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To improve the safety and the performance of operators involved in risky and demanding
missions (like drone operators), human-machine cooperation should be dynamically
adapted, in terms of dialogue or function allocation. To support this reconfigurable
cooperation, a crucial point is to assess online the operator’s ability to keep performing
the mission. The article explores the concept of Operator Functional State (OFS), then it
proposes to operationalize this concept (combining context and physiological indicators)
on the specific activity of drone swarm monitoring, carried out by 22 participants on
simulator SUSIE. With the aid of supervised learning methods (Support Vector Machine,
k-Nearest Neighbors, and Random Forest), physiological and contextual are classified
into three classes, corresponding to different levels of OFS. This classification would
help for adapting the countermeasures to the situation faced by operators.

Keywords: Physiological data, mental state classification, drone operation, machine learning, mental workload

INTRODUCTION

Many operators carry out their activity in complex, high-risk situations and with strong time
pressure. This is particularly the case in air domain, for fighter pilots (Veltman and Gaillard, 1996;
Lassalle et al., 2017) or for drone operators (Pomranky and Wojciechowski, 2007; Kostenko et al.,
2016). More specifically concerning the drone operations, piloting drones currently requires one or
more operators for a single drone: for example, Cummings et al. (2007) recall that the predator
and the shadow require two operators. Nevertheless, in the next generation of UAV systems, a
ground operator will be required to supervise several UAVs cooperating to achieve their mission
(Johnson, 2003; Coppin and Legras, 2012). According to Wickens et al. (2005), the management
of several drones can cause serious problems of mental workload or attentional tunneling, that
can ultimately lead to errors. Improving safety and performance of risky missions carried out by
these operators becomes therefore an important challenge. This one could be solved by adjusting
in real time the dialogue and the cooperation between man and machine according to the state of
the human operator (Dixon et al., 2005; Wickens et al., 2005; Kostenko et al., 2016). It therefore
becomes crucial to assess online the operator’s ability to keep performing the mission, to anticipate
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potential performance impairments, as well as to activate
appropriate countermeasures in time (change in system
transparency level, dynamic function allocation, etc.). In
this context, a collaboration project was conducted with
Dassault Aviation.

To encapsulate the different elements contributing to a
potential degradation of performance from an operator, Hockey
(2003) proposes the notion of OFS, namely Operator Functional
State. This concept is defined as “the variable capacity of the
operator for effective task performance in response to task and
environmental demands, and under the constraints imposed by
cognitive and physiological processes that control and energize
behavior.” This definition first underlines a strong relationship
between the OFS and his/her performance on the tasks, leading
to OFS classification using categories like “Capable/Incapable,”
“Low risk/Very risky,” or more generally classes expressing a
gap to expected performance. However, it is often difficult to
predict a performance collapse of an operator solely based on
the analysis of the results of his/her activity. This difficulty is
particularly pregnant for experienced operators: the observable
degradations of their performance are indeed only slight and
gradual (before a stall) since these operators have regulatory
strategies to maintain during a certain time the effectiveness of
the main tasks. Therefore, the time of reaction and adaptation
of the system to a performance collapse may be too long to be
caught for the situation and may thus cause irreversible effects
(Yang and Zhang, 2013). Thus, the OFS concept aims at coping
with these difficulties for anticipating a decrease in operator
performative capacity.

Recent works related to the classification of OFS [(Hancock
et al., 1995; Noel et al., 2005; Bergasa et al., 2006; D’Orazio et al.,
2007; Hu and Zheng, 2009; Kurt et al., 2009; Liu et al., 2010;
Zhang and Zhang, 2010; Khushaba et al., 2011; Sahayadhas et al.,
2012; Wang et al., 2012; Zhao et al., 2012; Bauer and Gharabaghi,
2015; Kavitha and Christopher, 2015, 2016; Zhang et al., 2015;
Gagnon et al., 2016; Gilani, 2016), see Table 1 in section “Methods
for Operator Functional State Classification” for comparative
review] has shown that supervised learning can be effectively used
to detect different levels of OFSs from physiological indicators,
using different classifiers (like Support Vector Machine, k-NN,
Neural Network). These first results, however, were based on
a very discrete classification, that often provides a binary
categorization (functional or non-functional operator state).
Moreover, all these research works used an a priori task difficulty
level to supervise the learning of physiological data, often without
checking the validity of this task difficulty level regarding the
subjective experience of the participants, or without considering
the finer-grained variations of task difficulty within complex and
dynamic situations.

This article aims therefore at developing a more robust
method for classifying physiological data in three different
classes, corresponding to three different OFS level. This
classification is based on the learning of physiological data
that can easily be implemented online and in field conditions:
cardiac signals and eye metrics. Moreover, to supervise the data
learning, we aim at providing an objective and dynamic task
difficulty indicator.

This article starts by a literature review that allows to
present and choose the most relevant physiological data and
classification methods for producing a supervised learning
of OFS based on physiological indicators. Then the section
“Materials and Methods” deals with two aspects: (i) experimental
data acquisition is presented, by describing the use case carried
out on a drone swarm simulator, and the dataset that will be used
as input for OFS classification; (ii) the supervised classification
approach is also described, by explaining how a task difficulty
indicator was defined to label physiological data, and how the
chosen tested classification methods were parameterized and
trained. This approach is implemented in the section “Results,”
then finally discussed, by especially pointing out the potential use
of this OFS classification to go toward adaptative interfaces and
automations, sensitive to what an operator is experiencing during
his/her activity.

LITERATURE REVIEW

Mental Workload to Approach Operator
Functional State
According to Hockey (2003), OFS can be attached to underlying
cognitive states, and it is especially associated to mental workload
(Yin and Zhang, 2014; Parent et al., 2016). Mental workload is
a broad concept that reflects the coherence between the task
constraints and the operator’s capacity specific to each individual
(Hancock et al., 1995; De Waard, 1996; Kostenko et al., 2016).
Following the ergonomics principles of standard DIN ISO 10075-
1:2017 (DIN EN ISO 10075-1, 2018), mental workload is viewed
from both aspects of mental stress (i.e., the constraints imposed
upon operators) and mental strain (i.e., the cognitive cost of
the task for the operators). There can therefore be underload
if the capacity is not exploited (with a decrease of engagement
of the operator), or overload (if the mental strain required to
perform the task exceeds the capacities of the operator at a given
time). In these both extreme cases, the operator is considered
as not functional. On the contrary, when the operator can be
effective at a reasonable cognitive cost, the mental workload is
acceptable, and the operator is considered as functional. Finally,
as suggested by De Waard (1996) and Hockey (2003), some
transitional states may exist between the functional state and the
non-functional states (e.g., underload/overload). This is the case
when an operator succeeds in maintaining task performance, but
at a very high cognitive cost reaching his capacity limits. This
state is generally transient, leading to mental fatigue, and finally
resulting in a decrease of operator capacity and therefore in a
potential overload.

Physiological and Contextual Indicators
to Assess Operator Functional State
Operator Functional State can be evaluated by the measurement
and the observations of several type of variables: we can especially
distinguish neuro-physiological indicators, related to operator’s
mental strain, and contextual indicators related to the task
constraints (also called mental stress).
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TABLE 1 | Methods applied to OFS classification (Hancock et al., 1995; Noel et al., 2005; Bergasa et al., 2006; D’Orazio et al., 2007; Hu and Zheng, 2009; Kurt et al.,
2009; Liu et al., 2010; Zhang and Zhang, 2010; Khushaba et al., 2011; Sahayadhas et al., 2012; Wang et al., 2012; Zhao et al., 2012; Bauer and Gharabaghi, 2015;
Kavitha and Christopher, 2015, 2016; Zhang et al., 2015; Gagnon et al., 2016; Gilani, 2016).

Authors Data Number of classes Classification method Accuracy

Wilson and Russell (2003) EEG, DP, HR, BR 3 NN Individually: 84%

Zhang et al. (2015) Gaze position, PD, performance 2 Decision tree Individually: 81%

Noel et al. (2005) HRV, HR, Blinkf and EEG 3 Neural network Individually: 80%

Bergasa et al. (2006) PERCLOS, BLKf, BLKd, gaze fixations 3 or 5 Fuzzy classifier Individually: 80% (BLKf)–95% (fixations)

D’Orazio et al. (2007) BLKd and BLKf 3 kNN Individually: 95%

Kurt et al. (2009) EEG, EoG, EMG 3 NN All participants: 97–98%

Hu and Zheng (2009) EoG, EMG 3 SVM All participants: 90%

Zhang and Zhang (2010) PERCLOS SVM (Support Vector Machine) All participants: 99%

Liu et al. (2010) EEG 2 Hidden Markov Model All participants: 84%

Khushaba et al. (2011) EEG, ECG, EoG 2 LDA, LIBLINEAR, kNN, SVM All participants: 95–97%

Yin and Zhang (2014) EEG, ECG, and EOG 2 LS-SVM Individually: 93%

3 SVM (1 vs. 1) Individually: 72%

Wang et al. (2012) EEG 3 Neural network Individually: 80%All participants: 58%

NB (Naive Bayes) Individually: 79%All participants: 43%

Zhang et al. (2015) EEG, ECG, and EOG 3 SVM Individually:69%

4 SVM Individually: 56%

Kavitha and Christopher (2016) HRV 5 SVM All participants: 95%

Gilani (2016) HRV, EEG 2 kNN All participants: 81%

SVM All participants: 56%

RF (Randon Forest) All participants: 87%

Gagnon et al. (2016) HRV, BR, gaze position, PD, BLKf 2 kNN Individually: 91%All participants: 89%

Neural network Individually: 83%All participants: 84%

SVM Individually: 84%All participants: 83%

Decision tree Individually: 85%All participants: 83%

EEG, Electro Encephalo Graphy; BR, Breathing Rate; ECG, Electro Cardio Gram; HR, Heart Rate; HRV, Heart Rate Variability; PD, Pupil Diameter; EoG,
Electro-oculaGraphy; PERCLOS, PERcentage of Eyelid Closure; BLKd/BLKf, Blink duration and frequency; EMG, ElectroMyoGraphy.

Neuro-Physiological Indicators of Mental Strain
Since Kahneman’s (1973) energetic approach emphasizing the
relationship between physiological activation and mental activity,
OFS has been associated with variations in physiological signals
[heart rate variability (HRV), electrodermal activity, pupillary
diameter, etc.]. Moreover, with Parasuraman (2003) and the
rise of neuro-ergonomics, new approaches are focusing on
the link between the cognitive states of the operator and
the waves generated by brain activity [with devices such as
EEG or fNIRS (Strait and Scheutz, 2014)]. Neurophysiological
signals are generally not used in raw form, but they initially
produce indicators that are then processed by classification
algorithms. These indicators are either directly derived from
the measurement (as for example the heart rate established
by simple observation of the QRS complex) or built after a
projection of the measurements in a dedicated representation
space (wavelets, etc.). It may also be necessary to incorporate
a data cleansing step (e.g., removing RED-NS parasites for
electrodermal activity) and normalization of the data against a
baseline (Lassalle et al., 2017).

The signals relating to central nervous system (EEG) are very
sensitive and very discriminating on the different operating states
(Aghajani et al., 2017), but the sensors are for the moment very
invasive, and the treatments are relatively complex (aggregation
by fusion of data of the different brain regions in temporal and
frequency domains), which can limit the real-time application of
these techniques. Many recent studies use an EEG or even only

work on this sensor, which produce many distinct variables (not
necessarily uncorrelated). The only optimization or regression
objectives, necessary for the adjustment of parametric class
models to supervised machine learning, must thus implement
recent methods of structured regression or “pruning” (Tachikawa
et al., 2018). The choice of the algorithm and of its parameters
to be able to manage noisy and high-complexity signals are still
open research questions.

The physiological signals, dependent on autonomic nervous
system (HRV, electrodermal activity, and pupillary diameter),
make it possible to approach the sympathetic (activation) and
parasympathetic (awakening at rest) tendencies of the organism.
They are therefore sensitive to mental strain. On the other
hand, they have a weak diagnosticity: it is indeed difficult to
discriminate using only physiological signals from cognitive
states of the same tendency (for example fatigue, attentional
focus, or mental workload). It should also be noted that the
electrodermal activity is not sensitive enough for short-term
treatment: the signal tends to react quickly to a stimulus but
decreases slowly when the stimulus disappears (Rauffet et al.,
2015). The latency effect is therefore too important to monitor
the OFS in real time.

Contextual Indicators of Mental Stress
In addition, the weak diagnosticity of some of these data tends
to show the need to contextualize the physiological indicators to
better determine and categorize the OFS. To face this challenge,
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several research works propose to “situate” the cognitive states
according to the mental stress, i.e., to characterize the constraints
of the situation (Durkee et al., 2015; Schulte et al., 2015). These
contextual indicators related to task difficulty can be expressed
in terms of stimuli density or spatial information disparity at a
given time, or in terms of temporal pressure (remaining margins
within a time budget).

Methods for Operator Functional State
Classification
To classify OFS from physiological contextual data, different
methods were proposed. Kotsiantis et al. (2007) summarizes the
main methods of supervised machine learning. Some can only
deal effectively with one type of data: discrete data for “Naïve
Bayes Classifiers” and “Rule-Learners,” and continuous data for
neural networks (NN), k-Nearest Neighbors (kNN), and Support
Vector Machines (SVM). Only decision trees can handle both
types of data. Moreover, there are relatively recent references to
the classification of physiological signals, which allow a slightly
more specific analysis (cf. Table 1) applied to OFS classification.
In the present study, we seek to classify continuous data (like
HRV of pupillary diameter). As “Naïve Bayes Classifiers” and
“Rule-Learners” do not effectively process continuous data, they
can be discarded from our study. Kotsiantis et al. (2007) also
shows that SVM and NN have similar operational profiles
(Kotsiantis et al., 2007). These two methods are efficient for
processing continuous data and are effective for managing
multicollinearity. Both methods require having a large learning
database to be effective, but SVMs are more tolerant of missing
data, better manage over-learning, and generally have better
reliability. Moreover, the synthesis on OFS classification (cf.
Table 1) underlines that SVM is the most used algorithm. So, we
choose to discard the NN for the benefit of the SVM. In addition,
we seek to achieve a multiclass classification (more than two
classes). kNN and Random Forest method have the advantage of
being of a multi-class nature. It is therefore relevant to implement
these two methods. These three methods will be kept and tested,
as there is currently no methodological guide to optimally choose
a method and its settings.

It should be also noted that most of the works presented
in Table 1 only proposed a binary OFS classification. The few
works investigating a multiclass classification were based on a
single signal [Bergasa et al. (2006) applied a fuzzy classifier to
different types of signals taken separately, whereas Wang et al.
(2012) and Kavitha and Christopher (2016) obtained effective
results with SVM for a 3- or a 5-class classification, but only
with one source, HRV or EEG]. In this work, we aim to
propose a multiclass classification based on the consideration
of several signals, to improve the selectivity and the sensitivity
of OFS classifier.

Finally, all these references use an a priori evaluation of
task difficulty to label the physiological data, based on the
manipulation of task parameters (such as the frequency of stimuli
presented to participants, or the number of concurrent tasks
to carry out at the same time). This approach is questionable
and can raise some problem of selectivity, since we are not sure

that the task difficulty designed by experimenter really generates
significant OFS variations in participants. Therefore, we will look
for proposing a dynamic task difficulty indicator subjectively
validated by the participants.

MATERIALS AND METHODS

This section explains how data was collected, as input for
our proposed classifiers (section “Data Acquisition: Application
to Drone Swarm Piloting”). Then our classification approach
is further developed, by presenting the way we design our
task difficulty indicator to label physiological data, and how
we train the models by tuning the parameters (section
“Classification Approach”).

Data Acquisition: Application to Drone
Swarm Piloting
The acquisition of data, necessary for OFS classification, was
carried out on a drone simulator, named SUSIE (Coppin
and Legras, 2012). It consists in securing an area by piloting
a swarm of drones. The aim of the simulation is to find,
identify and neutralize different mobile targets, hidden at the
beginning of the simulation. This simulator was chosen because
it presents several advantages for our study: it is adapted to
the emergent multitasking activity of and operator managing
several drones; it is ecological and complex enough to consider
the future implementation of proposed OFS classification on
real system; and it constitutes a microworld on which the
experimenter can control different simulation parameters (task
difficulty, target location, and appearance time) and can record
behavioral (actions achieved by participants with mouse clicks)
and performance indicators (reaction times or number of
processed targets over time).

Participants
A total of 22 participants, aged from 22 to 30 (mean: 23, standard
deviation: 2, 4) took part in the experiment. For reasons of
homogeneity, all were men from the same scientific diploma,
and had good experience with video gaming (this point was
controlled by a short questionnaire). Since there is no expert
operator for the monitoring activity of swarm drones (the system
is indeed experimental), we considered that this population, with
these scientific and practical skills, could represent the future
drone operators.

SUSIE Simulator
This is a Java based software that allows participants to interact
with and to supervise a swarm of drones using a mouse-screen
system. Only one operator is required, but some tasks can be or
are achieved by an artificial agent. The system provides different
information to the operator from two sources: a dynamic map
and a message banner on the right (Figure 1, top image). The
dynamic map gives information about the areas that the drones
control such as the vehicles in these areas and their state. The
message banner indicates the coordinates and direction of a
vehicle that the operators need to assign high priority to its
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FIGURE 1 | SUSIE environment, sequential target states, and related tasks.

neutralization. The main task is to detect and neutralize the
threats (i.e., hostile vehicles) on the map. When a vehicle is
generated by the software, it is hidden, i.e., it is present on the
map but invisible (it has to be detected by drones sent by the
participant). Before it is neutralized, the status of the vehicle
changes several times (Figure 1, middle image). To advance

from one status to the next, operators need to complete many
sub-tasks, summarized in Figure 1.

Scenario and Training
A scenario was designed on the SUSIE prototype to generate
variations in OFS. The chosen scenario lasts 25 min and
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is divided into four phases: a waiting period P1 (2 min,
no stimuli), followed by three attack phases with increasing
difficulty, respectively P2 (7 min, low difficulty), P3 (7 min
of medium difficulty), and P4 (9 min of hard difficulty). The
difficulty of the task was modified by varying the frequency of
appearance of vehicles and messages on the SUSIE simulator.
A 30-min phase preceded the run of this scenario, to calibrate the
biofeedback sensors and train the participants. The calibration
consists especially in recording a baseline for eye activity and
heart rate metrics, by leaving participants during 5 min in
front of a white screen without anything to do. The training

is divided into two parts: a presentation part (10 min) and
a practical trial part (20 min). The presentation consists of
explaining the system, giving the objectives and the prescribed
operating modes to achieve the objectives. The practical trial
consists in allowing participants to take control of the system.
During this second part, the recommended procedures were
regularly reminded.

Equipment
Participants performed the experiment in a room where
brightness is controlled and constant, to avoid pupillary reflex

FIGURE 2 | Supervised learning of physiological data.

TABLE 2 | Data processing for task difficulty indicator.

Variables related to
task difficulty

Raw data Definition State space Discretized data State space

Constraint variables N1 Represents the number
of targets that must be

processed

{0, 1,...} N1d (targets) low: N1 ≤ 5
medium: 5 <N1 ≤ 11

high: N1> 11

N2 Represents the number
of messages that must

be processed

{0, 1,...} N2d (messages) low : N2 ≤ 2
high: N2> 2

Entropy Represents the spatial
entropy of the different
targets on the whole

monitored space

Continue Entropyd low: Entro ≤ 0.45
medium:

0.45 <Entro ≤ 1
high: Entro> 1
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due to light variations. In this room a space has been created for
running the scenario on the simulator, with fixed desk and chair
(to avoid parasitical movements of participants). The system
supporting SUSIE software is composed of a 24′′ screen and a
mouse connected to a PC. Data recordings was done with a
SeeingMachine FaceLAB5 R© eye tracker for pupillary response,
a Zephyr Bioharness R© heart rate belt, and a log (text file) of
scenario events and operator’s mouse actions recorded on SUSIE.
Subjective experience of participants was also collected by using
questionnaires, popping up every 90 s on screen.

Data Selection and Processing
The physiological data (Heart Rate Variability, HRV and
Pupillary Diameter PD) were collected with the aid of the
equipment described above. HRV was computed from the
standard deviation of the NN interval on the last 300 heartbeats
(SDNN method), following the formula sqrt

(∑N
i=1(RRi−mRR)2

N−1

)
.

Pupil diameter was cleansed (diameter smaller than 2 mm
and larger than 8 mm were excluded). All the physiological
data were z-normalized to remove the interindividual
differences. Moreover, as explained in section “Physiological
and Contextual Indicators to Assess Operator Functional State,”
these physiological data must be combined with contextual data.
To have an accurate and dynamic indicator of task difficulty
improving the OFS, we considered the following variables to
characterize the dynamic task difficulty within SUSIE simulator:
“N1” as the number of targets visible on the screen that must be
processed, “N2” as the number of messages visible on the screen
that must be processed, and “Entropy” as the spatial entropy of
the distribution of targets displayed on the screen (by dividing
the screen in 8 equal zones, and calculating 6Pi∗Log(Pi), with
Pi the proportion of the targets included in each zones on
the total number of targets displayed on the screen). Finally,
subjective scores were also considered as variables to validate
the dynamic task difficulty and the different classes of OFS
classification. We use a Likert scale for the level of task difficulty,
and an Instantaneous Self-Assessment (ISA) (Tattersall and Ford,
1996) for the OFS.

Classification Approach
We first define and validate a dynamic task difficulty indicator, to
then supervise the classification of physiological data. Figure 2
summarizes the principle of this classification process that
was implemented. We used MATLAB software (Paluszek and
Thomas, 2016) and the machine learning libraries (fitcsvm
and fitcecoc for SVM, treebagger for Random Forest, and
Classification KNN for k-NN) to train and test the different
machine learning methods.

Definition and Validation of a Task Difficulty Indicator
to Label Physiological Data
The goal of this first step was to classify a level of task difficulty
(TD), based on indicators of task constraint and performance
identified in the previous section. This “contextual” indicator will
subsequently be used as a label for supervising the learning of
physiological states. The computation of the difficulty indicator

TD is divided into two stages: first, raw data were processed by
discretization into two or three categories: the threshold between
these categories were set according to a preliminary study of
the subjective experience of participants on different conditions
of task difficulty. Moreover, the different discretized variables
were initialized at the beginning of the scenario, by considering
the constraint variables (N1d, N2d, Entropied, cf. Table 2);
then, a data fusion of the discretized indicators was achieved by
aggregation, to obtain a global indicator of task difficulty with
three categories (TD1 = low, TD2 = medium, TD3 = high).
Aggregation rules were defined as follows: if {N1d = High and
N2d ≥Medium and Entropy ≥Medium} then TD = High.

To validate the difficulty indicator (TD), we studied the
correlation between this indicator and the subjective assessment
of the task difficulty, collected every 90 s with a Likert scale.
As the difficulty indicator TD and the subjective assessment are
ordinal qualitative variables, a Spearman test was therefore used
to study the correlation. It showed that these two variables are
positively correlated (r = 0.711, p < 0.001). The task difficulty
indicator TD can therefore be used to supervise the classification
of physiological signals.

Supervised Classification Method
The aim of this stage is to classify the OFS into three categories,
by applying a supervised learning of the physiological signals with
the three different task levels defined in Stage 1.

Two main physiological indicators, pupillary diameter and
HRV, were selected for this classification of OFS, based on
the literature review of section “Physiological and Contextual
Indicators to Assess Operator Functional State.”

The accuracy of the three supervised learning methods
identified in the literature (SVM, kNN, and Random Forest) are
evaluated by using an 75/25% train-test split, and by applying a
fourfold cross-validation procedure.

For each of these methods, we tested different settings (cf.
Table 4 for the best settings).

For SVM, we used several kernel methods, under different
parameters of gamma and coeff.

• Polynomial kernel: K(u,v) = tanh(gamma ∗ u′v+ coeff ),
• RBF kernel: K(u,v) = exp (−gamma ∗ | | u-v| | 2),
• Sigmoid kernel: K(u,v) = (gamma ∗ u′v+ coeff )d.

We also tested several types of distance measurements
(Euclidean, Euclidean squared, Manhattan, and Chebyshev) and
several K values for kNNs.

The random forest algorithm has been tested with different
numbers of trees.

The tuning of parameters for all these three methods were
determined via grid search optimization on each of the training
sets, as implemented in the MATLAB toolboxes.

RESULTS

Classification Accuracy
Since there was a problem of acquisition with cardiac or ocular
sensors for 5 participants, only the data of 17 participants were
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retained to achieve the supervised learning of physiological states.
After raw data was cleansing and normalization, mean values
of pupillary diameter and HRV were calculated every second.
The supervised learning was carried out with 2 or 3 categories,
at two different layers, one on all participants and one on

each participant independently. For the first classification (all
participants), the learning was achieved from the data of 13
participants, and the data of the 4 left participants were used as
a test sample to check the accuracy of the process. For the second
one (for each participant), 75% of the data was used as training

TABLE 3 | Accuracy of classification over all participants.

Supervised learning
algorithms

Best setting Global accuracy Accuracy of low
class

Accuracy of medium
class

Accuracy of high
class

3-class classification SVM Kernel sigmoid
(gamma = 0.5 and

coeff = 0)

61% 55% 13% 100%

kNN Chebychev distance
and k = 1

49% 76% 47% 46%

RF 68 trees 58% 89% 49% 74%

2-class classification SVM Kernel sigmoid
(gamma = 0.5 and

coeff = 1)

83% 54% 95%

kNN Chebychev distance
and k = 18

77% 49% 91%

RF 23 trees 79% 78% 88%

TABLE 4 | Accuracy of classification performed individually on each of the 17 participants.

Supervised learning
algorithms

Best settings Average global
accuracy

Standard deviation Minimum global
accuracy

Maximum global
accuracy

3-classes classification SVM Kernel sigmoid
(gamma = 0.5 and

coeff = 0)

78% 12% 58% 100%

kNN Chebychev distance
and k = 1

74% 14% 55% 100%

RF 68 arbres 44% 8% 33% 63%

2-classes classification SVM Kernel sigmoid
(gamma = 0.5 and

coefficient = 1)

91% 9% 63% 100%

kNN Chebychev distance
and k = 18

89% 9% 63% 100%

RF 23 trees 69 % 12% 42% 95%

FIGURE 3 | Bar and whisker plot for individual 2-class (left) and 3-class (right) OFS classification.
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TABLE 5 | Operator Functional State contingency table for OFS and ISA.

OFS

OFS 1 = low risk OFS 2 = medium risk OFS 3 = high risk

ISA ISA 1 52% 16% 1%

ISA 2 33% 30% 8%

ISA 3 11% 23% 23%

ISA 4 4% 22% 44%

ISA 5 0% 10% 24%

Total 27 195 104

sample, and the resulting classification was then tested on the
remaining 25% of the data.

The three different chosen methods (SVM, kNN, and RF) were
tested with different parameters.

As mentioned in Table 3, SVM and RF produced better
classification over all participant data than kNN method, for both
3-classes (respectively 61, 58, and 49%) and binary classification
(respectively 83, 79, and 77%).

For the classification of individual data, Table 4 shows that
SVM and kNN are more accurate than RF method for producing
3-classes (respectively 78, 74, and 44% of mean accuracy) and
binary classification (respectively 91, 89, and 69% of mean
accuracy). Standard deviations of accuracy are also reported in
Table 4 and Figure 3 represents the interquartile ranges and the
medians of accuracy for the 2-class and 3-class classification over
the 17 participants.

Among all the tested methods, the SVM thus give the best
results. In addition, the binary classification by the SVM also
give better results than the classification in three classes (83
versus 61% on all participants, and 91 versus 78% when data are
processed individually).

Validation of the Operator Functional
State Classification
The classification was therefore a posteriori validated, by
comparing the resulting OFS values with the subjective values

collected on ISA questionnaire, collected every 90 s during the
scenario. The contingency table (cf. Table 5) between OFS classes
and ISA level points out that an OFS with a low risk level
correspond to more than 50% of ISA level 1, an OFS with medium
risk level matches with more than 53% of ISA levels 2 and 3, and
an OFS with high risk level corresponds to more than 68% of
ISA levels 4 and 5. Moreover, we analyzed whether the OFS rank
was associated with ranking on the ISA questionnaire on these
temporal points. Based on the results of the study, those with
higher OFS ranks were more likely to have scores that ranked
higher on the ISA questionnaire, rτ = 0.42, p < 0.05.

DISCUSSION

This article aims at operationalizing the OFS concept developed
by Hockey (2003) and the related approach proposed by Yang and
Zhang (2013). Several contributions, limitations and perspectives
can be listed on methodological and practical sides.

The present study applied different supervised learning
techniques (SVM, RF, and kNN), to classify OFS according to
three different categories. Moreover, compared to many studies
that arbitrarily and a priori set the level of task difficulty, the
proposed classification method uses dynamic and objective task
difficulty labels to supervise data learning, and these labels
were cross validated by the subjective experience expressed
by participants.

This present study also showed that OFS estimation in
three classes (low, medium, or high risk of control loss) can
be significantly associated with the subjective experience of
participants assessed with ISA technique. Moreover, the results
of supervised learning methods on VHR and DP signals to
classify physiological states related to OFS showed that the SVM
method, and to a lesser extent the kNN method, produced robust
classifications. The Random Forest method appears to be much
less efficient. It should also be noted that these results are very
similar to those found in the literature.

Table 6 thus positions the results of the present study in
relation to the other works of the literature. This implementation

TABLE 6 | Comparison between the present study and literature works for 2-class and 3-class OFS classification.

Authors Data Number of classes Supervised learning method Accuracy

Gagnon et al. (2016) HR, BR, Gaze position, PD, BLKf, HRV 2 kNN Individually: 91%All subjects: 89%

SVM Individually: 84%All subjects: 83%

Gilani (2016) HRV, EEG 2 kNN All subjects: 81%

SVM All subjects: 56%

RF All subjects: 87%

Yin and Zhang (2014) EEG, ECG, and EOG 2 LS-SVM Individual: 93%

3 SVM (1 vs. 1) Individual: 72%

Zhang et al. (2015) EEG, ECG, and EOG 3 SVM Individual: 69%

Current study HRV, PD 2 SVM Individually: 92%All subjects: 83%
kNN Individually: 90%All subjects: 77%
RF Individually: 70%All subjects: 80%

3 SVM Individually: 78%All subjects: 61%
kNN Individually: 75%All subjects: 50%
RF Individually: 40%All subjects: 58%

Bold values refer to the results of our own study.
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therefore shows that the envisaged classification of the cognitive
and functional states of an operator carrying out a supervising
activity on a adjustable autonomous system is possible.

If the learning methods get a better performance for the binary
classification, we can notice that the 3-categories classification
remains above 78% (at the individual layer) and 61% (for
all participants) in the case of the SVM method and seems
better than those obtained in the works of Ying and Zhang
(Hancock et al., 1995) and Zhang et al. (2015) with the same
method, which did not exceed 72% at the individual layer.
Moreover, the accuracy indicated above could be improved
by refining the SVM settings or by considering a stacking
method that mobilizes several aggregated classification methods.
Stacking method would certainly allow to benefit from the
contrasting performance of the three selected methods: SVM
is very good for the strong class, where the kNN and RF
methods seem much better for the low and medium classes,
see Table 6).

Finally, the obtained results of this classification approach
based on the combination of objective indicators could
be implemented for monitoring online operator states and
dynamically providing assistances to operators.

Thus, the obtained OFS classification could be considered
to trigger an assistance, and the type of countermeasures to be
provided will be adapted according to the detection of a specific
OFS level (for instance, medium risk, and high risk OFS would
not call the same solutions). That would be very helpful for
the drone swarm monitoring activity studied in this article, and
that could be implemented to other domains, with civilian and
military applications for operators involved in risky missions
(e.g., nuclear plant or air traffic management). However, an
additional challenge to reach such an adaptable human-machine
cooperation will be to propose the least intrusive sensors, so as
not to interfere with the activity, but also to make acceptable the
use of biofeedback sensors as well as the concept that an operator
is observed by the system.
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