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Abstract: Periodontitis is a dental disease that produces the progressive destruction of the bone
surrounding the tooth. Especially, lipopolysaccharide (LPS) is involved in the deterioration of
the alveolar bone, inducing the release of pro-inflammatory mediators, which cause periodontal
tissue inflammation. Luteolin (Lut), a molecule of natural origin present in a large variety of fruits
and vegetables, possess beneficial properties for human health. On this basis, we investigated the
anti-inflammatory properties of Lut in a model of periodontitis induced by LPS in rats. Animal model
predicted a single intragingival injection of LPS (10 µg/µL) derived from Salmonella typhimurium.
Lut administration, was performed daily at different doses (10, 30, and 100 mg/kg, orally), starting from
1 h after the injection of LPS. After 14 days, the animals were sacrificed, and their gums were
processed for biochemical analysis and histological examinations. Results showed that Lut (30 and
100 mg/kg) was equally able to reduce alveolar bone loss, tissue damage, and neutrophilic infiltration.
Moreover, Lut treatment reduced the concentration of collagen fibers, mast cells degranulation,
and NF-κB activation, as well as the presence of pro-inflammatory enzymes and cytokines. Therefore,
Lut implementation could represent valid support in the pharmacological strategy for periodontitis,
thus improving the well-being of the oral cavity.
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1. Introduction

Periodontal disease can be defined as an infectious–inflammatory process that affects anatomical
structures supporting the tooth: gums, periodontal ligament, cement, and alveolar bone [1,2].
Periodontitis is the leading cause of tooth loss in the adult population of industrialized countries;
thus, it represents a serious health problem that affects a great portion of the world’s population
(more than 50%). It is generally more frequent in adults and the elderly, but some forms can also affect
children and adolescents [3]. Predisposing factors are incorrect nutrition [4], cigarette smoking [5],
and certainly poor oral hygiene [6], as well as a possible hereditary component [7]. However, the process
of altering periodontal structures is always the consequence of the concurrent action of immunological
and microbial factors [2]. The oral cavity is colonized by more than 600 species of bacteria [8].
Some of them are beneficial to the health; however, when the balance in the microbial flora of the
oral cavity is altered, this can establish conditions that favor the onset of infection [9]. Specifically,
bacteria responsible for periodontitis hold lipopolysaccharides (LPS).
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LPS is one of the most important molecules involved in the development of periapical inflammation
and deterioration of the alveolar bone; the increase in its concentration causes the release of a variety of
pro-inflammatory mediators, including prostaglandins and cytokines, which cause periodontal tissues
inflammation through the activation of multiple pathways [10]. Inflammatory condition implicates the
stimulation of fibroblasts, the increase of collagen breakdown, and the rise of osteoclast activity [11,12].

Given the severity of the disease, it is certainly important to act promptly with effective therapy.
Currently, the most suitable drugs in the case of periodontitis are anti-inflammatory drugs of both
steroid and non-steroidal origin (NSAIDs) [13], as well as antibiotics [14] and antibacterial mouthwashes
containing chlorhexidine [15]; all of this should be combined with proper oral hygiene.

In the most advanced forms of periodontitis, surgical techniques are also required.
In addition to conventional drugs, natural compounds can also be a valuable aid,

providing additional support in the management of many inflammatory diseases.
Luteolin (Lut; 3′,4′,5′,7′-tetrahydroxyflavone) is a polyphenolic compound that belongs to

flavones [16]. It was originally isolated from thyme, dandelion, and sage leaves but is also present in
numerous foods, such as carrots, fennel, peppers, celery, and in officinal herbs like chamomile tea [17].
The attention to this compound is due to its multiple biological properties, especially to its antioxidant
and anti-inflammatory effects, as evidenced by numerous scientific studies [18,19]; in many in vitro and
in vivo models, Lut has been shown to inhibit several pro-inflammatory cytokines, including tumor
necrosis factor-alpha (TNF-α), and to modulate nuclear factor kappa-light-chain-enhancer of activated
B cells (NF-κB) pathway, thus demonstrating the ability of flavonoids to inhibit inflammatory
processes [20–22].

On these bases, the purpose of this work was to investigate the anti-inflammatory properties of
Lut on an animal model of periodontitis induced by LPS in rats.

2. Results

2.1. Effects of Lut Administration on Bone Destruction Induced by LPS in Gingival Tissues

In the LPS-induced periodontitis group (Figure 1B,F), the radiographic distance from the
cement–enamel junction (CEJ) to the bone was considerably larger than the sham group (Figure 1A,F).
Treatment with Lut at a dose of 10 mg/kg (Figure 1C,F) has proved to be ineffective for decreasing this
distance, whereas the treatment with Lut at a dose of 30 (Figure 1D,F) and 100 mg/kg (Figure 1E,F)
has proved to be equally effective in decreasing the alveolar bone distance.

2.2. Effects of Lut Administration on Histological Damage and Neutrophilic Infiltration

Trough H/E staining the tissue integrity of each section was analyzed. No histopathological
alteration was found in sham-group rats (Figure 2A, and see histological score 2F). While, histological
examination of the LPS group revealed a significant increase in edema and tissue damage (Figure 2B,
and see histological score 2F) that was significantly reduced after Lut 30 mg/kg and Lut 100 mg/kg
administrations (Figure 2D,E, and see histological score 2F). Contrarily, rats treated with Lut 10 mg/kg
still showed considerable tissue damage (Figure 2C, and see histological score 2F).

Similar results were obtained from the myeloperoxidase (MPO) analysis, a marker for neutrophil
infiltration. In the LPS group were revealed increased levels of MPO, whereas the two higher doses of
Lut were able to markedly decrease the MPO expression; meanwhile rats treated with Lut 10 mg/kg
showed MPO levels almost equivalent to the LPS group. The sham group instead revealed minimal
expressions of neutrophilic infiltration (Figure 3).
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distance from the cement–enamel junction (CEJ) to the bone (B,F), compared to the sham group rats 
(A,F). Lut 30 mg/kg (D,F) and 100 mg/kg (E,F) were effective in reducing this distance, as opposed to 
treatment with Lut 10 mg/kg which proved ineffective (C,F). Values reported in the box plot are 
expressed as mean ± SEM of 10 rats for each group. *** p < 0.001 vs. sham; ## p < 0.01 vs. LPS group. 
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Figure 1. Luteolin (Lut) administration decreased the alveolar bone distance. Fourteen days after the
lipopolysaccharide (LPS) injection, the X-rays of the rats LPS-induce periodontitis showed a greater
distance from the cement–enamel junction (CEJ) to the bone (B,F), compared to the sham group rats
(A,F). Lut 30 mg/kg (D,F) and 100 mg/kg (E,F) were effective in reducing this distance, as opposed
to treatment with Lut 10 mg/kg which proved ineffective (C,F). Values reported in the box plot are
expressed as mean ± SEM of 10 rats for each group. *** p < 0.001 vs. sham; ## p < 0.01 vs. LPS group.
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that possesses the same efficacy as the highest dose, 100 mg/kg, but with less toxicity. 

Figure 2. Lut administration reduced histological damage LPS-induced periodontitis. No histological
damage was found in the gingivomucosal tissues from sham-group rats (A), see histological score
(F). Extensive damage, accompanied by edema, tissue injury, and inflammatory cells infiltration,
was assessed in LPS rats (B), see histological score (F). The administration of Lut 30 mg/kg (D), see
histological score (F) and 100 mg/kg (E), see histological score (F), reduced LPS tissue damage as
opposed to treatment with Lut 10 mg/kg which proved ineffective (C), see histological score (F). Data
are representative of at least three independent experiments; One-Way ANOVA test.*** p < 0.001 vs.
sham; ### p < 0.001 vs. LPS group. ND = not detectable.
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Figure 3. Lut treatment moderated neutrophilic infiltration. An increase in MPO levels was found
in LPS-induced periodontitis rats, compared to the sham group. Only the 30 and 100 mg/kg dosages
proved to be equally effective in reducing MPO levels. One-Way ANOVA test.*** p < 0.001 vs. sham;
### p < 0.001 vs. LPS group.

Based on these results, we decided to continue our experiments with the dose of 30 mg/kg of Lut
that possesses the same efficacy as the highest dose, 100 mg/kg, but with less toxicity.

2.3. Effects of Lut Treatment on Collagen Fibers

Masson’s staining allowed us to evaluate the development of fibrous connective tissue as a
repairing response to injury or damage. LPS injected rats (Figure 4B, and see fibrosis score 4D)
presented an increase of collagen formation in gingivomucosal tissue sections in comparison with the
sham group (Figure 4A, and see fibrosis score 4D). The increase in collagen fibers was considerably
decreased by Lut 30 mg/kg treatment (Figure 4C, and see fibrosis score 4D).
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Figure 4. Lut treatment reduced collagen formation. Masson’s trichrome stain presented an increase in
the concentration of collagen fibers in gingivomucosal tissues in the LPS group (B,D), compared to
the control group (A,D). Lut 30 mg/kg significantly attenuated collagen formation (C,D). One-Way
ANOVA test.*** p < 0.001 vs. sham; ## p < 0.01 vs. LPS group.

2.4. Effects of Lut Treatment on Mast Cell Degranulation

We investigated mast cell infiltration and their degranulation through toluidine blue staining.
There was no full-blown inflammatory state in the gingivomucosal tissues of the sham group,
as confirmed by the minimal presence of mast cells (Figure 5A,D). The group treated with LPS instead
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showed high levels of mast cell infiltration (as shown in Figure 5B,D); these elevated levels were
extensively reduced by Lut 30 mg/kg treatment (Figure 5C,D).

Biomedicines 2020, 8, x FOR PEER REVIEW 6 of 14 

the control group (A,D). Lut 30 mg/kg significantly attenuated collagen formation (C,D). One-Way 
ANOVA test. *** p < 0.001 vs. sham; ## p < 0.01 vs. LPS group. 

2.4. Effects of Lut Treatment on Mast Cell Degranulation  

We investigated mast cell infiltration and their degranulation through toluidine blue staining. 
There was no full-blown inflammatory state in the gingivomucosal tissues of the sham group, as 
confirmed by the minimal presence of mast cells (Figure 5A,D). The group treated with LPS instead 
showed high levels of mast cell infiltration (as shown in Figure 5B,D); these elevated levels were 
extensively reduced by Lut 30 mg/kg treatment (Figure 5C,D). 

 
Figure 5. Effects of Lut treatment on mast cell degranulation. Toluidine blue staining allowed mast 
cell count. In gingivomucosal tissues of rats belonging to the LPS group, an increased number of mast 
cells was identified (B,D), as compared to control group (A,D). Lut 30 mg/kg considerably reduced 
mast cell infiltration (C,D). Yellow circles indicate the mast cells degranulated appeared in the tissue. 
One-Way ANOVA test. *** p < 0.001 vs. sham; ### p < 0.001 vs. LPS group. 

2.5. Lut Treatment Modulated NF-κB Pathway and Pro-Inflammatory Cytokines Production  

To prove the anti-inflammatory effect of Lut, we investigated, through Western blot analysis, its 
action on NF-κB pathway. The expression of NF-κB was found at basal levels in the sham group 
(Figure 6B and densitometric analysis 6B1), elevated in the LPS group (Figure 6B and densitometric 
analysis 6B1) and appreciably reduced by treatment with Lut 30 mg/kg (Figure 6B and densitometric 
analysis 6B1). In relation to this, the protein levels of IκB-α (cytosolic protein associated with NF-κB) 
confirmed the action of Lut in the NF-κB pathway. In fact, these levels appeared high in the sham 
group (Figure 6A and densitometric analysis 6A1), significantly downregulated in rats injected with 
LPS (Figure 6A and densitometric analysis 6A1) and remarkably restored in rats administered with 
Lut 30 mg/kg (Figure 6A and densitometric analysis 6A1).  

Furthermore, TNF-α, together with IL-6, plays a crucial role in establishing the inflammatory 
state in periodontitis; therefore, they can be considered specific markers of the disease [23]. All of 
these considerations led us to investigate the levels of cytokines previously mentioned. Samples from 
the sham group exhibited minimal levels of both cytokines (Figure 6C,D, respectively); on the other 
hand, such expressions were significantly increased in LPS-induced periodontitis rats (Figure 6C,D, 

Figure 5. Effects of Lut treatment on mast cell degranulation. Toluidine blue staining allowed mast cell
count. In gingivomucosal tissues of rats belonging to the LPS group, an increased number of mast cells
was identified (B,D), as compared to control group (A,D). Lut 30 mg/kg considerably reduced mast cell
infiltration (C,D). Yellow circles indicate the mast cells degranulated appeared in the tissue. One-Way
ANOVA test.*** p < 0.001 vs. sham; ### p < 0.001 vs. LPS group.

2.5. Lut Treatment Modulated NF-κB Pathway and Pro-Inflammatory Cytokines Production

To prove the anti-inflammatory effect of Lut, we investigated, through Western blot analysis,
its action on NF-κB pathway. The expression of NF-κB was found at basal levels in the sham group
(Figure 6B and densitometric analysis 6B1), elevated in the LPS group (Figure 6B and densitometric
analysis 6B1) and appreciably reduced by treatment with Lut 30 mg/kg (Figure 6B and densitometric
analysis 6B1). In relation to this, the protein levels of IκB-α (cytosolic protein associated with NF-κB)
confirmed the action of Lut in the NF-κB pathway. In fact, these levels appeared high in the sham
group (Figure 6A and densitometric analysis 6A1), significantly downregulated in rats injected with
LPS (Figure 6A and densitometric analysis 6A1) and remarkably restored in rats administered with
Lut 30 mg/kg (Figure 6A and densitometric analysis 6A1).

Furthermore, TNF-α, together with IL-6, plays a crucial role in establishing the inflammatory
state in periodontitis; therefore, they can be considered specific markers of the disease [23]. All of
these considerations led us to investigate the levels of cytokines previously mentioned. Samples from
the sham group exhibited minimal levels of both cytokines (Figure 6C,D, respectively); on the other
hand, such expressions were significantly increased in LPS-induced periodontitis rats (Figure 6C,D,
respectively). In contrast, treatment with Lut 30 mg/kg significantly reduced TNF-α and IL-6 levels
(Figure 6C,D, respectively).

2.6. Lut Treatment Decreased Pro-Inflammatory Enzymes Following LPS-Induced Periodontitis

The degradation of IκB-α, accompanied, consequently, by the translocation of NF-κB in the
nucleus, involves the transcription of numerous proinflammatory genes, including the inducible
enzymes COX-2 and iNOS, which play a fundamental role in the inflammatory response.

Lut 30 mg/kg treatment had the ability to modulate the expression of both COX-2 (Figure 7B and
densitometric analysis 7B1) and iNOS (Figure 7A and densitometric analysis 7A1), compared to the
damage induced by LPS (Figure 6A and densitometric analysis 6A1; Figure 7A and densitometric
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analysis 7A1). However, the sham-operated group shown minimal expression of both pro-inflammatory
enzymes (Figure 6A and densitometric analysis 6A1; Figure 7A and densitometric analysis 7A1).
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analysis demonstrated an increase in the degradation of IκB-α in the LPS group (A) and densitometric
analysis (A1) compared to the sham group (A) and densitometric analysis (A1). Lut 30 mg/kg has
proven to be truly effective in restoring these levels (A) and densitometric analysis (A1). NF-κB was
significantly increased in the LPS group (B) and densitometric analysis (B1), as compared to the sham
group (B) and densitometric analysis (B1); Lut 30 mg/kg effectively decreased the levels of NF-κB
(B) and densitometric analysis (B1). The levels of TNF-α (C) and IL-6 (D) were significantly increased
in rats injected with LPS. The increases in levels of TNF-α and IL-6 were significantly attenuated in rats
administrated with Lut 30 mg/kg. Data are representative of at least three independent experiments.
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Figure 7. Effects of Lut treatment on pro-inflammatory enzymes. Western blot analysis of iNOS (A) and
densitometric analysis (A1) and COX-2 (B) and densitometric analysis (B1) revealed minimal levels in
the sham group that conversely were increased in the LPS group. Treatment with Lut 30 mg/kg proved
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experiments. One-Way ANOVA test. *** p < 0.001 vs. sham; ### p < 0.001 vs. LPS group.
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3. Discussion

Periodontitis is one of the most common and most serious dental diseases that causes progressive
destruction of the bone surrounding the tooth; this condition, due to inflammatory processes of the
marginal gingiva, is debilitating for the patient, hence the need to intervene as soon as possible through
pharmacological therapy [24]. In recent years, the appreciation of natural compounds as a potential
innovative treatment for human health has grown considerably [25].

Lut is a molecule of natural origin that is present in a large variety of fruits and vegetables and
also in medicinal herbs; it has been shown to have great beneficial properties on human health [26–28].
Specifically, its anticancer properties are known, as shown by several studies [27,29], but it also has
anti-inflammatory [20] and antioxidant effects [30].

Previous evidence led us to investigate the properties of this compound in an experimental model
of periodontitis induced by LPS, in order to evaluate its potentiality.

One of the hallmarks of periodontitis is alveolar bone loss; this bone destruction is due to a process,
both immune and inflammatory, with which our body tries to counteract oral bacterial dysbiosis [31].
As demonstrated by our results, Lut had the ability to reduce alveolar bone loss caused by LPS injection.
The most significant results were obtained exclusively at the doses of 30 and 100 mg/kg of Lut, while,
at the dose of 10 mg/kg, alveolar bone loss was comparable to the LPS group.

The pathogenic developments of inflammatory periodontal diseases are originated by
subgingival plaque microflora and factors such as LPS derived from specific pathogens [31]. Locally,
this inflammatory condition promotes tissue damage, thus causing the morphological alteration of
the periodontium [32]. In particular, tissue damage is associated with the formation of edema and
inflammatory cell infiltration with clear damage to gingivomucosal architecture [12,33].

Lut administration at the two highest doses (30 and 100 mg/kg) was equally able to mitigate tissue
damage caused by LPS injection, as is visible from our histological analyses.

Neutrophils constitute the primary defense system in periodontal tissues [34]; in fact, in a healthy
oral cavity, populations of neutrophils tend to be para-inflammatory. On the contrary, the phenotypes of
pro-inflammatory neutrophils are present in periodontal disease [35]. Lut treatment, as demonstrated
by the MPO analysis, significantly reduced the presence of neutrophilic infiltration; this reduction was
equally significant at the doses of 30 and 100 mg/kg, while it was ineffective, once again, at the dose of
10 mg/kg.

Given the effectiveness of Lut 30 mg/kg in counteracting tissue damage, as already highlighted by
the H&E staining, we also assessed the effect of Lut treatment on collagen fibers through Masson’s
trichrome stain. In periodontitis, in fact, prolonged inflammation causes apical migration of junctional
epithelium on the root surface and activates collagen destruction; specifically, degradation of type I
collagen occurs in the connective tissue and periodontal ligament [33].

Our results clearly demonstrated that Lut 30 mg/kg was able to decrease the concentration of
collagen fibers in gingivomucosal tissues.

There is also a probable cross-talk between the increase in collagen fibers and the presence of
mast cell infiltration in periodontitis [36]. Mast cells are immune cells that stimulate the inflammatory
process [37] and therefore play a primary role in inflammation disease like periodontitis. Lut 30 mg/kg,
as evidenced by our results, significantly reduced the degranulation of mast cells in the inflamed
gingivomucosal tissues.

The intense inflammatory condition that characterizes periodontitis includes the involvement of
several pathways; in particular, the correlation between NF-κB and periodontitis is widely known,
as demonstrated by several clinical studies [38,39]. Lut 30 mg/kg decreased the levels of NF-κB and
increased the expression of the cytosolic protein IκB-α, as shown from Western blot analysis performed.
Furthermore, it is known that the translocation of NF-κB in the nucleus promotes the transcription
of pro-inflammatory genes, upregulating the expression of pro-inflammatory proteins. Western blot
analysis showed that Lut administration also moderated the expression of two key enzymes of the
inflammatory cascade, namely iNOS and COX-2.
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Furthermore, the production of pro-inflammatory cytokines has also been related to periodontal
disease. Particularly, many clinical studies [33,40,41] have demonstrated the correlation between high
TNF-α and IL-6 expressions and periodontal disease, highlighting their involvement and crucial role
in the evolution of gingival inflammation. As shown by our results, treatment with Lut 30 mg/kg
decreased the expressions of both cytokines.

Persistent gingivitis in young patients represents, in fact, a risk factor for periodontal attachment
loss and for tooth loss in adulthood; inflammation of the gingival tissues represents not only the
precursor of periodontitis but also a clinically relevant risk factor for disease progression and tooth
loss [42].

Given the results obtained from this study through several methodological approaches, it is
possible to affirm that Lut has good anti-inflammatory capacities in counteracting the inflammatory
state caused by LPS-induced periodontitis. Therefore, Lut implementation could represent a valid
natural support in the pharmacological strategy for periodontitis, thus improving the well-being of the
oral cavity. Furthermore, Lut’s anti-inflammatory capabilities could open new perspectives in the field
of applicability of this natural compound also in products used for the prevention of inflammatory
processes of the oral cavity, like toothpaste and mouthwash; further experiments need to be carried out
in more in-depth studies, to confirm this preventive applicability.

4. Materials and Methods

4.1. Materials

Unless otherwise indicated, all materials were acquired from Sigma-Aldrich Company Ltd.
(St. Louis, Missouri, USA). All stock solutions were made in non-pyrogenic saline (0.9 % NaCl, Baxter,
Milan, Italy). All other chemicals were of the highest commercial grade available.

4.2. Animals

The study was performed on Sprague-Dawley male rats (Envigo, Milan, Italy), weighing 200–230
g. They were housed in a controlled environment (22 ± 2 ◦C, 55 ± 15 % relative humidity, 12 h light/dark
cycle), with food and water ad libitum, minimizing stress conditions.

Animal experiments complied with Italian regulations on the protection of animals used for
experimental and other scientific purposes (DM 116192), as well as EU regulations (OJ of EC L 358/1,
18th December 1986).

4.3. LPS-Induced Periodontitis

Periodontitis was induced as described by Reference [43] and reported below. After slightly
anesthetizing the animals with sodium pentobarbital (35 mg/kg), periodontitis was induced by a single 1
µL LPS (10 µg/µL) intragingival injection derived from Salmonella typhimurium (Sigma-Aldrich) in sterile
saline solution. The inoculation was made in the mesolateral side at the interdental papilla between
the first and the second molar. It was performed slowly, and the needle was kept in place for some
seconds after the injection, to guarantee that LPS was not lost through needle extraction. In addition,
the animals were weighed daily, in order to control regular food intake and their masticatory behavior.

4.4. Experimental Groups

Rats were randomly divided into several groups (n = 10 for each), as reported below:
Group 1: sham + saline: animals received a single intragingival injection of saline solution instead

of LPS (N = 10);
Group 2: LPS + saline: rats were subjected to LPS-induced periodontitis (N = 10);
Group 3: LPS + Lut 10 mg/kg: rats were subjected to LPS-induced periodontitis plus daily

administration of Lut (10 mg/kg) for 14 days, starting from 1 h after the injection of LPS (N = 10);
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Group 4: LPS + Lut 30 mg/kg: rats were subjected to LPS-induced periodontitis plus daily
administration of Lut (30 mg/kg) for 14 days, starting from 1 h after the injection of LPS (N = 10);

Group 5: LPS + Lut 100 mg/kg: rats were subjected to LPS-induced periodontitis plus daily
administration of Lut (100 mg/kg) for 14 days, starting from 1 h after the injection of LPS (N = 10).

For oral administration, Lut was dissolved in 0.5 mL ethanol (50% purity) and given to the rats by
oral gavage; the dosages of Lut were chosen on the basis of previous studies [44,45].

At the end of the experiment, 14 days after LPS injection, the animals were sacrificed, and the gums
removed by surgical procedure and processed for biochemical analysis and histological examinations.

4.5. Radiography

For each rat belonging to the five experimental groups, radiographic analyses were performed,
using an X-ray machine (Bruker MS FX Pro, Billerica, MA, USA). The X-ray tube was operated at
30 kW, with a current of 6 mA, for 0.01 s, and the source-to-sensor distance was 50 cm. At the end of
the experiment, through the radiographs, we estimated the dental alveolar bone level expressed as the
distance from the cement–enamel junction (CEJ) to the maximum coronal level of the alveolar bone
crest (CEJ bone distance), using IMAGE J processing software (Image J software, National Institutes of
Health, Bethesda, MD, USA).

4.6. Histological Examination

Histological procedures were performed as previously reported by Reference [46] and described
below. Samples were fixed in 10% (w/v) PBS-buffered formaldehyde solution at 25 ◦C for 24 h,
after which they were dehydrated via an increasing scale of alcohols and xylene, included in paraffin,
and cut under the microtome to obtain sections of 7 micrometers. After being hydrated, tissue sections
were stained with Hematoxylin/Eosin (H&E, Bio-Optica, Milano, Italy). A histological injury score for
gingivomucosal tissue was determined, using a semiquantitative scale that measures the subsequent
morphological criteria: 0, normal gingivomucosal tissue; grade 1, minimal edema or infiltration;
grade 2, moderate edema and inflammatory cell infiltration without obvious damage to gingivomucosal
architecture; and grade 3, severe inflammatory cell infiltration with obvious damage to gingivomucosal
architecture. For H&E staining, the results were shown at 10x magnification (100 µm scale bar). All the
histological studies were performed in a blinded fashion.

4.7. Myeloperoxidase Activity

Myeloperoxidase (MPO) is an enzyme contained in the azurophilic granules of polymorphonuclear
neutrophils and macrophages and is released in the extracellular liquid in the presence of inflammatory
states. Various studies have highlighted how MPO is related to oxidative stress and inflammatory
processes; its determination is, therefore, a useful biomarker for diagnostic purposes.

MPO activity was determined in gingivomucosal tissues as previously described by Reference [47].
Samples were homogenized in a buffer containing 0.5% hexadecyl-trimethyl-ammonium bromide

dissolved in 10 mM potassium phosphate buffer, pH 7, and centrifuged for 30 min, at 20,000 rpm at 4 ◦C.
Subsequently, the fraction “supernatant” was reacted with a solution of 1.6 vmM tetramethylbenzidine
and 0.1 mM H2O2. The rate of change in absorbance was measured spectrophotometrically at 650 nm.
MPO activity was measured as the quantity of enzyme degrading 1 mM of peroxide 1 min at 37 ◦C
and was expressed in units per gram weight of wet tissue.

4.8. Masson Trichrome Stain

Masson’s trichrome is a coloring particularly useful for highlighting connective tissue, collagen,
reticular fibers, and muscle fibers. Thus, to assess fibrosis degree, gingivomucosal sections were stained
with the Masson trichrome stain, according to the manufacturer’s instructions (Bio-Optica, Milan,
Italy). For Masson trichrome staining, the results were shown at 10x magnification (100 µm scale bar).
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4.9. Blue Toluidine Staining

To evaluate mast cell amount and their degranulation, gingivomucosal sections were stained with
toluidine blue (Bio-Optica, Milano, Italy). This basic dye colors the sections blue, highlighting the mast
cells that appear purple. The number of metachromatic stained mast cells was obtained by counting
five high-power fields for the section, using an Axiovision Zeiss (Milan, Italy) microscope and the
correlated AxioVision software (Carl Zeiss Vision, Jena, Germany). Data were reported as the mean
with standard deviation (SD). For toluidine blue staining, results were shown at 40x magnification
(20 µm scale bar).

4.10. Western Blot Analysis for IκB-α, NF-κB, COX-2, and iNOS

Cytosolic and nuclear extracts of gingivomucosal tissues were prepared as previously described
by Reference [48].

In the cytosolic fraction, the expressions of kappa light polypeptide gene enhancer in B cells
inhibitor alpha (IκB-α), iNOS, and cyclooxygenase 2 (COX-2) were quantified.

In the nuclear fraction, the expression of NF-κB was quantified. Filters were blocked with 1× PBS,
5% (w/v) nonfat dried milk (PM), for 40 min, at room temperature, and then probed with following
antibodies: anti-IkB-α (1:500, Santa Cruz Biotechnology, Dallas, Texas, USA #sc1643), anti-NF-κB (1:500,
Santa Cruz Biotechnology, #sc8008), anti-Cox2 (1:500, Santa Cruz Biotechnology, #sc-1746), anti-iNOS
(1:500, Santa Cruz Biotechnology, #sc8310) in 1× PBS, and 0.1% Tween-20, 5% w/v nonfat dried milk
(PMT) at 4 ◦C, overnight. After that, the membranes were incubated with peroxidase-conjugated
bovine anti-mouse IgG secondary antibody or peroxidase-conjugated goat anti-rabbit IgG (1:2000,
Jackson ImmunoResearch, West Grove, Pennsylvania, USA) for 1 h, at room temperature. To ascertain
that blots were loaded with equal amounts of proteins, they were also incubated in the presence
of the antibody against GAPDH (cytosolic fraction 1:500; Santa Cruz Biotechnology) or lamin A/C
(nuclear fraction 1:500 Sigma-Aldrich Corp.), as described by Reference [49].

4.11. ELISA Assay for TNF- α and IL-6

ELISA assay was performed as described by Campolo M. et al. [50].
Gingivomucosal tissues were thawed on ice and homogenized in 300 µL lysis buffer (750 µL,

Pierce #87787, Thermo Fisher Scientific, Waltham, MA, USA) and then complemented with a protease
inhibitor cocktail (Sigma-Aldrich, Rehovot, Israel). Subsequently, the samples were homogenized and
centrifuged at 14,000× g for 10 min at 4 ◦C; supernatants were collected, aliquoted, and deposited at
−20 ◦C. Cytokines levels were measured by ELISA, according to the manufacturer’s instructions.

4.12. Statistical Analysis

All values are showed as mean ± standard error of the mean (SEM) of N observations. N denotes
the number of animals employed. The experiment is representative of at least three experiments
performed on different days on tissue sections collected from all animals in each group. Data were
analyzed by one-way ANOVA, followed by a Bonferroni post hoc test for multiple comparisons.
A P-value of less than 0.05 was considered significant.
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