pancreas is produced by injecting rat iPSCs into mouse
blastocysts that lack a pancreas due to deletion of the Pdx1
gene [172]. Theoretically, human organs can be generated
by injecting hiPSCs into pig blastocysts; however, this is
complicated by technical issues [26, 173]. Moreover, the
blood vessels of iPSC-derived organs are formed by the host
animal [26]. This is not a problem for the generation of car-
tilage because this tissue is avascular [26]. Reprogrammed
iPSCs exhibit pluripotency when transplanted into immuno-
deficient mice, and they generate teratomas containing
tissues of all three germ layers (endoderm, mesoderm, and
ectoderm). Cartilage-like tissue is found in these teratomas,
demonstrating that hiPSCs can undergo chondrogenesis.
Therefore, hiPSCs are a promising cell source for chondro-
genic tissue engineering.

6.2. Cartilage Regeneration Using hiPSCs. The ultimate goal
of regenerative medicine with iPSCs is not only to produce
cells of interest but also to create new tissues or organs
[26, 172, 173]. Teratomas generated from hiPSCs contain
hyaline cartilage. This indicates that hiPSCs can differenti-
ate into human cartilage or chondrocytes [26]. Before the
emergence of hiPSCs, attempts were made to induce chon-
drogenesis of human ESCs via three methods: coculture
with articular chondrocytes, induction of MSC-like cells,
and direct conversion [26, 174–182].

Protocols used to induce chondrogenic differentiation of
hiPSCs were mostly derived from these methods (Table 1).
The most widely used approach induces MSC-like cells from
hiPSCs (Figure 3). There are several protocols to obtain these
progenitor cells, which can be roughly classified into two
types: (1) monolayer culture and (2) embryoid body (EB) for-
mation. The latter is more commonly used because it
involves mesodermal induction via a defined process. In an
early study, Medvedev et al. attempted to induce chondro-
genesis of hiPSCs derived from fetal neural stem cells iso-
lated from human embryos [183]. Chondrocytes generated
from these hiPSCs exhibited characteristics of chondro-
cytes. EBs were generated from these hiPSCs, and the

media was replaced by chondrogenic differentiation
medium. Expression of ECM proteins such as collagen type
II and the early chondrogenic marker Sox9 was subsequently
detected. In 2012, Zhu et al. also induced chondrogenic dif-
ferentiation of EBs. Koyama et al. suggested a more defined
protocol for in vitro chondrogenesis of hiPSCs in 2012
[184]. While EBs are usually used for differentiation into
the three germ layer lineages, they suggested a new protocol
for differentiation into the mesenchymal progenitor cell line-
age. EBs were generated and grown on gelatin-coated plates
for 1 week, after which mesenchymal-like cells or “outgrowth
cells” sprouted from these EBs. The outgrowth cells had sim-
ilar characteristics as MSCs, such as expression of CD44,
CD90, CD73, and CD105. The authors reported that 1-
2× 104 cells/cm2 was the ideal density for proliferation. Out-
growth cells were dissociated, cell clumps were removed with
a strainer, and chondrogenic differentiation was induced.
Chondrogenic pellets generated from hiPSC-derived mesen-
chymal progenitor cells had a cartilage morphology and
contained lacuna. Both hiPSCs and human ESCs were suc-
cessfully differentiated toward the chondrogenic lineage
using this protocol. Our group also confirmed the successful
chondrogenic differentiation of cord blood-derived hiPSCs
via this method [14, 185]. In 2012, Diekman et al. suggested
a different approach for chondrogenesis [186]. They isolated
cells that expressed collagen type II tagged with green fluo-
rescent protein (GFP) and induced chondrogenesis. Similar
to the study by Koyama et al., chondrogenic differentiation
was not directly induced. hiPSCs were first predifferentiated
into the chondrogenic lineage by micromass culture, and
then these cells were dissociated and aggregated by pellet
culture. Pellets of GFP+ cells were larger and produced more
glycosaminoglycan ECM proteins than those of GFP− cells.
The authors concluded that this protocol enhances the
chondrogenic properties of engineered tissue and could be
a way to eliminate undifferentiated cells, which may prove
helpful for transplantation of hiPSCs in the future. However,
protocols using EBs are time-consuming and are thought to
give rise to a heterogeneous population due to variations in
cell number and EB size [175]. Several researchers attempted
to differentiate hiPSCs directly without EBs via micromass or
pellet culture using specific medium, a coated matrix, or
feeder layers [187–189]. However, these methods negatively
affect related signaling pathways. Therefore, a fast, inexpen-
sive, and efficient protocol is required for future applications.

6.3. Cartilage Regeneration Using hiPSCs in Animal Models of
OA. The healing ability of chondrogenic cells derived from
hiPSCs was recently investigated in several animal models.
In 2014, Ko et al. induced chondrogenic differentiation via
EB culture and using alginate beads [16]. Cells in EBs were
dissociated and transferred to chondrogenic differentiation
medium for micromass culture. The generated chondrogenic
pellets or alginate hydrogels were implanted into osteochon-
dral defects created on the patellar groove of immunodefi-
cient rats. Twelve weeks later, the defects were filled with
smooth and firm tissue, while the control group had a rough
surface with or without fibrous tissue. Histological analysis
also demonstrated the restoration of proteoglycans in the
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defected areas. However, the authors reported that matrix
formation was inadequate due to the implantation of allo-
genic iPSCs, despite the persistence of implanted hiPSCs
and the use of immunodeficient rats.

In 2015, Nejadnik et al. generated chondrogenic pellets of
ASC-derived hiPSCs [131]. They induced differentiation into
the mesenchymal lineage via monolayer culture because they
felt that EB culture gave inconsistent results. To confirm
the quality of the iPSC-derived mesenchymal cells, hiPSC-
derived MSCs and hiPSC-derived chondrogenic cells were
differentiated for 21 days and seeded into a polyethylene
glycol and chondroitin sulfate methacrylate-based scaffold.
Pellets were implanted into an osteochondral defect gener-
ated in the distal femur of nude rats and evaluated via
serial imaging for 6 weeks. Magnetic resonance imaging
showed that the implants did not form teratomas and also
detected a decreased water content and increased ECM
formation, indicative of successful engraftment. Moreover,
the cells expanded in vivo and the scaffold was eventually

degraded. Histology confirmed the engraftment of both
hiPSC-derived MSCs and chondrogenic pellets in the
defect, as demonstrated by Alcian blue and collagen type
II staining. Chondrogenic pellets expressed higher levels
of matrix proteins; however, hiPSC-derived MSCs also
promoted regeneration.

Chondrocytes derived from hiPSCs were implanted into
a nonsurgical monosodium iodoacetate- (MIA-) induced
cartilage damaged rat model. Zhu et al. generated chondro-
genic pellets via EB culture and induction of outgrowth cells
[190]. Rather than pelleting the outgrowth cells, they cul-
tured them in chondrogenic differentiation media. Under
these conditions, the sprouting outgrowth cells were thought
to be chondrocytes. Thereafter, the authors injected 500μL of
the cell suspension (1× 106 cells/mL) into the joint at 1 week
after induction of damage using MIA. Fifteen weeks later, rat
knee joints were imaged by microcomputed tomography
and analyzed by histology. hiPSC-derived chondrocytes
had a better regeneration capacity than hiPSCs. Histological

hiPSCs

Somatic cell
isolation and reprogramming

Monolayer culture EB culture

Mesenchymal-like cell

3D cultureMonolayer culture

Chondrocyte

Chondrocyte

Lacuna

Figure 3: A simple scheme of the various methods used to differentiate iPSCs into chondrocytes.
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analysis demonstrated that the injected hiPSC-derived chon-
drocytes localized on the cartilage surface and increased the
level of proteoglycans. Proliferating chondrocytes were also
detected, suggesting that cartilage was being repaired. The
authors concluded that joint function was improved;
however, rat joints still showed dyskinesia and did not fully
repaired, indicating that stem cell injection can improve
joint repair, but only in early stage of destruction.

In 2015, Yamashita et al. implanted hiPSC-derived
chondrogenic cells into larger animals. Cartilaginous nodules
were generated from a monolayer of hiPSCs [191]. These
nodules eventually separated from the bottom of the dish
and were transferred to a petri dish and maintained in
suspension culture for up to 42 days. The nodules did not
form tumors when subcutaneously implanted into severe
combined immunodeficiency (SCID) mice. Cartilaginous
particles maintained for 28 days were implanted into osteo-
chondral defects of SCID rats. Repair of the defects was
confirmed at 4 weeks after transplantation, with high expres-
sion of collagen type II. Expression of ECM proteins was
higher in nodules maintained for 42 days than in those main-
tained for 28 days. To determine if human cells migrated to
other organs or lymph nodes, the authors investigated
expression of human β-actin. This was not detected in any
other organ, and pluripotency markers were not expressed
in nodules differentiated for 21 days or longer. Finally, the
nodules were implanted into cartilage defects of mini-pigs
weighing 27.0–30.5 kg and treated with the immunosuppres-
sant cyclosporine. The nodules were viable for 1 month after
transplantation. Chondrogenic nodules expressed human
vimentin and integrated with host articular cartilage. The
authors concluded that the nodules can repair cartilage
defects even under heavy-weight-bearing conditions.

Taken together, these results demonstrate the potential of
hiPSC-derived cartilaginous particles for articular cartilage
regeneration. Early phase animal trials are being conducted,
the results of which will help to translate this procedure into
future clinical applications.

7. Conclusions and Future Perspectives

Cartilage damage causes joint destruction, pain, physical
disability, and morbidity. However, the avascular nature
and low mitotic activity of cartilage limit its intrinsic regener-
ation capacity. Although biological agents may slow cartilage
degradation, the optimal treatment to promote cartilage
repair has not been defined.

Cell-based therapies are emerging as a means to regener-
ate cartilage. One of the points to consider is the stability of
the cells before use. Rubio and colleagues questioned the
safety of locally derived MSCs through a controversial study
in 2005 [192]. When BMSCs were implanted in immunode-
ficient mice, spontaneous stem cell mutation and malignant
tumors appeared. Later, the study was withdrawn after
evidence showed that the malignant traits were associated
with contamination of cell lines, but not with MSCs [192].
In a similar situation, further studies on long-term cultured
BMSCs (evidence of malignant transformation) were with-
drawn on the same grounds [193, 194]. Importantly, current

clinical trials have shown that MSC therapy is safe. Safety
has been demonstrated through a recent systematic review
and meta-analysis of a total of 1012 participants who
received intravascular MSC therapy for a variety of clinical
symptoms, including ischemic stroke, Crohn’s disease, car-
diomyopathy, and ischemic heart disease [155, 195]. In the
case of hiPSCs, the risk of teratoma formation is the biggest
problem that cannot be overlooked. Therefore, efforts (i.e.,
complete differentiation or purification) to avoid this risk
are necessary.

Autologous chondrocytes and adult stem cells (i.e.,
BMSCs and ASCs) are generally used for cartilage regener-
ation; however, the low numbers of these cells limit their
clinical applications. By contrast, hiPSCs can proliferate
indefinitely and support chondrogenesis in vitro and in vivo.
Using a defined quality control process and a chondrogenic
differentiation protocol, hiPSCs can become the ideal cell
source for cartilage engineering.

hiPSCs have several advantages. These cells can be the-
oretically generated from every individual; however, this is
not economically viable. It is expensive to prepare hiPSCs
from a patient under good manufacturing practice (GMP)
guidelines [196]. Consequently, the concept of a HLA-
homozygous hiPSC bank has emerged [197]. It is esti-
mated that 100 HLA-homozygous hiPSC lines from each
race would cover the majority of the population [198].
Cartilage is considered to be an immunoprivileged tissue
due to its avascular and alymphatic nature and the dense
ECM that surrounds chondrocytes [26]. The use of HLA-
matchedhiPSCsmayminimize immune rejection during allo-
geneic transplantation for cartilage engineering (Figure 4).
HLA-A, HLA-B, and HLA-DR are closely related to rejection
[199, 200]. Many researchers are currently collecting cells
homozygous for these three HLA types; however, further
research is required to improve allogeneic transplantation
of neocartilage.

Many cartilage transplantation procedures currently
involve surgery. Further damage to the knee joint might
exacerbate the immune reaction and hamper recovery.
Therefore, the development of an accessible and noninvasive
treatment might be ideal for cartilage recovery. Various treat-
ments involve a single injection of cells (e.g., Cartistem).
Intra-articular injection of BMSCs and ASCs has been
investigated as a means to treat OA [201–208]. Zhu et al.
demonstrated that hiPSC-derived chondrocytes may also be
clinically applicable by noninvasive procedures. However,
chondrocytes demonstrate better viability and function in
3D conditions. Moreover, the properties of cells are better
in spheroids than in 2D systems [209]. Specifically, cells in
spheroids have a higher viability and readily polarize [210].
Furthermore, the use of scaffold-free spheroids avoids the
biocompatibility issues associated with the implantation of
scaffolds. This approach can improve tissue regeneration in
clinical settings. Spheroids can spontaneously fuse with each
other and thereby increase in size [209]. Researchers cur-
rently pellet 1–5× 105 cells in the presence of growth factors
[98, 110, 211–214]. Babur et al. termed such aggregates
“macropellets” and reported that large spheroids (1-2mm)
are characterized by redifferentiation, with varying amounts
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of ECM deposited throughout the pellet [215]. Using a
microwell technique, they generated “micropellets” measur-
ing 193± 20μm. These small pellets produced higher levels
of ECM proteins, which is thought to be related to the

increased contact of cells with the surrounding environment.
Taken together, we believe that intra-articular injection of a
minimized chondrogenic pellet or spheroid is ideal to regen-
erate damaged cartilage (Figure 5).

HLA-A

HLA-B

HLA-DR

HLA-A

HLA-B

HLA-DR

HLA-A

HLA-B

HLA-DR

HLA-homozygous-
type donorHeterozygous iPSCs HLA-homozygous iPSCs

Chondrocytes

Patient-specific
iPSCs

HLA-heterozygous
patient

No
t m

atc
he

d

 M
at

ch  Match

Reprogramming

Transplant

HLA-heterozygous cell line HLA-homozygous cell line

Transplantation into an expanded range of 
people and increased clinical benefits

Figure 4: The clinical transplantation of hiPSCs homozygous for HLA-A, HLA-B, and HLA-DR, the three types closely related to immune
rejection. Theoretically, a relatively small number of homozygous stem cell lines would cover the majority of the population.
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The potential of hiPSCs to regenerate cartilage has not
been investigated in a preclinical or clinical study [216].
However, the use of hiPSCs in cartilage research may pro-
mote their applications in other fields, including tissue engi-
neering, drug screening, and modeling of various diseases
related to cartilage or even bone. With more defined proto-
cols (e.g., uniform EB generation, defined production of

outgrowth cells, and enhanced chondrogenic differentiation),
it may be possible to generate spheroids of hiPSCs that
readily undergo chondrogenic differentiation (Figure 6). Fur-
thermore, the use of xeno-free components, GMP practices,
and other quality control methods, such as the removal of
tumorigenic cells, is required for clinical use. These process
may allow the production of animal component-free cells

(ii) Improvement of the efficiency with which EBs are generated

(iv) Improvement of the efficiency of cartilage differentiation via
(iii) Precise characterization of outgrowth cells

and their uniformity

chondrogenic differentiation

the introduction of genes or physical stimulation

(i) Homozygous HLA-type cell banking
(ii) Minimized biological/chemical treatments

High cost Safety

(i) Xeno-free
(ii) GMP facility

(iii) SOP establishment
(iv) HLA-type consideration

Scaled-up production of safe and highly efficient 
transplantable chondrocyte therapeutics

High
efficiency

Low
cost

(i) Improvement of the efficiency with which hiPSCs undergo

Low efficiency

High
safety

Figure 6: Commercialization strategy to develop safer, more efficient, and less expensive therapeutic agents for cartilage repair using iPSCs.

3D culture2D culture

Viability
Polarization
Proliferation 
Function

Fusion capacity
�erapeutic accessibility
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siz

e
Figure 5: A 3D culture method for tissue engineering. Cells cultured in a 3D system have considerably improved biological properties and a
higher regeneration potential than cells cultured in a 2D system. Sophisticated techniques for mass production of spheroids are also being
developed. “Micropellet” 3D culture may also improve therapeutic accessibility by reducing the size of the product.
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with low tumorigenecity from hiPSCs. The high cost of tis-
sue engineering can also be reduced by using homozygous-
HLA hiPSCs which requires minimal biological and chemical
treatments. In summary, hiPSCs may open up a new era in
cartilage regeneration.
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