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Introduction
Monocyte/macrophage desensitization is characteristic for late-

phase immune responses (Liew et al., 2005). Confi ned pro-

infl ammatory cytokine expression and mediator synthesis is 

important to avoid pathological settings, such as sepsis or 

atherosclerosis (Hotchkiss and Karl, 2003; Hansson, 2005). 

Down-regulating proinfl ammatory cytokine expression (TNF-α, 

interleukin [IL]-1β, and IFNγ) or proinfl ammatory mediator 

release (nitric oxide and reactive oxygen species [ROS]) con-

comitantly switches the proinfl ammatory phenotype toward an 

antiinfl ammatory one. The latter is characterized by the synthe-

sis of antiinfl ammatory cytokines, such as TGF-β or IL-10, and 

is often accompanied by cellular desensitization upon secondary 

proinfl ammatory stimulation (Docke et al., 1997; Kalechman 

et al., 2002). Therefore, the identifi cation of molecular mecha-

nisms contributing to cellular desensitization attracted growing 

interest (Docke et al., 1997; von Knethen and Brune, 2002).

One factor attenuating proinfl ammatory gene expression 

is peroxisome proliferator–activated receptor (PPARγ). PPARγ 

is a nuclear hormone receptor that, upon agonist binding, trans-

activates gene expression as a heterodimer bound to retinoic 

acid receptor-α (Abdelrahman et al., 2005). Its role in blocking 

proinfl ammatory gene expression comprises several options, 

mainly antagonizing signaling cascades. Specifi cally, PPARγ 

negatively regulates transcription factors by scavenging tran-

scriptional coactivators, such as the cAMP-response element–

binding protein or the steroid receptor coactivator-1 (Yang et al., 

2000). However, a direct association with the transcription fac-

tors NF-κB, NF of activated T cells, signal transducer, and acti-

vator of transcription or NF-E2–related factor 2 (Ikeda et al., 

2000; Wang et al., 2001, 2004; Chung et al., 2003) blocks their 

recruitment to responsive elements in promoter structures of 

target genes. Recently, it has been shown that PPARγ is targeted 

to nuclear receptor corepressor–histone deacetylase-3 com-

plexes in response to ligand-dependent SUMOylation (Pascual 

et al., 2005), protecting these complexes from proteosomal de-

gradation. Normally, histone deacetylase-3 removes a corepres-

sor complex, provoking expression of proinfl ammatory genes. 

Additionally, PPARγ represses activation of a mitogen-activated 

protein kinase, which keeps downstream transcription factors 

PPARγ1 attenuates cytosol to membrane 
translocation of PKCα to desensitize 
monocytes/macrophages

Andreas von Knethen, Mathias Soller, Nico Tzieply, Andreas Weigert, Axel M. Johann, Carla Jennewein, 

Roman Köhl, and Bernhard Brüne

Institute of Biochemistry I, Faculty of Medicine, Johann Wolfgang Goethe University, 60590 Frankfurt, Theodor-Stern-Kai 7, Germany

 R
ecently, we provided evidence that PKCα depletion 

in monocytes/macrophages contributes to cellular 

desensitization during sepsis. We demonstrate that 

peroxisome proliferator–activated receptor γ (PPARγ) ag-

onists dose dependently block PKCα depletion in response 

to the diacylglycerol homologue PMA in RAW 264.7 and 

human monocyte–derived macrophages. In these cells, we 

observed PPARγ-dependent inhibition of nuclear factor-κB 

(NF-κB) activation and TNF-α expression in response to 

PMA. Elucidating the underlying mechanism, we found 

PPARγ1 expression not only in the nucleus but also in 

the cytoplasm. Activation of PPARγ1 wild type, but 

not an agonist-binding mutant of PPARγ1, attenuated 

PMA-mediated PKCα cytosol to membrane translocation. 

Coimmunoprecipitation assays pointed to a protein–protein 

interaction of PKCα and PPARγ1, which was further 

substantiated using a mammalian two-hybrid system. Ap-

plying PPARγ1 mutation and deletion constructs, we iden-

tifi ed the hinge helix 1 domain of PPARγ1 that is responsible 

for PKCα binding. Therefore, we conclude that PPARγ1-

dependent inhibition of PKCα translocation implies a new 

model of macrophage desensitization.

Correspondence to Andreas von Knethen: v_knethen@zbc.kgu.de

Abbreviations used in this paper: 15d-PGJ2, 15-deoxy-∆12,14-prostaglandin J2; 
AF, activating function; CHX, cycloheximide; DAG, diacylglycerol; DBD, DNA-
binding domain; DGKα, DAG kinase α; EMSA, electrophoretic mobility shift as-
say; HEK, human embryonic kidney; IL, interleukin; LBD, ligand-binding domain; 
MCS, multicloning site; NF-κB, nuclear factor-κB; PPARγ, peroxisome proliferator–
activated receptor γ; ROS, reactive oxygen species.



JCB • VOLUME 176 • NUMBER 5 • 2007 682

unphosphorylated and, consequently, inactive (Desreumaux 

et al., 2001). Moreover, PPARγ infl uences the cell cycle by up- 

regulating p21 expression, which is an established cell cycle 

inhibitor (Han et al., 2004), or down-regulating phosphatase 

PPA2, which is known to adjust E2F/DP DNA-binding activity, 

which is necessary for the G1 to S-phase transition (Altiok et al., 

1997). In response to proinfl ammatory stimulation, PPARγ-

 dependent gene transcription also contributes to cellular desen-

sitization. PPARγ agonists inhibit diacylglycerol (DAG)–PKC 

signaling by inducing DAG kinase-α (DGKα) expression (Verrier 

et al., 2004). This enzyme lowers the amount of DAG, which is 

an established PKC activator. Normally, DAG is released from 

membrane lipids and activates classical PKCs (Liu and Heckman, 

1998). Based on gene induction of DGKα as the underlying 

mechanism, this type of desensitization demands at least 6–15 h. 

Thus, it appears that PPARγ transrepresses proinfl ammatory 

gene expression, often in a DNA-unbound state, by provoking 

direct protein–protein interactions.

We provide evidence for a new PPARγ-dependent mecha-

nism in blocking PKCα signaling. Depletion of PKCα is atten-

uated by PPARγ1 activation in RAW 264.7 cells or human 

primary monocyte–derived macrophages. Cytosolic localiza-

tion of PPARγ1 interferes with PKCα cytosol to membrane 

translocation, which is a prerequisite for its activation-dependent 

depletion. Translocation is restored in cells transfected with a 

dominant-negative PPARγ1 mutant. Coimmunoprecipitation 

studies and a mammalian two-hybrid system revealed a 

direct PPARγ1–PKCα interaction as the underlying mecha-

nism. PPARγ1 deletion constructs support the idea that ligand-

dependent PPARγ activation is necessary for PKCα binding, 

which is mediated by the helix 1 of the PPARγ1 hinge domain. 

Our data suggest a new mechanism for how activation of 

PPARγ1 blocks PKCα translocation, thereby achieving 

cellular desensitization.

Results
PPAR𝛄 agonists inhibit PKC𝛂 depletion
Recent data demonstrate that monocyte/macrophage desensiti-

zation in response to phagocytosis of apoptotic cells is achieved 

by attenuating PKCα signaling, which blocks NADPH oxidase–

dependent formation of ROS (Johann et al., 2006). There-

fore, we were interested in identifying molecular mechanisms 

interfering with PKCα depletion. A potential candidate known 

to affect the pro- versus antiinfl ammatory phenotype in mono-

cytes/macrophages is PPARγ. Because controversial data exist 

concerning its expression in monocytic and macrophage cell 

lines, as well as in primary human monocytes and macrophages, 

we performed a fi rst set of experiments determining PPARγ 

 expression in the monocytic cell lines and primary cells under 

investigation. As shown in Fig. 1 A, PPARγ is constitutively 

expressed in murine RAW 264.7 macrophages. In contrast, in 

THP-1 cells, PPARγ is only fractionally expressed, but differ-

entiation toward macrophages with 100 nM PMA for 24 h pro-

voked up-regulation of PPARγ (Fig. 1 A, lane 2 vs. 3). A similar 

expression pattern is observed in primary monocytes and macro-

phages, respectively. PPARγ is only marginally expressed in 

monocytes, but induced upon differentiation toward macrophages 

(Fig. 1 B). To identify the expressed PPARγ isoform 1 or 2, we 

performed a Western blot using human PPARγ1-transfected 

human embryonic kidney (HEK) cells as a positive control. Taking 

into consideration that murine and human PPARγ1 are identical 

in size (475 aa), we conclude that PPARγ1 is expressed in RAW 

264.7 macrophages, differentiated THP-1 cells, and primary 

macrophages (unpublished data). Based on these results, we choose 

RAW 264.7 cells, differentiated human THP-1 cells, and primary 

monocyte–derived macrophages as experimental cell models.

To analyze the role of PPARγ in macrophages in affecting 

PKCα activation, we pretreated RAW 264.7 macrophages for 

1 h with the PPARγ agonists ciglitazone and rosiglitazone, fol-

lowed by the addition of 100 nM PMA, which is a DAG homo-

logue and established activator of PKCα. As expected, PKCα 

depletion was observed in control cells in response to 100 nM 

PMA (Fig. 2 A, lane 2). Depletion of PKCα was attenuated in 

cells prestimulated with a PPARγ agonist, such as ciglitazone 

(Fig. 2 A, lanes 3 and 4) or rosiglitazone (Fig. 2 A, lanes 5 and 6), 

in a concentration-dependent manner. However, 1 μM PMA-

mediated PKCα depletion was not blocked (unpublished data). 

From these data, we conclude that PPARγ agonists attenuate 

activation-dependent PKCα depletion, in part controlled by the 

magnitude of the PKCα–activating stimulus. In PPARγ1 acti-

vating function (AF) 2 mutant overexpressing RAW 264.7 

macrophages (Johann et al., 2006), pretreatment with 10 μM 

rosiglitazone or 10 μM ciglitazone did not inhibit PKCα deple-

tion in response to PMA (Fig. 2 B).

Because a 1-h prestimulation period is short for gene ex-

pression and protein synthesis, we hypothesized that preserved 

PKCα expression did not require protein synthesis. To prove 

this assumption, we added the established translation inhibitor 

cyclohexamide (CHX) 1 h before PPARγ agonist stimulation 

Figure 1. PPAR𝛄 expression in monocytes/macrophages. (A) PPARγ ex-
pression was determined in lysates of RAW 264.7 macrophages and in 
control versus differentiated THP-1 cells. For differentiation, cells were 
treated for 24 h with 100 nM PMA. Western blot was performed as 
described in Materials and methods. (B) PPARγ expression was analyzed 
by Western analysis in primary human monocytes and macrophages, dif-
ferentiated for 7 d with medium containing serum of AB-positive donors. 
Experiments were performed at least three times, and representative data 
are shown.
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(Fig. 2 C). As expected, blocking translation with CHX did 

not interfere with the ability of PPARγ agonists to block 

PKCα depletion, suggesting a translation-independent mode 

of action.

The physiological signifi cance of these results obtained in 

murine RAW 264.7 macrophages was verifi ed in primary 

human monocyte–derived macrophages isolated from peripheral 

blood. Similar to RAW 264.7 cells, in primary macrophages, 

pretreatment with ciglitazone and rosiglitazone preserved 

PKCα expression upon PMA addition (Fig. 2 D).

Antiinfl ammatory consequences 
of PPAR𝛄1–PKC𝛂 interaction
To elucidate whether the PPARγ1–PKCα interaction shows an 

impact on PKCα signaling in infl ammatory gene expression in 

macrophages, we analyzed two proinfl ammatory markers of 

macrophage activation, i.e., NF-κB DNA binding and TNF-α 

expression in response to PMA in RAW 264.7 macrophages. To 

determine activation of the proinfl ammatory transcription factor 

NF-κB, we performed a set of electrophoretic mobility shift as-

says (EMSAs), demonstrating the DNA-binding capability of 

the transcription factor. As shown in Fig. 3 A, 100 nM PMA 

supplied for 3 h signifi cantly induced NF-κB activation (Fig. 

3 A, second lane) compared with the untreated control (Fig. 3 A, 

fi rst lane). To elucidate the composition of the transcription fac-

tor complex, we used antibodies against the p50 (Fig. 3 B, left) 

and p65 subunits (Fig. 3 B, right) of NF-κB. As shown in Fig. 

3 B (left), the lower and the upper NF-κB shifts contained the p50 

subunit. Therefore, the two bands were signifi cantly reduced 

when an α-p50 antibody was included in the binding reaction 

and a new band, the p50 supershift, occurred. Only the upper 

NF-κB shift included the p65-subunit, as indicated by the addi-

tion of the α-p65 antibody, which provoked the reduction of the 

upper NF-κB shift, but did not alter the lower NF-κB shift (Fig. 

3 B, right). As expected, a new band was detectable (the p65 

supershift). Thus, we conclude that the lower NF-κB shift is 

formed by a p50 homodimer, whereas the upper NF-κB shift 

consists of a p50/p65 heterodimer.

To identify whether activation of NF-κB complexes is 

infl uenced by PPARγ activation, we treated RAW 264.7 cells 

with the natural PPARγ agonist 15-deoxy-∆12,14-prostaglandin 

J2 (15d-PGJ2; Kobayashi et al., 2005; Rogler, 2006). Taking into 

consideration that 15d-PGJ2 may also act PPARγ independently 

on NF-κB activation (Straus et al., 2000), we included the 

PPARγ antagonist GW9662 in this experiment (Leesnitzer 

et al., 2002). This allowed us to discover to what extent 15d-PGJ2 

affected PMA-mediated NF-κB activation PPARγ dependently. 

As depicted in Fig. 3 C, pretreatment of RAW 264.7 cells with 

10 μM 15d-PGJ2 for 1 h reduced the p50/p65 heterodimer for-

mation in response to PMA (Fig. 3 C, second lane) compared 

with PMA-treated controls (Fig. 3 C, fi rst lane). Preincubation 

of the cells for 1 h with 10 μM GW9662 completely eliminated 

the infl uence of 15d-PGJ2 on NF-κB activation (Fig. 3 C, right 

lane). To show that these results are not restricted to our cell line 

model, we performed a similar EMSA using nuclear extracts 

isolated from primary human macrophages. In primary cells, 

10 μM of the natural PPARγ agonist 15d-PGJ2 inhibits 100 nM 

PMA-mediated NF-κB activation (Fig. 3 D, middle lane), which 

is restored after 10 μM GW9662 pretreatment for 1 h (Fig. 3 D, 

right lane). However, in human macrophages, only one NF-κB 

shift in response to PMA, which is formed by a p50/p65 hetero-

dimer (unpublished data), is observed. From these results, we 

reasoned that PPARγ activation reduced the NF-κB DNA-  

binding ability in response to PMA by 
50% compared with 

PMA-treated controls. To determine whether reduced NF-κB 

activation modulates expression of proinfl ammatory cytokines, 

we fi nally examined TNF-α expression of RAW 264.7 macro-

phages in response to PMA. TNF-α expression was determined 

Figure 2. PPAR𝛄 agonist prestimulation inhibits PKC𝛂 depletion. RAW 
264.7 macrophages (A) and PPARγ1 AF2–overexpressing RAW 264.7 
cells (B) were prestimulated for 1 h with ciglitazone (1 or 10 μM), rosiglita-
zone (1 or 10 μM), or remained as controls, followed by the addition of 
100 nM PMA for 1 h. (C) RAW 264.7 macrophages were stimulated for 
1 h with 50 μg/ml CHX. Thereafter, 10 μM of rosiglitazone or ciglitazone 
were added for 1 h, followed by 100 nM PMA stimulation for 1 h. (D) Pri-
mary monocyte–derived macrophages were prestimulated for 1 h with 
10 μM ciglitazone, 10 μM rosiglitazone, or remained as controls. Afterward, 
100 nM PMA was added for 1 h. For all experiments, cells were harvested 
and lysed, and Western blot was performed as described in the Materials 
and methods. Experiments were performed at least three times, and repre-
sentative data are shown.
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by the cytometric bead array using a FACSCanto fl owcytometer. 

As shown in Fig. 3 E, pretreatment of RAW 264.7 macro-

phages for 1 h with 10 μM rosiglitazone before addition of 

100 nM PMA for 6 h reduced PMA-mediated TNF-α expression 

to 
70%. These results suggest that activated PPARγ1 

inhibits PKCα-dependent signaling in macrophages, thereby 

provoking, at least in part, an attenuated proinfl ammatory gene 

expression profi le in association with cellular desensitization.

PPAR𝛄1-dependent inhibition 
of PKC𝛂 translocation
Considering that activation of PKCα, followed by its translocation 

to the cell membrane, is a prerequisite for its depletion, we were 

interested to determine whether PPARγ blocks PKCα trans-

location. To follow PPARγ and PKCα distribution in RAW 264.7 

cells, we stained for PPARγ and PKCα in  paraformaldehyde-

fi xed cells (Fig. 4). As shown in Fig. 4 A (third panel), PPARγ 

localizes in the cytosol and the nucleus in untreated cells, 

whereas PKCα is localized in the cytosol (Fig. 4 A, second 

panel). The nucleus is counterstained, using DAPI (Fig. 4 A, 

fi rst panel), and an overlay is provided in Fig. 4 A (fourth panel). 

To prove specifi city of the secondary antibodies used, which 

were labeled with either Alexa Fluor 488 or 546, we used these 

antibodies alone without a fi rst antibody. In both cases, no signal 

is observed (unpublished data). Activation of the cells with 

100 nM PMA for 50 min provokes PKCα translocation (Fig. 4 B, 

second panel), whereas localization of PPARγ is not altered 

(Fig. 4 B, third panel). Pretreatment of RAW 264.7 macro-

phages with 10 μM of the synthetic PPARγ agonist rosiglitazone 

for 1 h prevents PKCα translocation in response to 100 nM 

PMA stimulation for 50 min (Fig. 4 C, second panel). Localization 

of PPARγ remains unaltered (Fig. 4 C, third panel). To prove a 

PPARγ-dependent effect, we used the PPARγ-specifi c antago-

nist GW9662. Preincubation of the cells for 1 h with 10 μM 

GW9662, followed by rosiglitazone treatment (1 h, 10 μM), 

restores PKCα translocation after 100 nM PMA addition for 

50 min (Fig. 4 D, second panel). PPARγ localization was not af-

fected (Fig. 4 D, third panel). From these data, we conclude that 

activated cytosolic PPARγ in RAW 264.7 macrophages inhibits 

Figure 3. PPAR𝛄1-dependent attenuation of PKC𝛂 translocation provokes 
a reduction of the proinfl ammatory response in macrophages. (A) Activa-
tion of NF-κB in RAW 264.7 macrophages in response to PMA. RAW 
264.7 macrophages were stimulated for 3 h with 100 nM PMA or left un-
treated as control. Afterward, cells were harvested, nuclear extracts were 
isolated, and NF-κB EMSA was performed as described in the Materials 
and methods. (B) Supershift analysis of the active NF-κB complex was de-
scribed in the Materials and methods. Macrophages were stimulated with 
100 nM PMA for 3 h. For supershift analysis, a p50 antibody (left, second 

lane) or a p65 antibody (right, second lane) was included. NF-κB activa-
tion without antibody addition (left and right, fi rst lane) is shown. (C) 15d-
PGJ2 inhibited PMA-mediated NF-κB activation. RAW 264.7 cells were 
pretreated with 10 μM of the endogenous PPARγ ligand 15-dPGJ2 for 1 h, 
followed by the addition of 100 nM PMA for 3 h (middle lane). To ensure 
a PPARγ-dependent effect, one sample was prestimulated before 15d-PGJ2 
addition with 10 μM of the PPARγ antagonist GW9662 for 1 h (right 
lane). One sample remained PMA treated only as a control (left lane). Cells 
were harvested, nuclear protein extracts were isolated, and NF-κB EMSA 
was performed as described in Materials and methods. (D) PMA-mediated 
NF-κB activation is inhibited in human primary macrophages in response 
to 15d-PGJ2. Primary monocyte–derived macrophages were treated as de-
scribed in C. Cells were harvested and processed, and NF-κB EMSA was 
performed as described in Materials and methods. (E) Inhibition of PMA-
mediated PKCα activation by PPARγ reduced proinfl ammatory TNF-α 
expression. RAW 264.7 cells were treated for 1 h with 10 μM rosiglitazone 
or remained as controls. Afterward, cells were incubated with 100 nM 
PMA for 6 h, and TNF-α expression in the cell supernatant was analyzed 
using the CBA system. All experiments were performed at least three times. 
Data are the means ± the SD of the individual experiments (*, P < 0.05) 
or representative of three similar experiments.
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PKCα translocation in response to 100 nM PMA. Based on the 

aforementioned Western blot results, RAW 264.7 cells express 

isoform 1, which is partially located in the cytosol.

To verify the impact of PPARγ1 activation on PKCα 

translocation, we used HEK293 cells. Cells were transiently 

transfected with a PPARγ1 wild-type–encoding vector, tagged 

with DsRed-monomer or a DsRed-monomer–tagged PPARγ1 

AF2 mutant–encoding vector in combination with a PKCα-

EGFP–encoding vector. The PPARγ1 AF2 mutant contains two 

amino acid exchanges (L468A/E471A), thus preventing ligand 

binding and concomitant PPARγ1 activation (Gurnell et al., 

2000). To follow PKCα translocation, 100 nM PMA was added 

to rosiglitazone-pretreated and control cells. Changes in PKCα 

localization were documented 1 h after rosiglitazone stimula-

tion and 50 min after 100 nM PMA addition. PMA provokes 

PKCα-EGFP translocation to the cell membrane in DsRed-

tagged PPARγ1 wild type, as well as DsRed-tagged PPARγ 

AF2 mutant–expressing cells, as expected (Fig. 5 A, second 

row, second panel vs. fourth row, second panel). Localization of 

PPARγ does not change (Fig. 5 A, fi rst row, third panel vs. second 

row, third panel; and third row, third panel vs. fourth row, 

third panel). In cells transfected with the DsRed-tagged PPARγ1 

wild-type construct, rosiglitazone pretreatment inhibited PKCα-

EGFP translocation to the cell membrane in response to PMA 

(Fig. 5 B, second row, second panel), whereas in cells trans-

fected with the DsRed-tagged PPARγ AF2 mutant, rosiglitazone 

preincubation does not prevent PKCα-EGFP translocation (Fig. 

5 B, fourth row, second panel). However, PPARγ localization 

remains unaltered in all analyzed samples (Fig. 5, A and B, fi rst 

through fourth row, third panel). As shown in Fig. 5 C, preincu-

bation of the cells with the PPARγ antagonist GW9662 (10 μM) 

for 1 h, completely abolished the PPARγ-dependent inhibition 

of PKCα translocation in response to PMA (bottom row, second 

panel). Inline pretreatment of the cells with the PPARα agonist 

WY14643 (10 μM) for 1 h did not inhibit PMA-mediated 

PKCα translocation (Fig. 5 D, bottom row, second panel), 

which further approved a PPARγ-dependent effect. In corrobo-

ration with Fig. 5 (A and B), PPARγ localization was unaffected 

in response to GW9662 or WY14643 and PMA treatment 

(Fig. 5, C and D, fi rst and second row, third panel).

Based on these fi ndings, we went on to analyze whether 

PPARγ1 inhibits PKCα translocation by a direct protein–

protein interaction.

PPAR𝛄1 directly binds to PKC𝛂
To elucidate whether PPARγ1 inhibits PKCα translocation by a 

direct PPARγ1–PKCα interaction, we performed a set of coimmuno-

precipitation experiments. Immunoprecipitation of PKCα from 

lysates of differentiated THP-1 cells, which had been stimulated 

for 1 h with rosiglitazone or left untreated, was conducted. As shown 

in Fig. 6 A, immunoprecipitation of PKCα resulted in coimmuno-

precipitation of PPARγ1 in THP-1 cells that had been challenged 

with a PPARγ agonist (Fig. 6 A, lane 2). In the fl owthrough, 

PPARγ1 was only detected when agonist stimulation was omitted 

(Fig. 6 A, lane 1). After PPARγ1 activation, PPARγ1 was almost 

completely retarded in the immunoprecipitation column.

To verify a PPARγ1-dependent mechanism, we transfected 

COS-7 cells with PPARγ1 wild-type or AF2-encoding plasmids 

and a PKCα-EGFP expression plasmid. Immunoprecipitation was 

performed using μMacs anti-GFP beads. In cells transfected 

with the PPARγ1 AF2 mutant, little if any PPARγ1 coimmuno-

precipitated with PKCα-EGFP in response to 10 μM rosiglitazone 

(Fig. 6 B, lane 4). In cells transfected with the PPARγ1 wild-

type plasmid, rosiglitazone treatment allowed to coimmuno-

precipitate PPARγ1 with PKCα-EGFP  (Fig. 6 B, lane 2), pointing 

to the importance of agonist activation to promote PKCα binding.

To provide further evidence for a direct PPARγ1–PKCα 

interaction, we used the mammalian two-hybrid system. In 

COS-7 cells transiently transfected by electroporation with a 

combination of pCMV-AD-PPARγ1, pCMV-BD-PKCα, and 

the Gal4 reporter vector pFR-luc, addition of rosiglitazone or 

ciglitazone provoked induction of luciferase expression as 

determined by a luciferase assay. As shown in Fig. 7, addition of 

both PPARγ agonists induce luciferase expression roughly 

threefold compared with untreated controls. A PPARγ-dependent 

effect was verifi ed because addition of the PPARα agonist 

Figure 4. PKC𝛂 and PPAR𝛄 localization in 
RAW 264.7 macrophages. To follow PKCα and 
PPARγ localization in RAW 264.7 macro-
phages, cells were seeded on slides and 
treated (B) for 50 min with 100 nM PMA, (C) 
preincubated with 10 μM rosiglitazone for 1 h 
followed by 100 nM PMA addition for 50 min, 
or (D) pretreated with 10 μM GW9662 before 
cells were stimulated as described in C. After-
ward, cells were fi xed and stained for PKCα 
and PPARγ as described in the Materials and 
methods. Cell nuclei were counterstained with 
DAPI. DAPI staining is shown in the fi rst panel, 
PKCα staining in the second, PPARγ staining in 
the third, and an overlay to estimate cytosolic 
and nuclear region is provided in the fourth 
panel. All experiments were performed three 
times, and representative data are shown.
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WY14643 left basal luciferase activity unaltered. With this two-

hybrid model, direct binding of target (PPARγ1) to bait protein 

(PKCα) is required to induce luciferase expression. Therefore, 

our data suggest that PPARγ1 directly binds PKCα upon ago-

nist activation. This interaction inhibits PKCα translocation to 

the cell membrane, and thus, PKCα activation.

Identifi cation of PPAR𝛄1 domains involved 
in PKC𝛂 binding
To identify PPARγ1 domains that promote binding to PKCα, 

we fi rst generated a set of point mutations, each substituting one 

aa in helix 4 of the ligand-binding domain (LBD), taking into 

consideration that this region is important in binding transcrip-

tional coactivators (Nolte et al., 1998; Westin et al., 1998), and 

therefore might be responsible for binding to PKCα as well. We 

generated six clones, with L309, N310, G312, V313, L316A, or 

K317 being individually substituted by an alanine (Fig. 8 A). In 

addition, we generated the construct PPARγ1 ∆aa309-319, with 

helix 4 (aa309-319) being completely removed (Fig. 8 A). To 

prove the functionality of these constructs, we fi rst verifi ed their 

expression by Western blotting. As a control, the DsRed-PPARγ1 

wild-type–encoding vector was included in the experiment. 

Figure 5. PPAR𝛄1 inhibits PKC𝛂 translocation. 
HEK293 cells were cotransfected with DsRed-
PPARγ1 wild type/PKCα-EGFP (A and B [top 
two rows] and C and D) or DsRed-PPARγ1 
AF2/PKCα-EGFP (A and B, bottom two rows). 
To follow PKCα-EGFP translocation, 100 nM 
PMA was added to control cells (A, second 
and fourth row) or cells pretreated for 1 h with 
10 μM rosiglitazone (B, second and fourth 
row). To verify the role of PPARγ on PKCα-
EGFP translocation in DsRed-PPARγ1 wild 
type/PKCα-EGFP, cotransfected HEK293 cells 
were treated for 1 h with 10 μM of the PPARγ 
antagonist GW9662 before stimulation for 1 h 
with 10 μM rosiglitazone (C, top row) fol-
lowed by 50 min of 100 nM PMA addition 
(C, bottom row) or preincubated for 1 h with 
10 μM of the PPARα agonist WY14643 (D, top 
row) before activation with 100 nM PMA for 
50 min (D, bottom row). Cell nuclei were counter-
stained with DAPI. DAPI staining is shown in 
the fi rst panel, PKCα-EGFP in the second, 
DsRed-PPARγ in the third, and an overlay to es-
timate cytosolic and nuclear region is provided 
in the fourth panel. All experiments were per-
formed three times, and representative data 
are shown.
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 Because of a single aa exchange, or the 12 aa deletion, the molec-

ular mass of proteins originating from the constructs remained 

unaltered compared with DsRed-PPARγ1 wild type when trans-

fected into HEK293 cells (unpublished data).

To fi nally analyze the impact of the various mutations and 

the deletion on PKCα translocation, HEK293 cells were transiently 

cotransfected with the mutated/deleted PPARγ1 constructs 

tagged with DsRed-monomer, in combination with a PKCα-

EGFP–encoding vector. PKCα localization was documented in 

cells that were untreated (Fig. 8, B and C, fi rst rows), treated for 

50 min with PMA (Fig. 8, B and C, second rows), treated for 

1 h with rosiglitazone (Fig. 8, B and C, third rows), or preincu-

bated for 1 h with rosiglitazone, followed by the addition of 

PMA for 50 min (Fig. 8, B and C, fourth rows). In cells trans-

fected with one of the six constructs of the DsRed-tagged 

PPARγ1 mutations (L309A, N310A, and G312A [Fig. 8 B]; 

V313A, L316A, and K317A [Fig. 8 C]), PKCα-EGFP did 

not translocate to the cell membrane. A similar result was ob-

tained in cells transfected with DsRed-PPARγ1 ∆aa309-319 

(Fig. 8 C, right), showing no PMA-mediated PKCα-EGFP 

translocation in rosiglitazone-pretreated cells. From these data, 

we conclude that helix 4 of the LBD is not involved in PPARγ1 

binding to PKCα.

Based on these results, we decided to generate three 

PPARγ1 deletion constructs (DsRed-PPARγ1 aa∆32-198, DsRed-

PPARγ1 ∆aa32-250, and DsRed-PPARγ1 ∆aa51-406) with the 

belief that ligand binding is necessary for PPARγ1–PKCα 

interactions. As shown in Fig. 9 A, all deletions lack the 

DNA-binding domain (DBD) of PPARγ1. Furthermore, to 

characterize the role of the hinge domain in PKCα binding, it 

was eliminated to variable extents. In the DsRed-PPARγ1 

∆aa32-198 construct, the fi rst 26 aa of the hinge domain were 

deleted, and in the DsRed-PPARγ1 ∆aa32-250 construct, 78 aa 

of the hinge domain were deleted. The hinge domain was com-

pletely removed in the DsRed-PPARγ1 ∆aa51-406 construct. In 

this construct, a part of the LBD/AF2 domain was deleted as well 

(aa288-406). All constructs lack a part of the AF1 domain.

Expression of the cloned constructs was verifi ed by West-

ern blotting. As controls, the DsRed-PPARγ1 wild-type– and 

AF2 mutant–encoding vectors were included in the experiment. 

Estimated molecular mass of deletion construct proteins, trans-

fected into HEK293 cells, were verifi ed using an anti–red fl uo-

rescent protein antibody (Fig. 9 B). Taking into account that the 

DBD was removed, DNA binding and concomitant transactiva-

tion by corresponding PPARγ1 deletion constructs should be 

abolished. Therefore, we performed a set of reporter experi-

ments, cotransfecting DsRed-PPARγ deletion constructs in 

combination with a PPRE-reporter plasmid into HEK293 cells. 

As expected, adding 10 μM rosiglitazone for 6 h to cells trans-

fected with the PPARγ1 deletion constructs did not alter basal 

transactivation. In contrast, the DsRed PPARγ1 wild-type–

 encoding plasmid provoked a twofold induction of luciferase 

expression, whereas the DsRed PPARγ1 AF2 dominant-negative 

mutant blocked transactivation even below basal values, mediated 

by endogenous PPARγ in HEK293 cells (unpublished data).

To elucidate the role of these deletions on PKCα 

translocation, HEK293 cells were transiently cotransfected with 

the shortened DsRed-monomer–tagged PPARγ1 constructs in 

Figure 6. PPAR𝛄1 directly interacts with PKC𝛂. (A) THP-1 cells were dif-
ferentiated for 24 h with 50 nM PMA. To allow new synthesis of PKCα, 
which is depleted in response to the differentation regime, cells were fur-
ther cultured for 48 h in normal medium. Afterward, cells were treated for 
1 h with 10 μM rosiglitazone or remained as controls. Cells were har-
vested and lysed, and PKCα was immunoprecipitated as described in Ma-
terials and methods. Eluates and fl owthroughs were separated by Western 
blotting and stained for PPARγ and PKCα as indicated. (B) COS-7 cells 
were transiently cotransfected with PPARγ1 wild type/PKCα-EGFP or 
PPARγ1 AF2/PKCα-EGFP. 24 h later, cells were treated for 1 h with 10 μM 
rosiglitazone or remained as controls. Cells were harvested and lysed, and 
PKCα-EGFP was immunoprecipitated as described in Materials and methods. 
Input controls, eluates, and fl owthroughs were separated by Western 
blotting and stained for PPARγ and PKCα as indicated. All experiments 
were performed at least three times, and representative data are shown.

Figure 7. PPAR𝛄 directly binds to PKC𝛂. COS-7 cells were transiently trans-
fected with a combination of a target (PPARγ1), a bait (PKCα), and a reporter 
construct, as described in Materials and methods. Afterward, cells were 
treated with 10 μM ciglitazone, 10 μM rosiglitazone, 10 μM WY14643, or 
remained as controls. 6 h later, cells were harvested and lysed for a reporter 
analysis as described in Materials and methods.  Experiments were performed 
at least three times in duplicate. *, P < 0.05. Data are the means ± the SD.
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combination with a PKCα-EGFP–encoding vector. To follow 

PKCα translocation, 100 nM PMA was added to (1 h, 10 μM) 

rosiglitazone-pretreated cells. PKCα localization was docu-

mented in untreated cells (Fig. 9 C, fi rst row), cells treated for 

50 min with PMA (Fig. 9 C, second row), for 1 h with rosiglita-

zone (Fig. 9 C, third row), or preincubated for 1 h with rosiglita-

zone, followed by the addition of PMA for 50 min  (Fig. 9 C, 

fourth row). In cells transfected with the DsRed-tagged PPARγ1 

∆aa32-198 construct, PKCα-EGFP did not translocate to the 

cell membrane. However, in cells expressing the DsRed-tagged 

PPARγ1 ∆aa32-250 or ∆aa51-406 construct, PKCα trans-

located to the cell membrane in response to 100 nM PMA.

From these data, we conclude that for PKCα, binding a 

part of the hinge domain of PPARγ1 is indispensable. To further 

narrow the involved region of PPARγ1, we fi nally created the 

construct DsRed-PPARγ1 ∆aa206-224 (Fig. 10 A), containing 

a deletion of helix 1 (aa206-224) of PPARγ1, which is located 

in the hinge domain (aa173-288). Helix 1 has already been 

identifi ed to mediate the protein–protein interaction of PPARγ 

with ERK5 (Akaike et al., 2004). Expression of the construct 

results as expected in protein, demonstrating a slightly reduced 

protein mass (Fig. 10 B, lane 2) because of the aa206-224 deletion 

compared with the DsRed-PPARγ1 wild type (Fig. 10 B, lane 1). 

We transiently cotransfected HEK cells with the PPARγ1 

∆aa206-224 construct tagged with DsRed-monomer in combi-

nation with a PKCα-EGFP–encoding vector. In cells expressing 

the DsRed-tagged PPARγ1 ∆aa206-224 (Fig. 10 C), PKCα 

translocated to the cell membrane in response to 100 nM PMA.

Figure 8. Helix 4 of the LBD/AF2 domain 
does not mediate PPAR𝛄 binding to PKC𝛂. 
(A) Scheme of the PPARγ1 constructs. (B and C) 
HEK293 cells were cotransfected with DsRed-
PPARγ1 wild type/PKCα-EGFP (B, fi rst panel), 
DsRed-PPARγ1 L309A/PKCα-EGFP (B, second 
panel), DsRed-PPARγ1 N310A/PKCα-EGFP 
(B, third panel), DsRed-PPARγ1 G312A/PKCα-
EGFP (B, fourth panel), PPARγ1 V313A/
PKCα-EGFP (C, fi rst panel), PPARγ1 L316A/
PKCα-EGFP (C, second panel), PPARγ1 
K317A/PKCα-EGFP (C, third panel) or DsRed-
PPARγ1 ∆aa309-319/PKCα-EGFP (C, fourth 
panel). To follow PKCα-EGFP localization, 24 h 
after transfection, cells were treated for 50 min 
with 100 nM PMA (second row), for 1 h 
with 10 μM rosiglitazone (third row), pre-
treated for 1 h with 10 μM rosiglitazone fol-
lowed by the addition of 100 nM PMA for 
50 min (fourth row) or remained as controls 
(fi rst row). Experiments were performed three 
times, and representative data are shown.
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We conclude that PPARγ1 binds to PKCα via the helix 1, 

which is located in the hinge domain of PPARγ1.

Discussion
Recently, we demonstrated that monocyte/macrophage desensi-

tization at least partially attenuates PKCα signaling (von 

Knethen et al., 2005; Johann et al., 2006). We provide evidence 

that PPARγ agonists block PKCα translocation to the cell mem-

brane and concomitant protein depletion, which normally oc-

curs after cell activation. In monocytic cell lines, PPARγ 

expression has been previously described (McIntyre et al., 2003; 

Musiek et al., 2005; von Knethen et al., 2005), and it was veri-

fi ed using primary human monocyte–derived macrophages. 

These data corroborate the work of Tontonoz et al. (1998) and 

Chinetti et al. (1998), showing PPARγ expression in differenti-

ated macrophages. However, even if PPARγ is expressed, 

PPARγ agonists are known to mediate PPARγ-dependent 

and -independent effects (Nosjean and Boutin, 2002). To this end, 

15d-PGJ2 has been described to directly modify H-ras, provoking 

a constitutively active enzyme (Oliva et al., 2003) or inhibiting 

I-κB kinase, and thus suppressing NF-κB signaling (Straus 

et al., 2000). Our approach, using cells expressing PPARγ1 

wild type or the PPARγ1 agonist-binding mutant AF2, substan-

tiates the need of PPARγ activation in our system. Only in cells 

expressing PPARγ1 wild type was translocation of PKCα 

blocked by PPARγ activation. The PPARγ1 AF2 mutant did not 

prevent PMA-mediated PKCα translocation. These data sup-

port the notion of a PPARγ-dependent mechanism.

PPARγ-mediated inhibition of classical PKCs has been 

previously described (Verrier et al., 2004). In their case, PKCβ 

translocation was blocked by PPARγ agonists via DGKα 

up-regulation. DGKα metabolizes DAG, which is an established 

activator of classical and novel PKC isoforms. Therefore, its 

induction/activation will remove the potential PKC activator, 

causing desensitization as seen in our experiments. However, in 

Figure 9. Hinge domain mediates PPAR𝛄1 
binding to PKC𝛂. (A) Scheme of the PPARγ1 
constructs. (B) HEK293 cells were transiently 
transfected with one of the PPARγ1 constructs, 
as indicated. 24 h after transfection cells were 
lysed. Western blotting was performed, and 
blots were stained for DsRed. All experiments 
were performed at least three times, and 
representative data are shown. (C) HEK293 
cells were transfected with PKCα-EGFP only 
(fi rst panel) or cotransfected with DsRed-
PPARγ1 wild type/PKCα-EGFP (second panel), 
DsRed-PPARγ1 ∆32-198/PKCα-EGFP (third 
panel), DsRed-PPARγ1 ∆32-250/PKCα-EGFP 
(fourth panel), or DsRed-PPARγ1 ∆51-406/
PKCα-EGFP (fi fth panel). To follow PKCα-EGFP 
localization, 24 h after transfection, cells were 
treated for 50 min with 100 nM PMA (second 
row), treated for 1 h with 10 μM rosiglitazone 
(third row), pretreated for 1 h with 10 μM ros-
iglitazone followed by the addition of 100 nM 
PMA for 50 min (fourth row), or remained con-
trols (fi rst row). Experiments were performed 
three times, and representative data are shown.
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our experiments, a role of DGKα up-regulation must be ex-

cluded because the protein-synthesis inhibitor CHX did not 

restore PKCα translocation. In line with this, our PPARγ1 

∆aa32-198 construct, where the PPARγ1 DBD was removed, 

still inhibits PKCα translocation. Further support for our hypo-

thesis, suggesting a direct PPARγ1–PKCα interaction in pre-

venting PKCα translocation, came from previous studies 

(Johann et al., 2006). In this case, PPARγ was activated in re-

sponse to apoptotic cells, attenuating PKCα translocation and 

concomitant ROS production. In this study, the role of PPARγ 

was verifi ed using a PPARγ d/n cell line. In these cells, pretreat-

ment with apoptotic cells left PMA-mediated PKCα transloca-

tion and subsequent ROS production unaltered. A premise for 

this assumption is that PPARγ is expressed at least partially in 

the cytosol. Generally, the nuclear hormone receptor PPARγ is 

described to be exclusively localized in the nucleus (Akiyama 

et al., 2002; Feige et al., 2005). In support of our hypothesis, 

suggesting cytoplasmatic localization as well, we noticed a mi-

nor amount of PPARγ1 to remain in the cytosol. This is based 

on results using DsRed-PPARγ1–transfected cells, as well as 

immunohistochemical detection of endogenous PPARγ1 lo-

cated in the cytosol of RAW 264.7 macrophages besides its ma-

jor nuclear localization. It should be noted that cytoplasmatic 

distribution of PPARγ is in line with the work of Abella et al. 

(2005). In their study, an approach similar to our experiments 

was used, with EGFP-tagged PPARγ used to characterize intra-

cellular distribution of PPARγ. Results indicated that PPARγ is 

not exclusively located in the nucleus. Furthermore, localiza-

tion of PPARγ in the cytoplasma in the promonocytic cell lines 

HL-60 and K-562 has been observed, especially in response to 

the PPARγ agonist troglitazone (Liu et al., 2005). This work 

was done using immunohistochemical detection of endogenous 

PPARγ. Therefore, side effects, such as unphysiological high 

expression or a modifi ed protein behavior as a result of a tag or label 

(Feige et al., 2005), can be excluded. In addition, Burgermeister 

et al. (2006) recently provided evidence that PPARγ is ac-

tively exported from the nucleus into the cytosol in a MEK1-

dependent manner, further supporting our observed PPARγ 

localization pattern. Furthermore, Patel et al. (2005) described 

cytoplasmatic localization of a different PPAR isoform, PPARα, 

when coexpressed with CAP350, which is a putative centro-

some-associated protein of unknown function. Therefore, we 

propose that members of the PPAR family may localize in the 

cytoplasm, possibly after activation, when bound to cytoplasmic 

proteins such as PKCα. Immunoprecipitation of PKCα from 

lysates of differentiated THP-1 cells coimmunoprecipitated 

PPARγ. Remarkably, PPARγ1 coimmunoprecipitation was 

only seen once PPARγ1 became activated. The requirement of 

PPARγ1 activation was verifi ed using an agonist-binding mu-

tant of PPARγ1, which did not block PKCα translocation in 

response to PMA stimulation. A direct PPARγ1–PKCα inter-

action was further supported by a mammalian two-hybrid sys-

tem with PPARγ1 as the target and PKCα as the bait construct, 

provoking luciferase reporter gene expression when target and 

bait proteins interact. To avoid autocrine activation of the re-

porter system, PPARγ has to be cloned as a target protein linked 

to the NF-κB transactivation domain, not allowing this hybrid 

protein to bind to the promoter of the reporter. However, DNA 

binding of PPARγ1 to PPREs, and concomitant scavenging the 

NF-κB-AD-PPARγ1 hybrid protein from the two-hybrid assay, 

cannot be excluded.

Based on the well-established role of helix 4 of the PPARγ 

LBD in mediating protein–protein interaction of PPARγ with 

coactivators, such as CBP and SRC-2, or repressors, such as the 

nuclear receptor corepressor and the silencing mediator for retinoic 

acid receptor and thyroid-hormone receptor (Nolte et al., 1998; 

Westin et al., 1998; Perissi et al., 1999; Perissi and Rosenfeld, 

2005), we fi rst generated 6 PPARγ1 constructs in which only 

Figure 10. Hinge helix 1 mediates PPAR𝛄1 binding 
to PKC𝛂. (A) Scheme of the PPARγ1 construct. 
(B) HEK293 cells were transiently transfected with 
the DsRed-PPARγ1 wild type as control or the 
DsRed-PPARγ1 ∆aa206-224 construct as indi-
cated. 24 h after transfection, cells were lysed. 
Western blotting was performed, and blots were 
stained for DsRed. (C) HEK293 cells were cotrans-
fected with DsRed-PPARγ1 ∆aa206-224/PKCα-
EGFP. 24 h after transfection, cells were treated for 
1 h with 10 μM rosiglitazone. To follow PKCα-
EGFP translocation, 100 nM PMA was added to 
cells, and localization of PKCα-EGFP was exam-
ined 50 min thereafter. Experiments were performed 
three times and representative data are shown.
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1 aa was exchanged and 1 construct in which helix 4 was com-

pletely removed. Unexpectedly, these constructs did not alter 

rosiglitazone-dependent inhibition of PKCα translocation.

Taking into account that PPARγ binding to other factors, 

such as adipocyte-type fatty acid–binding protein or extracellular 

signal-related kinase 5, which do not belong to the family of 

transcriptional coactivators, can be mediated by other PPARγ 

domains, such as A/B/C and D/E/F (Adida and Spener, 2006) or 

the hinge domain (domain D; Akaike et al., 2004), we created 

three PPARγ1 deletion constructs. All of them lack the entire 

DBD (domain C). In addition, different parts of the A/B and D 

domains have been removed, and one construct contained the 

C-terminal third of the E/F domains only. Based on our collec-

tive results, we provide evidence that a part of the hinge domain 

probably confers the PPARγ1–PKCα interaction, which is pre-

sent in the PPARγ1 ∆aa32-198 construct but absent in the 

∆aa32-250 construct, when PPARγ1 is activated by an agonist, 

thus requiring the LBD/AF2 domains. One known region of 

PPARγ1 located in aa198-250 is the hinge helix 1 (aa 206–224). 

Therefore, we cloned a PPARγ1 construct with helix 1deleted 

(DsRed- PPARγ1 ∆aa206-224). In cells transfected with this 

construct, PKCα translocated even after rosiglitazone pretreat-

ment in response to PMA. From these results, we conclude that 

PPARγ1 binds to PKCα via the hinge helix 1 domain, after 

PPARγ1 has been activated by a ligand.

The proposed mechanism of PPARγ1–PKCα binding 

proceeds fast. 1 h of prestimulation with PPARγ agonists is suf-

fi cient to inhibit PKCα translocation in response to 100 nM 

PMA. However, PKCα translocation by 1 μM PMA was not 

blocked. These results support the assumption that the capacity 

of cytoplasmatic PPARγ to bind PKCα correlates with the 

strength of PKCα activation. Likely, very strong activation sig-

nals, such as 1 μM PMA, exceed the inhibitory impact of 

PPARγ. Thus, the role of PPARγ in blocking PKCα signaling 

might be only transient, allowing PKCα activation by a more 

stringent activator. This makes the mechanism more interesting 

for the development of new therapy strategies. Prolonged pe-

riods of PPARγ activation, which provoke transcriptional con-

trol to target members of the NADPH oxidase system, have 

already been described (p22phox, p47phox, and gp91phox; Inoue 

et al., 2001; von Knethen and Brune, 2002; Hwang et al., 2005). 

Consequently, in these cells PPARγ contributes to an anti-

infl ammatory phenotype by blocking NADPH oxidase-dependent 

ROS production.

An involvement of PPARγ in attenuating infl ammatory 

reactions to improve the clinical picture of sepsis has previously 

been shown (for review see Zingarelli and Cook, 2005). In line 

with this, our results add to this data. In our system, PMA-

mediated NF-κB activation was inhibited in response to PPARγ 

agonist pretreatment to 50% in RAW 264.7 cells, as well as pri-

mary human macrophages. In accordance, PMA-induced TNF-α 

expression was PPARγ dependently reduced to 70%. It has 

been observed that PPARγ activation inhibits multiple organ 

failure in an animal model (Abdelrahman et al., 2005), although 

the underlying mechanism remains unclear. The option to adjust 

a pro- versus antiinfl ammatory monocyte/macrophage pheno-

type will provide new possibilities for the development of 

therapies to control systemic infl ammation. Our data add a new 

antiinfl ammatory role for PPARγ based on the ability to scav-

enge PKCα in the cytosol, thus, blocking membrane transloca-

tion and downstream signaling.

Materials and methods
Monocyte isolation
We analyzed human cells from peripheral blood of healthy donors. For 
monocyte enrichment, we isolated PBMCs from donors using Ficoll-
Hypaque gradients (PAA Laboratories). Cells were left to adhere on culture 
dishes (Primaria 3072; Becton Dickinson) for 60 min at 37°C. Nonadherent 
cells were removed. Afterward, cells were differentiated to macrophages 
by culturing them in complete RPMI containing 10% AB-positive human 
serum. Flow cytometry confi rmed that the monocyte-like population was 
90–95% pure (CD14+ vs. CD14−).

Cell culture
We cultivated RAW 264.7 and THP-1 in RPMI 1640 (PAA Laboratories). 
HEK293 and COS-7 cells were cultured in DME high glucose (PAA Labora-
tories). Both media were supplemented with 100 U/ml penicillin (PAA 
Laboratories), 100 μg/ml streptomycin (PAA Laboratories), and 10% heat-
inactivated fetal calf serum (PAA Laboratories). Ciglitazone (Biomol), 
rosiglitazone (Biomol), WY14643 (Biomol), and CHX (Sigma-Aldrich) 
were dissolved in DMSO. Appropriate vehicle controls were performed.

Immunofl uorescence staining
To determine intracellular PPARγ localization, we seeded RAW 264.7 mac-
rophages directly on a slide. After 24 h, cells were treated as indicated 
and fi xed on the slides by 1-h incubation in 4% paraformaldehyde at 4°C. 
Thereafter, cells were permeabilized in PBS containing 0.2% Triton X-100 
for 15 min. After a washing step in PBS, cells were incubated for 2 h with 
a 1:250 dilution of a rabbit α-PPARγ antibody (Calbiochem) at 4°C. After 
three 5-min washing steps with PBS, cells were incubated with a secondary 
goat α-rabbit antibody (1:250) labeled with Alexa Fluor 546 (Invitrogen) 
for 2 h at 4°C. Cells were incubated for 2 h with a 1:250 dilution of a 
mouse α-PKCα antibody (BD Biosciences) at 4°C. After three 5-min wash-
ing steps with PBS, cells were incubated with a secondary goat α-mouse 
antibody (1:250) labeled with Alexa Fluor 488 (Invitrogen) for 2 h at 4°C. 
Again, cells were washed three times with PBS and counterstained with 
DAPI (1 μg/ml in PBS for 15 min). After a fi nal 5-min washing step in PBS, 
cells were covered with Vectashield mounting medium (Linaris) and a 
coverslip. PPARγ and PKCα localization were determined using an AxioScope 
fl uorescence microscope with the ApoTome upgrade (Carl Zeiss Micro-
Imaging, Inc.; lens 63×/0.6 NA; ocular 10×) at room temperature, docu-
mented by a charge-coupled device camera (Carl Zeiss MicroImaging, 
Inc.) and AxioVision Software (Carl Zeiss MicroImaging, Inc.).

Vector construction, transient transfection, fl uorescence microscopy, 
and reporter analysis
To examine cellular PPARγ localization, we subcloned human PPARγ1 into 
the DsRed-monomer–encoding vector pDsRed-Monomer-C1 (CLONTECH 
Laboratories, Inc.) using the infusion ligation kit (CLONTECH Laboratories, 
Inc.). To allow integration of the PPARγ1 fragment, the vector was cut 
within the multicloning site (MCS) by BamHI and XhoI. To insert PPARγ1 
(provided by V.K.K. Chatterjee, University of Cambridge, Cambridge, UK), 
we used the pcDNA3-PPARγ1 wild-type and AF2 vectors for PPARγ1 am-
plifi cation by PCR, using the following sequences based on the infusion 
ligation requirements (changed nucleotides are underlined): wild type, 
5′-G G A C T C A G A T C T C G A A T G G T T G A C A C A G A G A T C  GCATTCTG-3′ and 
3′-A G G A C G T C C T C T A G A T G T T C C T G A A C A T G C T A G G T G G C C T  AGA T-5′; 
AF2 mutant, 5′-G G A C T C A G A T C T C G A A T G G T T G A C A C A G A G A T CGCAT-
TCTG-3′ and 3′-GA G A C G T C C G C T A G A T G T T C C T G A A C A T G C T A G G T G G-
C C T  AGAT-5′. Annealing temperatures were 62°C for the fi rst cycle and 
72°C for the later ones and calculated using the Oligo software (MBI). Infu-
sion reaction of the cleaved vector with the amplifi ed PPARγ1 wild-type or 
AF2 fragment was performed according to the distributor’s instructions.

Site-directed mutagenesis to generate single aa exchanges 
(L309A, N310A, G312A, V313A, L316A, K317A) and deletion of he-
lix 1 (aa206-224) or 4 (aa309-319) of PPARγ1 were performed using 
the QuikChange XLII kit (Stratagene). The following primers were used 
(changed nucleotides are underlined): L309A, 5′-C C T G G T T T T G T A A A T C-
T T G A C G CG A A C G A C C A A G T A A C T C T C C T C -3′ and 5′-G A G G A G A G T-
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T A C T T G G T C G T T C G C G T C A A G A T T T A C T T T T C C A G G -3′; N310A, 5′-CC 
TG G T T T T G T A A A T C T T G A C T T G G C G G A C C A A G T A A C T C T C C T C -3′ and 
5′-GAGGAGAG T T A C T T G G T C C G C C A A G T C A A G A T T T A C T T T T C C A G G -3′; 
G312A, 5′-G T A A A T C T T G  A C T T G A A C G A C G C G G T A A C T C T C C T C A A A-
T A T G G -3′ and 5′-C C A T A T T T G A G G A G A G T  T A C C G C G T C G T T C A A G T C- 
A A G A T T T A C -3′; V313A, 5′-G T A A A T C T T G A C T T G A A C G A  C C A A G C G A C-
T C T C C T C A A A T A T G G -3′ and 5′-C C A T A T T T G A G G A G A G T C G C T T G G T C G-  
T T C A A G T C A A G A T T T A C -3′; L316A, 5′-C T T G A A C G A C C A A G T A A C T C T C-
G C G A A A T  A T G G A G T C C A C G A G -3′ and 5′-C T C G T G G A C T C C A T A T T T-
C G C G A G A G T T A C T T G G T C G  TTCAAG-3′; K317A, 5′-C T T G A A C G A C C-
A A G T A A C T C T C C T C G C G T A T G G A G T C C A C  GAG-3′ and 5′-C T C G T G G-
A C T C C A T A C G C G A G G A G A G T T A C T T G G T C G T T C A A G -3′; ∆aa309-319, 
5′-C C T G G T T T T G T A A A T C T T G A C C C G C T G A C C A A A G C A A A G -3′ and 5′-CTTT
GC T T T G G T C A G C G G G T C A A G A T T T A C A A A A C C A G G -3′. The pcDNA3-
PPARγ1 wild-type vector was used as a template. An initial denaturation 
step was performed at 95°C for 1 min, followed by 18 cycles at 95°C for 
50 s, annealing at 60°C for 50 s, and extension at 68°C for 7 min. A fi nal 
extension phase was performed at 68°C for 7 min.

DsRed-PPARγ1 ∆aa32-198 was constructed by deleting the EcoRV 
fragment in the DsRed-PPARγ1 wild-type vector. DsRed-PPARγ1 ∆aa32-250 
was constructed by deleting the EcoRV–EcoRI fragment in the DsRed-
PPARγ1 wild-type vector, blunting the sticky EcoRI end before religating the 
remaining plasmid. Finally, DsRed-PPARγ1 ∆aa51-406 was constructed by 
deleting the XmnI fragment in the DsRed-PPARγ1 wild-type vector. Restric-
tion enzymes were obtained from New England Biolabs. The Klenow frag-
ment and T4 ligase were provided by Fermentas. All manipulations did not 
alter the open reading frame of PPARγ1.

Correct orientation and sequence of the generated vectors was 
 verifi ed by restriction analyses and/or sequencing. The PKCα-EGFP signal-
ing sample (pPKCα-EGFP) used was obtained from CLONTECH Labora-
tories, Inc.

To follow PKCα translocation and PPARγ distribution, HEK293 cells 
were seeded directly onto a slide, and then transiently transfected by 
CaPO4-precipitation with combinations of pDsRed-Monomer-C1 PPARγ1 
wild type/pPKCα-EGFP, pDsRed-Monomer-C1 PPARγ1 AF2/pPKCα-EGFP, 
or the generated deletion and mutation constructs together with pPKCα-
EGFP. 24 h after transfection, cells were used for experiments. Cells were 
treated as indicated. Afterward, cells were fi xed on the slides by 1-h incu-
bation in 4% paraformaldehyde at 4°C. Cells were washed three times 
with PBS and counterstained with DAPI (1 μg/ml in PBS for 15 min). After 
a fi nal 5-min washing step in PBS, cells were covered with Vectashield 
mounting medium and a coverslip. Translocation of PKCα-EGFP and DsRed-
PPARγ1 wild type/AF2 distribution was analyzed using an AxioScope fl uo-
rescence microscope with the ApoTome upgrade (lens 63×/0.6 NA; 
ocular 10×) at room temperature, documented by a charge-coupled de-
vice camera and the AxioVision Software.

For reporter analysis, HEK293 cells were transiently transfected by 
CaPO4-precipitation with pDsRed-Monomer-C1 PPARγ1 wild-type, -AF2, 
∆aa32-198, ∆32-250, ∆51-406 constructs, or the empty DsRed vector 
in combination with the PPRE-containing p(AOX)3-TK-luc reporter plasmid. 
Transfection effi ciency was normalized by cotransfecting a pRL-TK control 
vector encoding for Renilla reniformis luciferase. Transfections were 
 performed in duplicate, and each experiment was repeated at least 
three times.

Coimmunoprecipitation
After THP-1, cells were differentiated for 24 h with 50 nM PMA, PMA was 
removed, and cells were incubated for an additional 48 h in complete 
medium. Afterward, cells were stimulated for 1 h with 10 μM rosiglitazone 
or remained as controls. Eventually, cells were harvested and lysed in lysis 
buffer (50 mM Tris, 5 mM EDTA, 150 mM NaCl, 0.5% Nonidet-40, and 
1 mM PMSF, pH 8.0). To assure cell lysis, cells were sheared 10 times with 
a 16-gauge needle, followed by a brief 10-s sonication (Sonifi er; Branson; 
duty cycle 100%, output control 60%). Cell debris was removed by centrif-
ugation (10,000 g for 5 min), and 1 mg of protein was used for immuno-
precipitation. Sample volume was adjusted with lysis buffer to 1 ml. 2 μg 
anti-PKCα antibody (BD Biosciences) was added and incubated at 4°C 
overnight. Thereafter, 50 μl μMACS protein A microbeads (Miltenyi Biotech) 
were added and incubated for 6 h. Lysate was applied onto an equili-
brated μ column, which was already placed in the magnetic fi eld of a 
μMACS separator. The fl owthrough was collected and saved for further 
analysis. The column was rinsed 4 times with 200 μl wash buffer (150 mM 
NaCl, 1% Igepal CA-630, 0.5% sodium deoxycholate, 0.1% SDS, and 
50 mM Tris HCl, pH 8.0), followed by 2 washes with low ionic buffer (20 mM 
TrisHCl, pH 7.5). Afterward, the column was removed from the magnetic 
fi eld and the remaining proteins were eluted using 50 μl of lysis buffer.

COS-7 cells were transiently transfected by electroporation (450 
V/300 μF; Equibio Easyjet T Prima; Peqlab) with a combination of 
pcDNA3 PPARγ1 wild-type or pcDNA3-PPARγ1 AF2 and pPKCα-EGFP. 
Immunoprecipitation was performed as described in the previous paragraph 
using μMACS anti–GFP-microbeads (Miltenyi Biotec)

Mammalian two-hybrid assay
To use PPARγ1 and PKCα in the mammalian two-hybrid system (Strata-
gene), PPARγ1 was cloned into the BamHI–HindIII site of the pCMV-AD 
MCS, and PKCα was cloned into the BamHI–HindIII site of the pCMV-BD 
MCS. PPARγ was amplifi ed from the pcDNA3-PPARγ1 wild-type vector and 
PKCα from the vector pPKCα-EGFP. The following primers were used: 
pCMV-BD-PPARγ1, 5′-GCCGGAA T T G G G A T C C A T G G T T G A C A C A G A G A-
T G C C A T T C T G -3′ and 5′-A C G C G G C C G C A A G C  T C T A G T A C A A G T C C T T-
G T A G A T C T C C T G C A G G -3′; pCMV-AD-PKCα, 5′-CAGCGGCC A A G G A T-
 C C A T G G C T G A C G T T T T C C C G G G -3′ and 5′-A C G C G G C C G C A A G C-
T T C A T A  C T G C A C T C T G T A A G A T G G G G T G C -3′. Annealing temperatures 
were 62°C for the fi rst cycle and 72°C for the later ones, and were cal-
culated using the Oligo software (MBI). Infusion reaction of the BamHI–
HindIII–cleaved vectors with the amplifi ed PPARγ1 wild-type- or PKCα-
fragment was performed according to the distributor’s instructions. Correct 
orientation and sequence of the generated vectors was verifi ed by restric-
tion analyses and sequencing. COS-7 cells were transiently transfected by 
electroporation using a combination of the two constructed vectors, as well 
as the pFR-luciferase reporter vector (Stratagene). Afterward, cells were 
incubated for 24 h, and then stimulated for 6 h with 10 μM ciglitazone, 
10 μM rosiglitazone, or 10 μM WY14643, or they remained as controls. 
Thereafter, cells were lysed and assayed for fi refl y luciferase activity by a 
luciferase assay (Promega).

Western blot analysis
Cell lysis was achieved with lysis buffer (50 mM Tris, 5 mM EDTA, 150 mM 
NaCl, 0.5% Nonidet-40, and 1 mM PMSF, pH 8.0) and 20-s sonication 
(Sonifi er; duty cycle 100%, output control 60%). Whole-cell lysates were 
cleared by centrifugation (10,000 g for 5 min), and protein concentration 
was determined with the Lowry method. 80 μg of protein was resolved on 
10% polyacrylamide gels and blotted onto nitrocellulose sheets, basically 
following standard methodology. Equal loading and correct protein transfer 
to nitrocellulose was routinely quantitated by Ponceau S staining. Filters 
were incubated with the anti-PKCα antibody (1:500; BD Biosciences), anti-
PPARγ antibody (1:500; Santa Cruz Biotechnology, Inc.), anti-RFP antibody 
(1:1,000; MBL), or anti-actin antibody (1:2,000; GE Healthcare) overnight 
at 4°C. Horseradish peroxidase–conjugated polyclonal antibodies (1:5,000; 
GE Healthcare) were used for enhanced chemiluminescence detection.

Quantifi cation of TNF-𝛂 expression
Supernatants from RAW 264.7 macrophages treated as indicated were 
harvested after the indicated times. Content of TNF-α was quantifi ed using 
the BD Cytometric Bead Array TNF-α Flex Set (BD Biosciences) according 
to the supplier’s instructions using a FACSCanto fl owcytometer. Interpreta-
tion of the results was performed with the FCAP Array software (Soft Flow, 
Inc./BD Biosciences).

EMSA
Nuclear extracts were prepared as previously described (von Knethen and 
Brune, 2001). An established EMSA method, with slight modifi cations, 
was used (Camandola et al., 1996). Nuclear protein (20 μg) was in-
cubated for 30 min at room temperature with 2 μg poly(dI-dC) from GE 
Healthcare, 2 μl buffer D (20 mM Hepes/KOH, 20% glycerol, 100 mM 
KCl, 0.5 mM EDTA, 0.25% Nonidet P-40, 2 mM DTT, and 0.5 mM PMSF, 
pH 7.9), 4 μl buffer F (20% Ficoll-400, 100 mM Hepes/KOH, 300 mM 
KCl, 10 mM DTT, and 0.5 mM PMSF, pH 7.9), and 250 fmol 5′-IRD700–
labeled oligonucleotide (Metabion) in a fi nal volume of 20 μl. Specifi c 
p65 and p50 supershift antibodies (2 μg; Santa Cruz Biotechnology, Hei-
delberg, Germany) were added as indicated. DNA–protein complexes 
were resolved at 80 V for 1 h in a native 6% polyacrylamide gel, and visu-
alized with the Odyssey infrared imaging system (LI-COR). Oligonucleo-
tides with the consensus NF-κB site (bold letters) were used (Peng et al., 
1995): 5′-GCCAGTTGA G G G G A C T T T C C C A G G C -3′; 3′-C G G T C A A C T C C-
C C T G A A A G  GGTCCG-5′.

Statistical analysis
Each experiment was performed at least three times. Statistical analysis 
was performed using the paired t test. We considered P values ≤ 0.05 as 
signifi cant. Otherwise, representative data are shown.
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