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Spatially variant immune infiltration scoring in human
cancer tissues
Mayar Allam 1,8, Thomas Hu 1,2,8, Jeongjin Lee 1, Jeffrey Aldrich3,4, Sunil S. Badve4,5, Yesim Gökmen-Polar4,5, Manali Bhave3,4,
Suresh S. Ramalingam3,4, Frank Schneider4,5 and Ahmet F. Coskun 1,4,6,7✉

The Immunoscore is a method to quantify the immune cell infiltration within cancers to predict the disease prognosis. Previous
immune profiling approaches relied on limited immune markers to establish patients’ tumor immunity. However, immune cells
exhibit a higher-level complexity that is typically not obtained by the conventional immunohistochemistry methods. Herein, we
present a spatially variant immune infiltration score, termed as SpatialVizScore, to quantify immune cells infiltration within lung
tumor samples using multiplex protein imaging data. Imaging mass cytometry (IMC) was used to target 26 markers in tumors to
identify stromal, immune, and cancer cell states within 26 human tissues from lung cancer patients. Unsupervised clustering
methods dissected the spatial infiltration of cells in tissue using the high-dimensional analysis of 16 immune markers and other
cancer and stroma enriched labels to profile alterations in the tumors’ immune infiltration patterns. Spatially resolved maps of
distinct tumors determined the spatial proximity and neighborhoods of immune-cancer cell pairs. These SpatialVizScore maps
provided a ranking of patients’ tumors consisting of immune inflamed, immune suppressed, and immune cold states,
demonstrating the tumor’s immune continuum assigned to three distinct infiltration score ranges. Several inflammatory and
suppressive immune markers were used to establish the cell-based scoring schemes at the single-cell and pixel-level, depicting the
cellular spectra in diverse lung tissues. Thus, SpatialVizScore is an emerging quantitative method to deeply study tumor
immunology in cancer tissues.
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INTRODUCTION
Lung cancer remains to be one of the leading causes of death
worldwide, causing the loss of over 100,000 patients yearly. The
therapeutic inefficacy is partly due to the disease heterogeneity,
late diagnosis, and the aggressiveness of lung cancers. Both
chemotherapies and radiation suffer from off-target effects,
increasing the cytotoxicity and the adverse side effects for
patients. Emerging immunotherapy approaches are utilizing the
patient’s immune system in fighting their growing cancers to
reduce the potential adverse effects of more conventional cancer
therapies and to overcome drug resistance. However, these
immune-based therapies work for a small subset of lung cancer
patients and they suffer from spatial and temporal differential
responses to treatments1. The main reason behind the poor
success rates of immunotherapies is the lack of understanding of
the molecular and cellular drivers of the tumor-driven immune
changes between patients across different cancer stages and
grades2.
The current established model to stratify patients’ tumors is

based on the international American Joint Committee on Cancer/
Union for International Cancer Control (AJCC/UICC) tumor-node-
metastasis (TNM) classification system that completely lacks
patients’ immune signatures. TNM is widely adopted in clinical
practice to describe tumor progression and metastasis, and to
predict patients’ prognosis3. On the other hand, patients with the
same TNM classification exhibit vastly different responses to the
same treatment because the TNM system fails to capture crucial

biochemical, metabolic, and genetic signatures of patients’
tumors4. In prior reports, the degree of immune cell infiltration
correlated with the prognosis of lung cancer patients, providing
opportunities to classify immune and cancer cell spatial neighbor-
ing for predicting patients’ response to immunotherapies and
improving their overall prognosis5,6.
Immunoscore classifies tumors based on immune cell infiltra-

tion and is used as a prognostic tool7. One of the early approaches
for immunoscore was the manual or the digital numerical
quantification of tumor-infiltrating CD3+ and CD8+ lymphocytes
at the center and at the invasive margin of the tumors using
patients’ whole slice tissue samples stained with immunohisto-
chemistry (IHC) techniques. However, this approach is prone to
fallacies due to the variability of staining protocols, results, and
interpretations3. Several computational approaches complemen-
ted the IHC-based assays to quantify and visualize CD3+ and
CD8+ tumor-infiltrating lymphocytes (TILs) including Visiopharm,
HALO image analysis, or other custom packages8–10. Immunoscore
approaches have also been extracted from publicly available
databases, including the Cancer Genome Atlas (TCGA), to
specifically examine the immune gene enrichments and their
correlation with disease progression11. These prior immunoscore
methods have relied mainly on a few subsets of immune cells
including CD3+ and CD8+ lymphocytes due to the technical
limitations of imaging datasets.
The spatial neighboring of a complex immune cell program-

ming contributes to cancer prognosis including other phenotypes
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of T cells (e.g., CD4: Treg cells, Th1, Th2, Th17, and Tfh; CD8: Stem-
like, exhausted, memory, and cytotoxic T cells), B cells, different
phenotypes of macrophages (M1, and M2), mast cell, neutrophils,
among others5. Thus, recent immunoscore approaches have
started utilizing the rich molecular profiles generated by the
multiplexed imaging techniques to visualize multiple immune
markers in situ from the same tissue and apply spatial scoring
methods to identify the different spatial infiltration patterns of
immune cells distributions. Such an immunoscoring approach has
recently identified the immunological regions in tumor architec-
ture of diffuse large B-cell lymphoma (DLBCL)12. DLBCL exhibited
spatial layering of immune infiltration patterns, akin to earth layers
composed of an inner core, mantle, crust, and dispersed layers.
The tumor core analysis demonstrated an immune desert with few
immune cell infiltration, mainly CXCR3+ CD4+ cells, suggesting a
new role for CXCR3 that grants access to CD4+ cells. The tumor
mantle showed high infiltration of suppressive Treg cells, and
exhausted CD8+ cells, causing an immune-suppressed layer. The
outer edge of the tumor or the dispersed layer in the earth model
presented highly infiltrated immune cells including the proliferat-
ing macrophages and CD8ɑ12. While this approach is promising,
there is still an important need to visually quantify localized
distributions of immune infiltrates in multiplexed tumor data. The
presented study has established a spatially variant scoring
approach to quantify the immune infiltration in tumor regions.
Multiplexed imaging mass cytometry (IMC) with a metal isotope-
tagged antibody panel of 26 markers was utilized to visualize the
tumor-immune architecture and quantify the immune infiltration
in lung cancers. These biospecimens get ionized from the surface
of the stained tissue by an argon plasma and are then sent
through a time-of-flight mass cytometer (CyTOF) through helium
gas flow where they get analyzed based on their mass-to-charge
ratio13.
A tumor microarray was annotated from the hematoxylin and

eosin (H&E) stained tissues by an expert pathologist to study
unique anatomical regions with varying cancer stages, grades, and
immune infiltration patterns. In this pipeline, 16 immune markers
were used to develop a spatially variant immunoscore tool for
mapping the immune continuum of lung tumors, providing a
more spatially resolved immune scoring solution compared to the
prior approaches.
To develop a comprehensive understanding of the immune

infiltration in lung tumors, we used CD8ɑ as a marker for cytotoxic
T cells correlating with inflamed tumors and better disease
prognosis5. In this panel, CD68 was chosen as a pan-macrophage
marker corresponding with tumor-associated macrophages
(TAMs). Since different phenotypes of TAMs were shown to have
distinct roles in the disease development, CD163 and CD206 were
targeted to identify the pro-tumor M2 phenotype and HLA-DR to
identify the anti-tumor M1 phenotype5,14. These phenotypes were
further supported with additional immune markers including
PD-1, PD-L1, granzyme B, FoxP3, CD20, CD4, CD3, CD45RO, TCF1,
CD103, and CD95 to investigate the complexity of immunity in the
tumor microenvironment of the lung cancer patients’
tissues. Herein, we present a computational tool termed as
SpatialVizScore using the multiplexed imaging data to visualize
and quantify the immune infiltration patterns within lung tumors
and their surrounding tumor microenvironment both at the
single-cell and the pixel-level resolution (Fig. 1). The SpatialViz-
Score is emerging for multiplexed spatial data visualization,
yielding the tumor’s immune infiltration continuum and discrete
patient stratification to design personalized and precision
immunotherapies.

RESULTS
The protein expression data for 26 markers were obtained from 12
tissues (Cohort 1) corresponding to six lung cancer patients along

with their metastatic lymph nodes and an additional 14 lung
cancer tissues (Cohort 2) used for validation (Fig. 1a, b and
Supplementary Tables 1–2). Several tissue regions were then
labeled based on the markers’ expression. Cancerous/paracancer-
ous regions were labeled by the expression of pan-keratin and
e-cadherin whereas stromal regions were marked by the
expression of smooth muscle actin (SMA) and collagen type 1
(COL1) (Fig. 1c). E-cadherin is a transmembrane protein that is
predominantly expressed by cells of epithelial origin and it
functions as an adhesion protein. Similarly, pan-keratin is a widely
known marker for epithelial cells and carcinomas. Therefore, these
markers were used to identify cancer regions15. Besides, collagen I
and SMA accumulation signifies extracellular matrix (ECM)
alignment, remodeling, and fibrogenesis. Therefore, collagen I
and SMA were used to define stromal regions on the patients’
samples15. Similarly, several immune markers were used to classify
the various immune cell phenotypes (Fig. 1c). CD8ɑ was used as a
marker for TILs and an inflamed state of the growing tumors. On
the other hand, CD68 was used as a pan-macrophage marker
along with CD163/CD206 for the pro-tumor M2 phenotype and
HLA-DR for the anti-tumor M1 phenotype5. HLA-DR was used to
profile M1-polarized macrophages as it functions to increase the
antigen-presenting capacity of the differentiated monocytes
which further leads to the production of the pro-inflammatory
cytokines16. On the other hand, CD163 and CD206 were used to
identify M2-polarized macrophages as they are macrophage
scavengers or macrophage mannose receptors, respectively.
To extract the single-cell protein expression data, two single-cell

segmentation techniques were evaluated including cell-level
segmentation and pixel-level segmentation (Fig. 1d). These
segmentation techniques were used to extract the labels’
expression and their spatial locations, which were then used in
generating spatial proximity network maps to understand the
infiltration pattern in patients’ tumors and their metastatic lymph
nodes. The resulting spatial neighborhood networks were used to
quantify patients’ immune infiltration in tumor and stromal
regions and a final immunoscore was given to each patient
tissue. The SpatialVizScore results showed a continuum of immune
cell infiltration that ranged from immune cold tumors to immune
suppressed tumors and to immune hot/inflamed tumors (Fig. 1e).
This continuum was further analyzed with additional immune
markers including FoxP3, PD-1, PD-Ll, granzyme B, CD3, CD4,
CD45RO, CD20, CD95, CD103, and TCF1. (Fig. 1a–e).
The multiplexed and isotope-conjugated antibody panel of IMC

was used to investigate the tissue composition (Supplementary
Figs. 1–6). Since IMC ablates the tissue specimens after imaging, it
was essential to acquire the H&E stained images of a sequential
section of the tissues to validate cancer, stroma, and lymphocyte
enriched regions (Supplementary Figs. 7–9). From both the H&E
data and the visual IMC data, patients’ tumors were highly
heterogeneous in the tumor and stromal regions and the
infiltration of the immune cells (Supplementary Figs. 1–7). The
resulting H&E images were verified by a pathologist against a
third-party vendor’s information to identify the samples’ cancer
type and grade and to validate the IMC data.

Single-cell analysis for spatial infiltration scoring in the tumor
microenvironment
Several multiplexed imaging modalities were developed to
explore the complex architecture of the tumor microenvironment,
including IMC17, multiplexed ion beam imaging (MIBI)18, cyclic
immunofluorescence (CyCIF)19, and CO-Detection by indEXing
(CODEX)20, among others13. The first step to deciphering the
complexity in the tissue images is to segment and cluster
individual cells to extract the expression levels of multiple markers
in the multiplexed data at the single-cell level. Thereby, the
SpatialVizScore pipeline starts with a two-step clustering
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approach. First, cell-level segmentation was performed on the
tissue images using a deep-learning method via Cellpose21, and
another cell mask identification technique via CellProfiler22. The
segmented cells were assigned to phenotypes based on their
marker expression levels. Second, a combinatorial graph-based

clustering approach was used to cluster individual cells by their
marker expression level (Fig. 2a and Supplementary Fig. 10).
Representative patients’ tissue images were then reconstructed
from the cell masks, and their clustering results by assigning each
segmented cell to its corresponding cluster (Fig. 2b). Finally, each
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cluster was assigned a different color to visualize the clusters’
distribution and tumor microenvironment composition of the
patients’ sample tissues.
We used unsupervised clustering with all the 26 markers

included in the dataset which resulted in 13 distinct clusters (i.e.,
chosen to be optimum to identify major cell phenotypes) across
all samples, identified by a t-distributed stochastic neighbor
embedding (t-SNE) visualization and Leiden clustering analysis23,24

(Fig. 2c–e). Cluster 3 corresponded to M2-polarized macrophages
with the markers CD68, CD163, and CD206. Further, Cluster 6
corresponded to M1-polarized macrophages with the marker
expression CD68 and HLA-DR. Clusters 10 and 12 demonstrated
the expression of CD3 and CD8ɑ, providing TILs. Cluster 12 yielded
the expression of CD103 along with CD3 and CD8ɑ, corresponding
to a specific subset of the TILs and the tissue-resident memory
T-cells (Fig. 2d).
Besides the main immune clusters, cluster 0 showed the co-

expression of pan-keratin and e-cadherin and cluster 8 showed
the co-expression of collagen type I and SMA. Given the marker
expression profiles of these two clusters, they corresponded to the
tumor and stromal regions respectively. Clusters 3, 6, 10, and 12
indicated variant densities across the different primary tumor and
metastatic lymph nodes, further necessitating more quantification
of their infiltration patterns (Fig. 2e).
With this distinct separation of several phenotypes in the native

tissue microenvironment, it came of special interest to quantify
the infiltration of immune cell subsets within the different
anatomical regions. M1 macrophages are known for their pro-
inflammatory properties that lead to anti-tumor responses.
However, M2 macrophages are known for their anti-
inflammatory properties that lead to the development of a
tolerogenic immune microenvironment that supports cancer
progression (Fig. 3a, b). M1 and M2 were shown to be present
in distinct clusters in lung cancer tissues, demonstrating the
unique distributions of the macrophage markers (Fig. 3c). M1 and
M2 clusters were found to be co-localized in some tissue regions
or have unique infiltration patterns in other tissue regions
(Fig. 3d). This allowed us to analyze the infiltration patterns of
M1 and M2 macrophages in patients’ tumor samples.
To quantify the immune infiltration in cancer tissue samples, the

tumor microenvironment was further classified into cancer-rich
and stroma regions using the multiplex protein data. Patients’
tissue samples were reconstructed into tumor regions (with pan-
keratin and e-cadherin markers expression), stromal regions (with
collagen and smooth muscle action markers expression), and
different subsets of immune cells. The CD8ɑ+ cells were utilized to
identify the TILs. Moreover, CD68+CD163+CD206+ cells were
marked to identify the M2-polarized macrophages, and

CD68+HLA-DR+ cells were used to identify the M1-polarized
macrophages (Supplementary Fig. 11).
Each patient sample was reconstructed based on the five major

tissue compositions, including tumor, stroma, CD8ɑ+, M1, and M2
phenotypes (Supplementary Figs. 12–13). The spatial relationship
among cell types was quantified using cell neighborhood analysis
within a distance of 30-µm (Supplementary Figs. 12–13). The
distance of 30-µm was chosen empirically to best reflect the
spatial connectivity of single-cells to capture ligand-receptor
interactions, soluble cytokine interactions, and the varying cell
size range of cancer and immune cells (Supplementary Fig. 14).
Each segmented cell centroid was extracted as a node position
and the node was associated with the cell type based on the
maximum intensity of markers. Cell pairs within a 30-µm distance
of each other are connected with an edge (Fig. 4a). This approach
resulted in cell proximity graphs where nodes represented single
cells and edges indicated spatial proximity and cellular neighbor-
hoods. Cell proximity maps were overlaid on the tissue images to
show the distinct composition of each patient’s tissue (Fig. 4b),
revealing cell pair spatial neighboring between distinct tissue
regions. The immune composition of the patients’ tissues was
quantified by the node counts of each cell type including tumor,
stroma, CD8ɑ+ cells, M1 cells, and M2 cells. SpatialVizScore
assigned a final immunoscore to each region of interest (ROI)
based on the spatial neighboring between tumor, stroma, and
immune regions using the total cell counts. The tissue composi-
tion rankings were mostly tumor and stromal cells followed by
CD8ɑ+ cells, M1 cells, and M2 cells (Fig. 4c). The neighborhood
analysis showed that all patients’ samples have a strong spatial
neighboring between tumor regions and CD8ɑ+ cells; however; a
few patients showed a high spatial neighboring with tumor
residues in their metastatic lymph nodes and CD8ɑ+ cells.
Patients with consistently high CD8ɑ+ cells infiltration within
their lung tumors and metastatic lymph nodes are C3/G3, D1/H1,
and D5/H5 (Fig. 4d). Tumor samples D5, D9, and D1 yielded the
highest tumor-M1 spatial neighboring while this level of spatial
neighboring was not found for the metastatic lymph nodes of
these patients (Fig. 4d). On the other hand, the level of tumor-M2
spatial neighboring was lower than that of tumor-M1 with
relatively high spatial neighboring in tumor samples C3, D1, D9,
and D5. The tumor-M2 spatial neighboring in the matched
metastatic lymph nodes was different from that of the primary
tumor samples (Fig. 4d). Collectively, these results indicated the
heterogeneity in the immune composition among patients’
samples.
The spatial proximity maps of the patients’ samples (Fig. 5a)

were further used to generate infiltration maps of CD8ɑ+ (Fig. 5b),
M1 (Fig. 5c), and M2 (Fig. 5d) in lung tumors. After ranking the
tumor samples based on the number of spatial neighboring

Fig. 1 Imaging mass cytometry enables spatially resolved quantification of immune infiltrates in tumors using multiplexed images of
human FFPE cancer tissues. a Tissue samples from 6 lung cancer patients and their matched 6 metastatic lymph nodes were chosen from a
tissue array containing non-small lung cancers, and their matched metastatic lymph nodes (LC814a). Additional tissue samples from 14 lung
cancer patients were chosen from a tissue array containing non-small lung cancer, cancer adjacent tissues, and normal tissue samples
(LC1002a). b The tissue array was stained with a cocktail mix of 26 metal-tagged antibodies. Regions of interest (ROIs) with a size of 1500 µm x
1500-µm were then ablated using an Ultraviolet (UV) laser, and the ionized metal isotopes were analyzed based on their time-of-flight by a
mass spectrometer. The imaging resolution was 1-µm. c Using the multiplexed antibody panel, unique tissue regions can be visualized by
assigning pseudo-colors to isotope signals and their conjugated antibodies. Several tissue regions were identified on the same tissue section
including cancer, stromal, and immune components to investigate the tumor microenvironment. d Cell-level segmentation and pixel-level
classification were used to identify distinct tissue regions. Using the cell-level segmentation masks, the resulting average cell diameter was 10-
µm. For the pixel-level classification, the pixel patch size was 5-µm, and the divided ROI area into 300 × 300 pixel patch squares or 90,000 total
pixel patch squares. Separate arrays were generated to extract distinct tissue features including tumor regions using the expression data from
E-Cadherin and PanKeratin, and stromal regions using the expression data from Smooth Muscle Actin, and Collagen Type 1. The immune cells
infiltration was divided into CD8α+ cells for the inflammatory T-cells, CD68+HLA-DR+ for M1 macrophages, and CD68+CD206+CD163+ for
M2 macrophages. e Immune cells distribution was found to follow a continuum, wherein “immune inflamed” cancers exhibited high
infiltration of tumor-infiltrating lymphocytes (TILs) as well as M1 macrophages, “immune suppressed” cancers demonstrated high infiltration
of M2 macrophages, and “immune cold” tumors with poor immune infiltration. Created with BioRender.com.
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between Tumor and CD8ɑ+ cells, M1 infiltration distribution was
found to be highly matched with that of CD8ɑ+, indicating
immune inflamed tumors. Further, M2 was found to have the
highest infiltration in tumor samples with mediocre CD8ɑ+ and

M1 infiltration, identifying immune suppressed tumors. Finally,
several tumor samples exhibited low infiltration for all three
immune phenotypes, alluding to immune cold tumors. SpatialViz-
Score generated immune cell infiltration maps using several
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cancer markers (pan-keratin & e-cadherin), stromal markers (SMA
& collagen 1), and immune markers (CD8ɑ, CD68, CD163, CD206,
and HLA-DR).
The immune infiltration exhibited a continuum distribution that

ranges from immune cold tumors with scarce immune cell
infiltration, to immune suppressed tumors with the inhibitory
immune microenvironment, and immune hot tumors with inflamed
tumor immune microenvironments. Immune inflamed tumors
showed a high presence of TILs and the pro-inflammatory M1-
polarized macrophages whereas immune-suppressed tumors yielded
M2-polarized macrophages. As expected, immune cold tumors
exhibited neither TILs nor TAMs in patients’ tissues (Fig. 5)25,26.
The immune cold tumor samples are D1 and D2 as they showed

dispersed spatial neighboring maps for the tumor and CD8ɑ cells,
M1, and M2 cells (Supplementary Table 3). Besides, B7 and D9
tissues exhibited dense tumor-M2 spatial maps and high tumor-M2
scores (Fig. 5 and Supplementary Table 3), demonstrating immune-
suppressive microenvironments that favored infiltration and polar-
ization of TAMs into the M2 phenotype. Finally, D5 and C3 tissues
provided immune inflamed states defined by the dense tumor-CD8ɑ
and tumor-M1 spatial neighboring maps and the high T-CD8ɑ and
tumor-M1 scores (Fig. 5 and Supplementary Table 3).

Correlation of spatially variant immunoscores between
primary lung cancers and their matched metastatic lymph
nodes
The matched metastatic lymph nodes of the primary lung cancers
were further investigated with the same SpatialVizScore approach.
Largely, the immune infiltration pattern within the matched
metastatic lymph nodes agreed well with that of the primary
tumors (Fig. 6a). D5/H5 and C3/G3 pairs were found to be immune
inflamed whereas B7/F7 was determined to be immune sup-
pressed and D2/H2 was identified to be immune cold. Two
patients were recognized to have different immune infiltration
patterns between their primary tumors and their matched
metastatic lymph nodes including D1/H1 and D9/H9. Both D5/
H5 and C3/G3 had a high correlation between their T-CD8 and
tumor-M1. However, B7/F7 exhibited a high correlation between
their tumor-M2 scores (Fig. 6b). This relationship could be
attributed to the markers’ expression across the tissues such that
D1 and H1 have variable CD206 and CD8ɑ expressions. Similarly,
D9 and H9 have variable CD8ɑ and CD68 expressions (Fig. 6c).

Pixel-level analysis for spatial scoring in the lung tumor
microenvironment
Another pixel-level clustering approach was used on the patients’
multiplex image data to further obtain higher sub-cellular
accuracy. The pixel-level phenotype was represented as a vector
of length equal to the number of markers with a value equal to
the marker intensity levels. Pixel locations where all marker
expression levels are low are considered as background. Then, a
combinatorial graph-based clustering approach was used to
cluster individual pixels by the phenotype of their marker
expression level (Fig. 7a and Supplementary Fig. 15). The

representative images of patients’ tumor samples were recon-
structed by assigning pixels to their corresponding clusters (Fig.
7b).
We employed unsupervised pixel-level clustering with all the 26

markers included in the dataset, resulting in 13 unique clusters
with variant marker expressions identified by a Uniform Manifold
Approximation and Projection (UMAP) visual and Leiden data
clustering24,27 (Fig. 7c, d). Cluster 11 showed the co-expression of
CD68 along with HLA-DR and lower expression of CD163 and
CD206 which could be attributed to the M1-polarized macro-
phages. Further, cluster 12 indicated the co-expression of CD68
and CD163 and CD206 and lower expression of HLA-DR which
corresponds to M2-polarized macrophages. Cluster 6 demon-
strated the expression of CD8ɑ along with CD3 and CD103
corresponding to the tissue-resident memory T-cells (Fig. 7d).
Patients D2, D9, and D5 exhibited high infiltration of cluster 11 or
the M1-polarized macrophages. Interestingly, their metastatic
lymph nodes H2, H9, and H5 showed a high composition of cluster
11 as well (Fig. 7e). Patients D1 and C3 showed higher infiltration
of cluster 12 or M2-polarized macrophages, which lined up with
their metastatic lymph nodes H1 and G3 samples as well.
Although the metastatic lymph node sample H2 had one of the
highest infiltration percentages for cluster 12, this fails to match
with that of the primary tumor D2 (Fig. 7e).
The pixel-level classification provided a better separation

between the unique clusters and cellular phenotypes. This can
be attributed to a better segmentation of different cell types with
varying shapes, sizes, and orientations with pixel-level classifica-
tion and clustering. It is rather challenging to develop a
representative cell segmentation mask using IMC data due to
the resolution (1-µm) as compared to simple fluorescent micro-
scopes achieving a resolution in the <300-nanometer range.
Further, patients’ tissues have a myriad of cell types with varying
morphologies, making the process of cell-based segmentation
cumbersome. For example, some cell types also have asymmetric
morphologies including stromal cells, complicating the cell
segmentation tasks. Cell-based segmentation also relies on
extracting the boundaries of the cells where there is a change
in the gray-level intensity of the pixel values. This segmentation
approach can be challenging to perform when cells have varying
shapes and sizes or if two edges are touching and have a weak
edge gradient28,29.
An alternative tissue neighborhood reconstruction was imple-

mented at the pixel level by dividing each ROI into patches of 5 by 5
pixels and the marker mean expression level in each patch was
calculated. The maximum intensity projection of multiplexed data
was used to determine the patch type between tumor (Pan-Keratin
+E-cadherin), stroma (COL1+SMA), CD8ɑ, M1 (HLA-DR+CD68), and
M2 (CD68+CD163+CD206) (Fig. 8a). The resulting tissue images
were reconstructed by assigning each 5 by 5-patches to the
corresponding type (T, S, CD8ɑ, M1, and M2). This approach better
captured the continuum between the variation of regions as it relied
on pixel-level reconstruction rather than cell-level segmentation and
clustering. The mean intensity of each marker in patches of 5 pixels
created a downsampling process and filter noise from the marker

Fig. 2 Cell-level segmentation and clustering showed the heterogeneity of markers’ expressions within the patient population in lung
tumors. a Representative schematic shows the process of cell-level segmentation. Cell segmentation was performed using the deep-learning
CellPose algorithm. The nuclei were segmented using signals from intercalators conjugated to 191Ir and 193Ir along with other markers
associated with the nucleus including Histone 3, Ki67, and FoxP3. The cytosol was segmented by expanding the nuclei by 2 pixels. The
number of cells n= 264,191. Created with BioRender.com. b The resulting data were clustered using a subset of markers including CD103,
CD163, CD206, CD3, CD4, CD68, Collagen I, E-cadherin, HLA-DR, PanKeratin, SMA, TCF1, and Vimentin. The resulting clusters were visualized
on the tissue samples by attributing each cell mask to the corresponding cluster color, indicating distinct separation of different tissue regions.
MT represents metastatic tumor and LN indicates lymph nodes. c UMAP displayed the distribution and the separation of the resulting 13
clusters from the single-cell phenotypes showing the heterogeneity in markers’ expressions within the patient population. d Correlative
heatmap provided the co-expression of markers across the 13 clusters that make up the dataset. e Marker abundance heatmap yielded the
cluster makeup for all patients’ tissues.
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Fig. 3 Identification of M1 and M2 macrophage phenotypes based on the expression of CD68, HLA-DR, CD163, and CD206 in the
multiplexed IMC panel. a Representative schematic highlighting the polarization of macrophages into the anti-tumor M1 phenotype (CD68+HLA-
DR+) and the pro-tumor M2 phenotype (CD68+CD163+CD206+). Both phenotypes occupy the tumor microenvironment and impact the overall
disease prognosis. Created with BioRender.com. b Representative IMC images present the expression of CD68 in blue, HLA-DR in cyan, CD206 in red,
and CD163 in yellow. CD68 and HLA-DR were chosen to identify M1-polarized macrophages whereas CD68, CD163, and CD206 were used to identify
M2-polarized macrophages. c Correlation heatmap yielded the co-expression of markers across the different clusters. The macrophage M1 phenotype
cluster showed the expression of CD68 and HLA-DR whereas the macrophage M2 phenotype showed the expression of CD68, CD163, and CD206.
d Cluster distribution map demonstrated the interaction and localization between M1 and M2 clusters on an example cancer tissue image.
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imaging data. The pixel reconstruction captured the multiplex
marker images better with less background noise as introduced by
the single-cell level segmentation (Fig. 8b). Similar to the cell
segmentation results, the tissue composition was mostly covered by
T, S, CD8ɑ, M1 macrophage, and finally M2 macrophage enriched
regions (Fig. 8c, d).

Comparisons of the spatially variant scores from single cells
and pixels
The efficiency of the pixel classification to segment distinct tissue
regions was further observed in different types of lung cancer
tissues (Fig. 9a). Cell segmentation masks can undersegment
immune and stromal cells, especially in dense tumor regions due
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to the varying morphologies of cells in the tumor microenviron-
ment (Fig. 9b, c). Cell segmentation also fails to distinguish
between different morphological regions such as the peripheries
of T and S regions (Supplementary Fig. 16). Cell segmentation can
also undersegment or oversegment cells at the stromal regions
due to the dense fibrous alignment but this information can be
efficiently preserved in the pixel classification (Supplementary Fig.
16). Finally, it is critical to choose the optimum patch size for the
pixel classification that can detect markers’ expression signals with
high sensitivity and low background noise much like setting
thresholds for cell circularity and cell size throughout the
segmentation process. Small patch sizes can detect noisy signals
and unclear separation between tissue regions. Practically, 5-µm
was found to be the most optimum after testing several patch
sizes (Supplementary Fig. 15).
The SpatialVizScores generated from the cell segmentation and

the pixel classification correlated with each other across patient
tissue samples (Fig. 9d, e). In other words, comparisons of several
immune spatial neighboring scores from cell segmentation and
pixel classification showed similar results. This level of agreement
was strongest in the case of detecting tumor regions as detected
by the high correlation between segmented tumor regions by cell
segmentation and pixel classification. The correlation was weaker
in detecting stromal regions, demonstsrating that the pixel-level
classification could be superior to cell segmentation in detecting
highly heterogeneous cell populations, including CD8ɑ, M1, and
M2 cell spatial neighboring with cancer cells (Fig. 9d, e and
Supplementary Fig. 16).

Cell phenotype enrichment model in distinct inflamed patient
groups
SpatialVizScore has demonstrated distinct phenotypic distribu-
tions of immune cells in lung cancer patients’ samples (Fig. 10a).
Immune cold tumors showed scarce immune cells within the
tumor core or at the tumor peripherals, most likely due to poor
neoantigen presentation and poor immune cells recruitment or
secretion of immune repelling chemokines, or the overexpression
of FasL that might result in immune cells apoptosis26. Immune
suppressed tumors demonstrated moderate to high infiltration of
immune cells with suppressive immune cells being the most
predominant including M2-polarized TAMs, matching the previous
reports associating M2 macrophages with immunosuppressive
microenvironments for lung cancers30. Immune inflamed tumors
exhibited a higher infiltration of TILs as well as M1-polarized TAMs
associated with a pro-inflammatory tumor microenvironment that
plays an important role to destroy cancer cells30 (Fig. 10b, c, e). By
combining patients from cohorts 1 and 2 (n= 26), there was a
significant (p < 0.05) difference in the infiltration of CD8+ cells
within all patients’ groups (Fig. 10e).
The phenotypic enrichment included tissue-resident memory

T-cells (Trm) that were characterized by their expression of
CD8+CD103+31 (Fig. 10h and Supplementary Fig. 17). Trm cells
showed higher infiltration of the cell density/area within the

immune inflamed tumors (Fig. 10f). Further, the Trm cells
demonstrated higher spatial neighboring with tumor cells within
the immune inflamed tumors including C3 (Fig. 10d, g).
The proliferating antigen-experienced T-cells (Tae) are marked

by their expression of Ki67+CD45RO+CD8+32 (Supplementary
Fig. 17). They exhibited higher infiltration of the cell density/area
within the immune inflamed tumors including D5 and C3 (Fig.
10f). Similarly, they showed higher spatial neighboring with the
tumor cells within the immune inflamed tumors (Fig. 10d, g).
PD-L1+M2 macrophages were identified by the expression of

CD68, CD163, CD206, and PD-L1(Fig. 10i and Supplementary Fig.
17). PD-L1+M2 macrophages lacked significant difference in their
infiltration density or tumor spatial neighboring between the
immune suppressed or the immune cold tumors (Fig. 10d, f, g).
Further, the regulatory T-cells (Treg) were marked by their
expression of CD4+ FoxP3+ (Fig. 10j and Supplementary Fig.
17). Treg cells demonstrated high infiltration within all the
immune categories. Despite being insignificant due to the low
sample size, Treg cells had the highest spatial neighboring scores
for the immune inflamed tumor samples (Fig. 10d, f, g). We
analyzed additional markers to identify the stem-like T-cells with
CD8ɑ and TCF-1 expression33. However, there was an unexpected
expression from the TCF1 in double-negative cells (CD8ɑ- CD4-),
which is not the main focus of this paper and is currently under
active investigation.

DISCUSSION
In this highly multiplexed single-cell study of the tumor immune
architecture of lung tumors, we have quantified the heterogeneity
of the lung cancer landscape and revealed the phenotypic
enrichment of immune cell subsets infiltrating lung tumors. The
highly multiplexed IMC has recently been used to profile the
tumor microenvironment of several cancer types including breast
cancer, lymphomas, melanoma, and lung cancer12,34–36. However,
IMC lacked a quantifiable spatially variant tool for the immune
infiltration pattern into patients’ tumors. Thereby, we sought to
use IMC to investigate the tumor immune microenvironment to
meet the increasing need to develop more efficient patient
stratification tools, especially for patients undergoing immu-
notherapy treatments (Supplementary Table 4). The SpatialViz-
Score maps from IMC analysis offer new possibilities for spatial
organization analysis of many cell types including tumor, stromal,
and immune cells while preserving the native tissue microenvir-
onment in cancer tissues8,10.
SpatialVizScore was developed as a companion computational

tool along with the highly multiplexed IMC data to quantify and
visualize the immune infiltration. In prior reports, CD8ɑ was
consistently used to identify TILs and their counts were associated
with longer disease-free survival (DFS) and/or improved overall
survival (OS)26. The spatial proximity of the TILs and the tumor
regions were further associated with favorable immune check-
point inhibitor response32. CD8 positive cells have demonstrated
several subsets of T-cells including the proliferating antigen-

Fig. 4 Tissue neighborhood analysis using single-cell data identifies the tumor, stromal, and immune cell relationships in lung cancer
patients’ tissues. a Representative schematic demonstrates the process of neighborhood analysis. Each cell was assigned to a distinct type
(tumor, stroma, CD8α, M1, and M2) based on the highest intensity values of markers. Tumor cells (T) were marked by the expression of
pankeratin and e-cadherin, and stromal cells (S) were marked by the expression of collagen type 1 and SMA. CD8α+ cells were marked by the
expression of CD8ɑ, M1 cells were marked by the expression of CD68 and HLA-DR, and M2 cells were marked by the expression of CD68,
CD163, and CD206. A Cell network was then generated by connecting every cell centroid to its neighboring centroids within a 30-µm
distance. Created with BioRender.com. b Cell network graphs on patients’ samples were presented. Magenta indicates tumor regions, yellow
indicates stromal regions, green indicates CD8α cells, red indicates M1 cells, and cyan indicates M2 cells. c Box plot provided the anatomical
composition of patients’ samples. Box plot demonstrated the distribution of the data with the minimum, first quartile (Q1), median, third
quartile (Q3), and maximum. Original Data was overlaid on the boxplot. Tumor regions were the most predominant followed by stromal
regions, CD8α+, M1, and lastly M2 cells (N= 12). d Heatmap summarized the distribution of neighborhood scores across different tissue
regions.
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Fig. 5 Spatial cellular interaction maps and SpatialVizScores of the tumor microenvironment demonstrate the immune continuum in
lung cancer tissues. a Cell network and spatial proximity maps on lung cancer samples provided the interaction of tumor/T (in magenta),
stroma/S (in yellow), CD8α (in green), M1 (red), and M2 (cyan). b Spatial interaction map demonstrated the distribution of tumor CD8α cells. It
follows a continuum where it’s highest for immune inflamed and immune suppressed tumors but damps down for immune cold tumors. This
is further validated by the line graph showing the distribution of the interaction among tumor regions, CD8α, M1, and M2 ranked by CD8α-
Tumor score. c Spatial interaction map indicated the distribution of tumor and M1 cells. It follows a continuum where it’s highest for immune
inflamed tumors, but damps down for immune suppressed tumors, and tapers off for immune cold tumors. d Spatial interaction map
provided the distribution of tumor and M2 cells. It follows a continuum where it was the highest for immune suppressed tumors, but
decreased for immune inflamed tumors, and tapered off for immune cold tumors.
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experience cytotoxic cells that exhibit different spatial infiltration
patterns associated with cancer progression32,37,38. Furthermore,
CD68+ was used as a pan-macrophage marker for tumor-
associated macrophages (TAMs)39. Additional markers such as
HLA-DR were included to identify the anti-tumor M1-polarized
phenotype or CD163 and CD206 to define the pro-tumor M2-
polarized macrophages. Under the several immunosuppressive
signals in the tumor microenvironment, M1-macrophages can

polarize into M2-macrophages which inhibit the cytotoxic activity
of TILs by limiting their cytokine release and their proliferation
which justifies using them as immunosuppressive cells40. Thus, it is
crucial to consider M1 and M2 subtypes of CD68 positive cells in
spatially variant immune scoring schemes for comprehensive
immunotherapy designs.
Prior studies divided tumors into an immune “cold” state for low

infiltration of immune cells or immune “hot” for highly infiltrative

Fig. 6 Correlation of the SpatialVizScores between lung cancer samples and their matched metastatic lymph nodes. a Cell network
graphs on patients’ samples were demonstrated. Magenta represents tumor regions, yellow represents stromal regions, green represents
CD8α cells, red represents M1 cells, and cyan represents M2 cells for the primary tumor and their matched metastatic lymph node samples. A
line plot showed the continuum of immune-tumor interactions amongst the immune categoriesgorizes. Tumor-M1 interactions were shown
in magenta, Tumor-M2 interactions were show in green, and Tumor-CD8α interactions were shown in cyan. b Heat map provided the
correlation in immunoscores for each matching tissue pair of the primary tumor and matched metastatic lymph node. c Dot plot
demonstrated the expression of markers across the primary lung cancer samples and their matched metastatic lymph nodes.
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tumors26. However, the infiltration of immune cells follows a
spectrum from immune cold tumors to immune-suppressed and
immune inflamed tumors and later can further be classified into
discrete states. This spectrum and discrete patient stratification
were shown by major phenotypes of immune cells including the

CD8+ infiltrating lymphocytes, M1-polarized, and M2-polarized
macrophages. Several immune cell populations matched with the
immunoscore distributions including inflammatory immune cell
phenotypes (e.g., Tae), and suppressive immune cell phenotypes
(e.g., PD-L1+M2, Treg). Trm cells (CD8+CD103+) were previously
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correlated with the high infiltration of M1-TAMs within lung
tumors. The M1-polarized TAMs secrete CXCL9 to serve as a
chemoattractant to Trm through its CXCR3 receptors and they
elevate their update of unique fatty acids from the tumor
microenvironment that are required for the survival and main-
tenance of Trm31. Besides, the infiltration of Tae cells matched our
SpatialVizScore results. The Ki67+CD45RO+CD8+ proliferating
Tae cells were shown to have higher infiltration in myeloma
patients with better drug response and prolonged survival32. This
highlights their importance in maintaining an anti-tumor immune
microenvironment. Finally, we have additional markers to profile
more phenotypes of T-cells, especially stem-like T-cells. However,
we observed signals from TCF1 (stemness marker) in CD8ɑ-
and CD4-.
To evaluate the immune checkpoints in tissues, the over-

expression of PD-L1 and the engagement of PD-1/PD-L1 are
known to lead to inhibiting TCR-mediated activation of T cells,
inhibiting the section of T-lymphocytes cytokines, and eventually
promoting T lymphocytes apoptosis31. Interestingly, PD-L1 was
found to be expressed on M2-polarized TAMs that cause the
suppression of the cytotoxic functions of CD8+ T cells41. In
addition, CD4+Foxp3+ Tregs cells are an immunosuppressive
sub-phenotype of T cells that functions to decrease inflammation
and restore homeostasis. Tregs were previously correlated with
consistent poor disease outcomes for several cancer models
including lung cancers5.
To further illustrate the clinical utility of the SpatialVizScore, we

have generated discrete patient stratification using numerical
quantification of the immune continuum based on the CD8-T
infiltration scores including low (−0.001, 2.255), medium (2.255,
6.695), and high (6.695, 10.0) in 26 human tissues from lung cancer
patients, combining cohort 1 (CH1) of 6 primary lung tumors and 6
matched lymph nodes in the first tissue microarray, and cohort 2
(CH2) of 14 additional lung tumors in the second tissue
microarray. These SpatialVizScores were further validated by the
distribution of tumor-M1 and tumor-M2 scores. The same trend
was observed for patients’ samples ranging from immune cold to
suppressed to inflamed lung tumors (Supplementary Fig. 18a–c
and Supplementary Tables 5–6). Further, the distribution of CD8-T
exhibited a heterogeneous distribution for the tumor-M1 and the
tumor-M2 scores in a 3D visual of 12 tissues, yielding an intricate
M1 or M2 enrichment in distinct tumors in 3D score distributions
(Supplementary Fig. 18d, e). This highlights the complexity of
immune cell distribution in lung cancers between the inflamma-
tory and the suppressive immune cell types. These findings
support advances in the SpatialVizScore approach compared to
the prior tools used for immunoscore that only rely on over-
simplified CD8 scores.
SpatialVizScore was benchmarked against established data

analysis and visualization tools. First, CellPose was integrated into
the SpatialVizScore pipeline for single-cell segmentation and it
relies on deep learning algorithms to precisely segment individual
cells in 2D and 3D data without training or parameter
adjustments21. This technique was benchmarked against CellPro-
filer, an established open-source software used to generate cell
segmentation masks after adjusting the parameters for cell

circularity and cell size22. Both segmentation techniques showed
comparable results in segmenting cells in various tissue types
from different patient donors. At the same time, CellPose was more
robust in cell segmentation in diverse tissues (Supplementary Fig.
19). SpatialVizScore clustering pipeline was then benchmarked
against HistoCAT, an open-source toolbox developed to analyze
IMC data42. The cluster compositions from both methods
indicated similar marker compositions whereas SpatialVizScore
also visualized immune infiltration patterns in tumors (Supple-
mentary Figs. 20 and 21). SpatialVizScore was then verified against
Giotto, a toolbox designed to analyze and visualize single-cell
spatial data (Supplementary Fig. 22)43. Although both pipelines
could cluster the data based on marker expression, SpatialVizScore
outperformed in visualizing the clusters on patients’ tissues and
providing infiltration scores in human cancer tissues.
Further, SpatialVizScore is based on multiplexed protein data

from IMC with an antibody panel of 26 markers. This panel
targeted tumor, stromal, functional, and immune markers to
dissect the tumor microenvironment in patients’ tumor samples.
Prior immunoscore techniques relied on quantifying the infiltra-
tion of TILs from H&E stained tissue data that is only limited to the
morphological analysis between major cell types (tumor, stroma,
and immune cells) and fails to detect the different types of
immune cells44,45. Further, other studies utilized IHC and
immunofluorescence (IF) to quantify different immune markers
at the tumor core and peripherals. However, these studies are
limited to a few markers (1-3) that lack a fully comprehensive
understanding of the immune infiltration states within patients’
tumors (Supplementary Table 7)8,10,46–48. Further, multiplexed IHC
techniques suffer from non-quantitative or semiquantitative
results, posing limits to the analysis of infiltration patterns of
several immune cell types49. Therefore, IMC is superior to the
routinely used lab techniques, making it more relevant to clinical
applications.
One potential limitation of this study was that we examined

small tissue samples from the patients (1500-µm × 1500-µm),
yielding a decent coverage of the full tumor-immune landscape to
capture several morphological regions within this area with a
resolution of 1-µm. Multiplexed images were able to discern the
heterogeneity of the tumor microenvironment and describe a
consistent continuum pattern and discrete classification of the
infiltration of the immune cells in lung tumors.
Besides, the immune panel can be expanded to further analyze

more phenotypes within the macrophage spectrum that ranges
from M1 to M2a, M2b, M2c, and M2d and relate them to cancer
progression and the disease outcome (Supplementary Fig. 23).
Additionally, several papers showed the significance of the M2/M1
ratio rather than the discrete count of the phenotype14. Higher
M1/M2 ratio was generally associated with a favorable prognosis
including longer overall survival and better response to
chemotherapy and radiotherapy. Lower M1/M2 ratios were
associated with poor response to chemotherapy and radiotherapy
and shorter overall survival14. Thereby, M2/M1 ratio could also be
incorporated within SpatialVizScore to investigate their correlation
with the immune infiltration pattern in cancer tissues (Supple-
mentary Fig. 24).

Fig. 7 Pixel-level classification and clustering reveal the distinct tissue compositions and marker distribution within lung cancer patients’
samples. a Representative schematics demonstrates the process of pixel classification. The intensity information for all markers at all pixel
locations (pixel size= 1 µm) was extracted and normalized. The background signal was filtered by eliminating pixel locations with an intensity
value lower than 0.3. The resulting marker intensity data considered as non-background was clustered. The number of pixels was
n= 5,093,784. Created with BioRender.com. b The resulting pixel intensity data were clustered using a subset of markers. The resulting clusters
were visualized on the tissue samples by attributing each pixel to the corresponding cluster color, yielding distinct separation of different
tissue regions. c UMAP displayed the distribution and the separation of the resulting 13 clusters from the pixel-level phenotypes. d Correlative
heatmap presented the co-expression of markers across the 13 clusters that make up the data set. e Marker abundance heatmap yielded the
cluster compositions for all patients’ cancer tissue samples and their matched metastatic lymph nodes.
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Another aspect of this study was the lack of information related
to the treatment history of the patients as it can alter the immune
infiltration within the tumors and can impact the final immuno-
score generated by SpatialVizScore. Additional validations with
more patient data including prior treatment, response, and

disease progression would enrich the immune scores generated
by SpatialVizScore. Combining SpatialVizScore with more patients’
clinical data along with the multi-omics profiling of the biopsies
will be powerful in further validating this emerging tool and
moving it to clinical practice. In an attempt to validate
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SpatialVizScore in clinical samples with drug response, we applied
the same computation tool in quantifying the immune infiltration
pattern within breast cancer H&E images with the drug response
data to immune checkpoint inhibitors (ICIs) (Supplementary Fig.
25 and Supplementary Table 8). Different cellular phenotypes
(Tumor, Stroma, and Immune Cells) were identified based on their
variant morphologies and the same tissue neighborhood scoring
approach was tested in H&E stained tissues of triple-negative
breast cancer (TNBC) tumors. Responder patients (n= 3) exhibited
higher SpatialVizScore values within their tumors than non-
responder patients (n= 3), validating our computational rationale
for SpatialVizScore. Of note, the ICI cohort included about
20 subjects and the rest of the patients exhibited partial response,
which was not included in this analysis. Multiplexed IMC imaging
of a larger cohort will be the subject of a follow-up study as more
patients with complete ICI responses are obtained in the near
term. We further benchmarked our SpatialVizScore approach
against previously published approaches to generate TILs spatial
infiltration maps in H&E stained tissues of lung tumors in the
Cancer Genome Atlas (TCGA) histological imaging data (Supple-
mentary Table 9). These TILs maps showed a decent agreement
with cancer patients’ survival and immune infiltration profiles in a
cohort of 26 patients45. SpatialVizScore generated similar infiltra-
tion maps compared to deep learning-based lymphocyte infiltra-
tion maps, further validating the presented immunoscoring
pipeline (Supplementary Fig. 26).
To independently demonstrate the efficacy of SpatialVizScore,

we analyzed 14 lung cancer patients (11 cancerous and 3
paracancerous/adjacent tissues) with variant cancer subtypes,
stages, and grades in addition to patient CH1. We also applied the
same SpatialVizScore approach using single-cell segmentation,
clustering, cell neighborhood analysis, and infiltration scoring in
lung tumors of CH2. Several clusters corresponded to unique
cellular phenotypes including Treg cells for cluster 6, and Tae cells
for cluster 4 (Supplementary Fig. 27). The same tissue neighbor-
hood analysis was applied between tumor/epithelial, stromal,
CD8+, and CD68+ regions (Supplementary Fig. 28) and revealed a
similar trend for the immune infiltration spectrum. Immune cell
infiltration within the patients’ tissues showed a continuum
distribution that ranged from immune cold, to immune sup-
pressed, and immune inflamed tumors that can then be used for
distinct patient stratification (Supplementary Fig. 29). This
distribution was further validated by the expression of other
immune markers including FoxP3, Granzyme B, CD4, CD45RO,
CD20, and CD3. Immune cold tumors exhibited a sparse
distribution of all immune markers whereas immune suppressed
tumors had a higher distribution of immune inhibitory markers
including FoxP3 and CD4 which could be attributed to Treg cells.
Further, immune inflamed tumors had higher expression of
GranzymeB, CD45RO, and CD3 (Supplementary Figs. 30 and 31).
Moreover, we applied the equivalent rationale of segmentation,
clustering, and tissue neighborhood analysis to the tissues using
pixel-based classification. The same cell phenotype clusters and
patients’ immune infiltration patterns persisted using pixel-based
segmentation (Supplementary Figs. 32 and 33). As expected, pixel-

based segmentation outperformed cell-based segmentation in
several regions. Cell segmentation also fails to distinguish
between different morphological regions and can miss important
information at the peripheries of tumors and stromal regions. Cell
segmentation can also undersegment or oversegment cells in the
stromal regions due to the dense fibrous alignment but this
information can be preserved much more efficiently with the pixel
classification (Supplementary Fig. 34). By comparing the immuno-
scores results from both approaches, they showed a high level of
correlation between the different anatomical regions except for
stromal-related scores (Supplementary Fig. 35).
In summary, SpatialVizScore provides a platform for the

multiplex analysis of the IMC data to develop more efficient
patient stratification methods. This can identify the patients as
potentially responder candidates for immunotherapies based on
their immune infiltration pattern to maximize the benefit of the
administered ICI drugs. IMC analysis of the tumor immune
microenvironment of human cancer tissues reveals the continuity
of immune cell infiltration patterns and discrete patient stratifica-
tion that can be used as a translational tool toward precision
oncology13,50. This digital pipeline is applicable for multi-
dimensional protein datasets acquired from single-cell multi-
plexed imaging technologies including IMC and potentially many
others. The presented SpatialVizScore scheme quantified the
immune spectra of lung cancer tissues and associated patients’
tumors into three main categories including immune inflamed,
immune suppressed, and immune cold along a tumor immunity
continuum axis. A higher dimensional panel would provide the
multiparameter immunoscore including immune-stimulatory and
immune inhibitory markers to further distinguish the immune
subsets making up tumors’ complexity. This pipeline may apply to
different cancer types, larger patient cohorts, and clinical
information including survival data and treatment regimens.

METHODS
FFPE tissues
Patients’ samples in cohort 1 were obtained from a tumor
microarray (TMA) purchased from a third-party vendor (Biomax,
US) with the tissue ID: LC10012a. This TMA included a total of 100
tissue cores of formalin-fixed paraffin-embedded (FFPE) non-small
cell lung carcinoma, cancer adjacent tissues, and normal lung
tissue samples obtained from 50 patients. Each tissue core had a
diameter of 1 mm and a thickness of 5 µm which is within the
tissue thickness recommended for IMC (≤7-µm). Patients’ samples
in cohort 2 were obtained from a different TMA with the tissue ID:
LC814a. This TMA contained a total of 80 FFPE lung carcinoma and
their matched metastatic lymph nodes tissue samples were
obtained from 40 patients. Each tissue core had a diameter of
1.5 mm and a thickness of 5 µm. We used pathologist annotation
to select tissue cores with a high density of tumor cells, no
necrotic tissues, and high immune infiltration. We chose 14 tissue
cores from TMA: LC10012a and an additional 12 tissue cores from
TMA: LC814a from different cancer stages and grades. Both TMA

Fig. 8 Spatial neighborhood maps and SpatialVizScores of the lung tumor microenvironment using pixel-level classification of cancer,
stromal, and lymphocyte regions. a Pre-identified marker images were used to mark distinct anatomical regions (Tumor: pankeratin and e-
cadherin, Stroma: SMA and collagen Type 1, CD8ɑ+ cells: CD8ɑ, M1 cells: CD68 and HLA-DR, and M2 cells: CD68, CD206, and CD163. This
resulted in 4 final images for each patient tissue. The maximum projection image was generated by dividing each ROI image into patches with
pixel size = 5-µm where each patch was assigned a tissue region based on the maximum intensity value of the pre-identified markers list.
Pixel neighborhood analysis was then performed within the unique anatomical regions’ organization. b Maximum projection images of ROIs
were shown. Magenta signifies tumor regions, yellow represents stromal regions, green demonstrates CD8ɑ+ cells infiltrated regions, red
indicates the M1 infiltrated regions and cyan yields the M2 infiltrated regions. c Box plot demonstrates the tissue composition of patients’
samples. Box plot showing the distribution of the data with minimum, first quartile (Q1), median, third quartile (Q3), and maximum. Original
Data was overlaid on the boxplot. Tumor regions were the most predominant followed by stromal regions, CD8ɑ, M1, and lastly M2 regions
(N= 12). d Heatmap displays the density of the anatomical regions across the patients’ cancer samples and their metastatic lymph nodes.
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samples were collected with patients’ consent following high
ethical and medical standards. All human tissues are collected
under HIPAA-approved protocols. For both TMAs, the same tissue
labeling procedure was followed as previously reported51,
including the antigen retrieval, protein blocking, metal-tagged
antibody labeling, and nucleus counterstains. First, the samples

were baked in a 60 °C oven for 2 hours. Then, the samples were
deparaffinized by immersing them in xylene and rehydrated by
dipping them into descending concentrations of ethanol (100%,
95%, 80%, 70%, and 50% ethanol in water). Finally, the samples
were washed with deionized water before proceeding with the
antigen retrieval step. The heat-induced epitope retrieval (HIER)
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approach under basic conditions was used to achieve antigen
retrieval using Dako’s target retrieval solution with pH= 9
(Catalog number: S2367, Agilent Dako). The slides were immersed
in the target retrieval solution and were incubated in the pressure
cooker in a high-pressure setting for 20minutes. The slides were
then left in the target retrieval solution for an additional
20minutes at room temperature. The slides were washed with
Maxpar Water (Catalog number 201069, Fluidigm) for 10 minutes
followed by Maxpar PBS (Catalog number 201058, Fluidigm) for an
additional 10 minutes with gentle agitation. To minimize the
volumes of solutions used on the tissue samples, a PAP pen was
then used to draw a hydrophobic barrier around the tumor
microarray samples on the slides. Dako’s ready-to-use protein
blocking buffer solution (Catalog number: X090930-2, Agilent
Dako) was applied to the tissues and incubated for 45 minutes at
room temperature. The slides were then washed 3 times with
Maxpar PBS. The antibody cocktail mix was prepared in Dako’s
protein-blocking buffer solution and incubated with the tissues
overnight at 4 °C, following Fluidigm’s labeling protocol. The tissue
slides were then washed with 0.2% Triton X-100 in Maxpar PBS for
8 minutes with gentle agitation followed by Maxpar PBS for
additional 8 minutes. The nuclear staining was then performed
using an Iridium-conjugated intercalator (Catalog number
201192 A, Fluidigm) prepared in Maxpar PBS for 30min at room
temperature in a hydration chamber. Finally, the slides were
washed with Maxpar water and left to dry at room temperature for
20minutes. After the staining process is complete, the stained
tissues were stored at 4 °C until imaging time (Fig. 1).

Whole-slide breast cancer H&E images
Patients at the Winship Cancer Institute of Emory University with
advanced/unresectable or metastatic triple-negative breast cancer
treated with an immune checkpoint inhibitor plus chemotherapy
between 2019 and 2021 were retrospectively evaluated. Demo-
graphic, clinicopathologic, and outcomes data were obtained from
the electronic medical record after approval by Emory University
Institutional Review Board (Supplementary Table 6). The de-
identified tissues were obtained by (J.A.) with the Emory IRB:
STUDY00002958. The use of tissue samples is covered under a
general protocol for studying specimens from the biorepository
called 5231-21 Discovery of New Therapies and Treatment
Outcomes for Breast Cancer and Related Neoplasms (Winship
Discovery protocol).

Data
To set up the Hyperion imaging system, regions of interest (ROIs)
of 1500-μm× 1500-μm were chosen within each tissue core to
cover most of the tissue. To choose the most optimum laser
ablation power, several testing points were chosen from the tissue
cores that represent the tissue heterogeneity. The acquired data
was automatically saved in.mcd format that can be viewed using
Fluidigm’s MCD Viewer software (v 1.0.560.2).

Images
Each ROI image was extracted using MCD Viewer (v 1.0.560.2) with
minimum threshold intensity of 0 and maximum threshold
intensity of 50. Each image intensity range was then scaled to 0
and 99.9th intensity percentile for processing. When comparing
the intensity range across ROI, the intensity was scaled to the 20th
and 99th intensity percentile of all the marker images in the ROI to
reduce high background staining in some ROIs.

H&E validations
First, hematoxylin and eosin (H & E) images were obtained from
serial sections of the tumor microarrays, serving as a validation of
cancer-enriched regions. Next, from multiplexed images, each ROI
H&E image was reconstructed. The average image from multiple
markers was computed for both nuclei and cytosol. For nuclei, the
markers consisted of Histone3, H3K9me3, Ki67, FoxP3, and
intercalators conjugated to 191Ir and 193Ir. For cytosol, the markers
included Vimentin, CD68, MHC-II, GranzymeB, CD20, E-Cadherin,
and PanKeratin. For the nuclei reconstruction image, the colormap
was transformed from matplotlib package ‘bwr_r’ colormap by
selecting the upper half of RGB quantization levels of the
colormap. The alpha was set using the NumPy function linspace
going from 0 to 1 with N equal to the number of RGB quantization
levels in the colormap. For the cytosol reconstruction image, the
colormap was transformed from matplotlib package ‘PiGr_r’
colormap by selecting the upper half of RGB quantization levels
of the colormap. The alpha was set using the NumPy function
linspace going from 0.5 to 1 with N equal to the number of RGB
quantization levels in the colormap. Finally, H&E stain reconstruc-
tion was achieved by superposing the nuclei reconstruction image
on top of the cytosol reconstruction image.

Segmentation
Single cells were segmented using CellProfiler software to extract
the nuclei using the 191Ir and 193Ir intercalator signals. After a few
iterations, the nuclei diameter range was set to range between
5–20 pixels to generate the nucleus segmentation masks. Further,
the cell membrane was segmented by expanding the nuclear
segmentation mask by 3 pixels to generate the cell segmentation
masks. Separately, single-cell nuclei regions were also segmented
using Cellpose by combining the intercalator signals from 191Ir and
193Ir with Histone3, Ki67, and FoxP3 marker expression images.
The cytosol region was calculated by expanding the nuclei
segmented region by 2 pixels. A distance of 2 pixels was obtained
by taking the average of the major axis of the ellipse that
exhibited the same normalized second central moments of the
nuclei and cytosol region using CellProfiler.

Cell clustering
Cell phenotypes were clustered using a Leiden algorithm24, a
graph-based community detection algorithm. From each

Fig. 9 Cell-level segmentation and pixel-level classification enable distinct and spatially variant immunoscores in lung cancer patients’
samples. a Representative schematic shows the difference between cell-based and pixel-based immunoscoring. The cell-based immunoscore
relied on cell segmentation masks to identify individual cells. The cell network was generated by identifying the distance between cell
centroids within a diameter of 30-µm distance. The pixel-level immunoscore relied on the pixel-based classification, where the 1500-µm
× 1500-µm patients’ tissues were divided into 300 × 300 square patches with patch size= 5-µm. Each patch was assigned a phenotype based
on the highest intensity of marker expression. Similar to the cell network, the pixel network was generated to assess the tissue regions’
neighborhoods. Created with BioRender.com. b Line chart displays the density of the 5 different anatomical regions and phenotypes across
patients’ cancer samples and their metastatic lymph nodes using the cell-based segmentation. c Line chart indicates the density of the 5
different anatomical regions and phenotypes across patients’ cancer samples and their metastatic lymph nodes using the pixel-based
classification. d Correlation heatmap was shown between all the generated scores using the two methods: Cell-based segmentation and pixel-
based classification. e Correlation heatmap was presented among all the generated scores for all patients’ tissues using the two methods: Cell-
based segmentation and pixel-based classification.
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segmented cell region, the mean intensity of each marker
expression was calculated. The resulting feature matrix consisted
of n rows of the total number of cells (n= 264,191) and p columns
of marker expression. Each column of the feature matrix was z-

score normalized. The neighborhood graph was constructed and
used for unsupervised community detection. Each cell was
associated with a cell phenotype cluster and attributed a cluster
color showing the cell-level clustering of each ROI.
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Pixel clustering
Pixel phenotypes were clustered in a two-step clustering pipeline.
The image was first downsampled by a factor of 2 to filter out the
noise in the marker expression data. Then, from each pixel
location, the intensity value of each marker expression was
extracted. To filter out the background, each pixel location with all
markers intensity lower than 0.3 was considered as background
and dropped from the feature matrix. The resulting feature matrix
consisted of n rows of the total number of pixels (n= 5,093,783)
and p columns of marker expression. Each column of the feature
matrix was min-max normalized. The feature matrix was clustered
using the Parc algorithm52 with the feature embedding visualized
using UMAP. The mean expression from clusters resulting from
the Parc algorithm was calculated. Hierarchical clustering was
performed on the cosine similarity of the mean expression using
the average linkage method with a threshold of 0.25 from the
maximum pairwise distance. Each pixel was associated with a pixel
phenotype cluster and attributed a cluster color showing the
pixel-level clustering of each ROI.

Spatial proximity network
From single-cell segmentation, cell centroids and mean expression
levels within the cells were extracted. Each cell was assigned to
the highest expression type (Tumor/Epithelial: ECadherin+Panker-
atin, CD8+: CD8, M1: CD68+HLA DR, M2: CD68+CD163+CD206,
and Stroma: Col1+SMA). Tumor/Epithelial regions were multiplied
by 0.6 to take into account the overstaining factor and this was
determined empirically for better cell type classification. CD8ɑ
marker images were denoised using a median filter with a disk
size of 1 pixel due to some ROI being immune cold with low CD8ɑ
staining per cell resulting in higher noise before processing. Cell
networks were created by connecting centroids within 30-μm of
each other, thus generating a spatial proximity network for
each ROI.

Spatial variant infiltration score
Each ROI was divided into a patch of 25 by 25-μm area (equivalent
to a 25-by-25 pixels area). For patch i, the total number of cells was
defined as ni,cell, the total number of tumor cells was defined as
ni,tumor. Therefore, tumor density of patch i was defined as
Pi;tumor ¼ ni;tumor

ni;cell
if ni;cell > 0 else 0: Likewise, we defined the stroma

density of patch i is as Pi;stroma ¼ ni;stroma

ni;cell
if ni;cell > 0 else 0:

The cell centroid node in patch i was defined as ci,j for
j 2 ½0; ni;cell � 1�. Let Ni,j be the neighbor node of ci,j in the cell
spatial proximity network. The number of the link between
category A cells and B cells in patch i was defined as Li;A�>B ¼

P
ci;j2A

P
n2Ni;j

1B nð Þð1Þ with 1BðnÞ ¼ 1if n 2 Belse0. In each patch
region, the spatial neighboring score between two cell types was
then defined as the number of edges of the two types divided by
the total number of possible edges. This provided us with a 2D
heatmap of spatial score and infiltration from cell to cell
neighboring information. Two cells were considered neighbors if
the centroid of the cell was within a distance of 30 pixels
(equivalent to 30-µm). This distance for connecting neighborhood
cells in the spatial graph was chosen empirically to best reflect the
neighboring pattern in tissues. The distance parameter can be
manually changed to suit different types of tissues with various
cell densities. Single-cell marker variation plots were generated
using the mean expressions of each marker and plotted by fixing
the ROI (x-axis) in the same order as increasing the CD8+ T cell
neighboring score.

Spatial variant infiltration pixel score
Each ROI was divided by n by n pixels (n from 1 to 5). The intensity
levels were rescaled between 0 and 1. For patch i, the mean
intensity of each of the 5 marker types (Tumor, M1, M2, CD8, and
Stroma) was calculated, and each patch was assigned to the
maximum mean intensity marker type. If all mean intensities of
the 4 marker types were less than 0.1, the corresponding patch is
considered to be the background. The resulting maximum
projection image showed the pixel-level classified phenotype in
each patch in each ROI. The density of type (Tumor, M1, M2, CD8,
and Stroma) was defined as the number of patches of size n by n
pixels with a maximum mean intensity of a specific type divided
by the total number of patches. Two patches are considered to be
neighbors if they are direct neighbors to each other in the
reconstructed projection image. The immunoscore between two
types is the number of neighbors between two patch types
divided by the number of total possible neighbors.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The IMC image data supporting the findings of this study are available at https://
doi.org/10.5281/zenodo.6784253. The mass spectrometry proteomics data have been
deposited to the ProteomeXchange Consortium via the PRIDE53 partner repository
with the dataset identifier PXD035340.

Fig. 10 Cell phenotypic enrichment model of T cell and macrophage subsets is distinct in immune inflamed, suppressed, and cold
tumors. a Representative schematic presents the composition of immune inflamed tumors with high infiltration of cytotoxic tumor-infiltrating
lymphocytes and M1-polarized macrophages, immune suppressed tumors with high infiltration of M2-polarized macrophages, and low
infiltration of CD8+ cells, and immune cold tumors with high fibrotic tissues and scare infiltration of immune cells. Created with
BioRender.com. b Representative tissue infiltration maps for immune inflamed, immune suppressed, and immune cold cancers with different
immune phenotypes were demonstrated. c Visual representation of IMC images demonstrated the infiltration of M1 (CD68 in blue, HLA_DR in
cyan) and M2 macrophages (CD68 in blue, CD206 in red, CD163 in yellow) phenotypes alongside CD8+ (in green) T-cells for immune
inflamed, immune suppressed, and immune cold tumors. d Interaction matrix was shown between different anatomical regions and immune
cell phenotypes for immune inflamed, immune suppressed, and immune cold tumors. e Bar plot indicates the density of tumor cells, stromal
cells as well as CD8ɑ+, CD68+ in patients cohorts 1 and 2 categorized as immune inflamed (red), immune suppressed (blue), and immune
cold (green). The error bar shows a 95% confidence interval. f Bar plot demonstrates the density of additional immune phenotypes in patients
cohort 2 categorized as immune inflamed (red), immune suppressed (blue), and immune cold (green). The error bar shows a 95% confidence
interval. g Bar plot provides the interaction between subsets of immune cells and tumor cells in patients cohort 2 categorized as immune
inflamed (red), immune suppressed (blue), and immune cold (green). Asterisk indicates the statistical significance for pairwise comparison. P-
value calculated using Wilcoxon Rank Sum Test (ns: 0.05 < p, *: 0.01< p <= 0.01, **: 0.001 < p <= 0.01 ***: 0.0001 < p <= 0.001, ****:
p<=0.0001). Error bar shows 95% confidence interval. h–j Visual representations of IMC images for 3 different Fields of View (FOV) were
presented for the immune inflamed, suppressed, and cold tumors. h Tissue-resident memory T-cells were visualized. CD103 in red, CD68 in
blue, HLA-DR in cyan, and CD8α in yellow. i PD-L1 M2 macrophages were visualized. PD-L1 in white, CD68 in blue, CD206 in red, and CD163 in
yellow. j Regulatory T-cells were visualized. Foxp3 in yellow, CD68 in blue, CD8α in cyan, and CD4 in red.
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CODE AVAILABILITY
The IMC image processing codes are available at https://github.com/coskunlab/
SpatialVizScore. The IMC data was exported using MCD Viewer (v.1.0.560.2). Analysis
used Anaconda (v. 4.12.0) and Jupyterlab (v. 3.2.8).
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