
INTRODUCTION

Autism spectrum disorder (ASD) is a group of neurodevelop-
mental disabilities characterized by two domains of core symp-
toms, persistent social deficits and restricted repetitive patterns of 
behavior [1]. Most individuals with ASD suffer from various be-
havioral and physical symptoms, including abnormal preferences 
regarding specific foods and problems in the digestive system [2, 3]. 
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Approximately 70~80% of ASD subjects have food selectivity and 
restricted food interests due to the texture, smell, or color of specific 
foods, and food intolerance [3, 4]. The limited food intake behav-
ior in ASD subjects leads to health problems including nutrition 
imbalance and gastrointestinal (GI) symptoms, such as diarrhea 
and constipation [2, 5, 6]. Furthermore, studies of a positive cor-
relation between GI symptoms and ASD have been reported; the 
c-Met promoter variant rs1858830 is associated with ASD and GI 
symptoms, and the serum level of hepatocyte growth factor (HGF) 
that binding to the c-Met receptor, is correlated with severity of GI 
symptom in ASD subjects [7-9].

Several lines of evidence indicate that ASD patients have altered 
microbiota composition in the gut compared to healthy subjects 
[10-21]. The occupancy of the phyla Firmicutes, Fusobacteria, 
Verrucomicrobia , and Actinobacteria was decreased, whereas 
Bacteroidetes and Proteobacteria were increased in ASD groups 
[13, 21]. More specifically, in ASD, the genera Bifidobacterum 
and Akkermansia were found to be decreased in ASD, while 
Lactobacillus was increased [17, 18]. Furthermore, the treatment 
with a probiotics mix containing Streptococcus (thermophiles ), 
Bifidobacterium breve, B. longum, B. infantis, and Lactobacillus 
acidophilus, L. plantarum, L. paracasei , and L. delbrueckii (subsp. 
Bulgaricus) or the transplant of fecal microbiota from healthy sub-
jects to ASD individuals increased overall bacterial diversity and 
the abundance of Bifidobacterium, Prevotella , and Desulfovibrio 
among other taxa, and alleviated GI symptoms and ASD core 
symptoms [22, 23]. To date, all available microbiota composition 
in ASD were mostly assessed from fecal samples [11, 13, 14, 17-21] 
or directly from the cecum and ileum [15, 16]. The fact that some 
microbiota commonly change in independent studies, and others 
are not consistently reported (e.g., [13, 15, 19]), increases the pos-
sibility of highly complex dynamics in bodily microbiota compo-
sition in ASD individuals under different physiological contexts. 

Gram-negative bacteria secrete extracellular membrane vesicles 
(EVs), also called nanovesicles, to communicate with host cells [24], 
and are detected in stools, and also in urine and blood serum [25-
27]. EVs secreted by gram-negative bacteria contain DNA, RNA, 
proteases, phospholipases, adhesins, toxins, and immunomodula-
tory compounds. Bacteria-derived EVs are associated with cyto-
toxicity, bacterial attachment, intercellular DNA transfer, and inva-
sion [24, 28, 29]. Gram-positive bacteria also produce EVs, which 
contain peptidoglycan, lipoteichoic acid, virulence proteins, DNA 
and RNA [30, 31]. When bacterial EVs were intraperitoneally in-
jected in mice, EVs were rapidly distributed throughout the body 
with accumulation in the liver, lung, spleen, and kidney within 3 h 
[27]. Bacteria-derived EVs in the blood and urine represent the 
major constituents of microbes in the body, namely the gut micro-

biota [25, 26], and indicate the microbiota that are metabolically or 
pathologically active [25, 27].

In the present study, we investigated bodily microbiota represent-
ed by bacterial EVs in the urine of ASD individuals. The results of 
the present study identify markedly altered microbiota profiles in 
ASD relative to non-ASD healthy controls and suggest that bacte-
rial EVs in urine can be served as a useful tool for the evaluation of 
microbiota composition in ASD. 

MATERIALS AND METHODS

Subjects and urine sample preparation

Individuals who were enrolled at the Ewha Special Education 
Research Institute (Seoul, Republic of Korea) or Ewha Womans 
University MokDong Hospital (Seoul, Republic of Korea) were 
diagnosed according to the DSM-5 diagnostic criteria by a child 
and adolescent psychiatrist followed by characterization using the 
Korean Childhood Autism Rating Scale (K-CARS) as described 
previously [32]. The K-CARS is a well-established scale for the di-
agnosis of ASD with good agreement with the DSM-5 diagnostic 
criteria [33]. This questionnaire contained 15 items, each with 4 
symptom scales, and all individual scores on each of the questions 
were summed to obtain the total score. When the total score was 
higher than 30 points, the subject was classified as autistic. Indi-
viduals who had any associated additional psychiatric and neuro-
logical diagnoses, or individuals who were on any antipsychotic 
medications were excluded from the present study. 

Among the characterized ASD individuals, 18 male and 2 fe-
male ASD individuals (22.4+/-4.9 years) (Table 1) were joined to 
this study and their urine was collected during the day. The col-
lected urine samples were frozen and stored at -20oC until use. 
Age-matched normal healthy subjects (24 males and 4 females, 
21.1+/-9.5 years) (Table 1) were selected from the Inje University 
Haeundae Paik Hospital (IRB No. 1297992-2015-064) and Seoul 
National University Hospital Healthcare System Gangnam Center 
(IRB No. 1502-034-647). The control subjects were not related to 
ASD and had no clinical findings suggestive of gastrointestinal 
problems or neuropsychiatric disorders. The control subjects of 
this study had not taken antibiotics, probiotics or prebiotics in the 
3 months prior to the sample collection.

Table 1. The number, age, and sex of control and ASD subjects

Control ASD p-value

Age (years)
N
Sex (Male/Female)

21.1±9.5
28

24/4

22.4±4.9
20

18/2

0.57
-

0.66
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The experimental protocol of human subjects was reviewed and 
approved by the Institutional Review Board of Ewha Womans 
University Hospital (IRB No. 2015-08-005-002). All eligible par-
ticipants had been told about the purpose, procedures, risks and 
benefits of the present study and informed consent was obtained 
from all ASD subjects.

Isolation of bacteria-derived EVs and DNA extraction from 

human urine samples

Bacteria EVs were isolated from the urine of ASD individuals 
following the procedure described previously [25, 26]. Briefly, each 
urine sample was centrifuged at 10,000 × g for 10 min at 4oC. The 
supernatant was taken and passed through a 0.22-μm membrane 
filter to eliminate foreign particles. Isolated EVs were dissolved in 
100 μl PBS, and quantified on the basis of protein.

Bacterial DNA extraction from prepared EVs was performed as 
described previously [25, 26]. Briefly, isolated EVs (1 μg by pro-
tein, each sample) were boiled at 100oC for 40 min, centrifuged at 
13,000 g for 30 min, and the supernatants were collected. Collect-
ed samples were then subjected to bacterial DNA extraction using 
a DNA extraction kit (PowerSoil DNA Isolation Kit, MO BIO, 
USA) following the manufacturer’s instructions, Isolated DNA was 
quantified by using the QIAxpert system (QIAGEN, Germany).

PCR amplification, library construction, and sequencing of 

16S rRNA gene variable regions

Prepared bacterial DNA was used for PCR amplification of the 
V3-V4 hypervariable regions of the 16S ribosomal RNA genes 
using the primer set of 16S_V3_F (5ʹ-TCGTCGGCAGCGTCA-
GATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3ʹ) 
and 16S_V4_R (5ʹ-GTCTCGTGGGCTCGGAGATGTGTATA-
AGAGACAGGACTACHVGGGTATCTAATCC-3ʹ). The PCR 
products were used for the construction of 16S rDNA gene librar-
ies following the MiSeq System guidelines (Illumina Inc., San Di-
ego, CA, USA). The 16S rRNA gene libraries for each sample were 
quantified using QIAxpert (QIAGEN, Germany), pooled at the 
equimolar ratio, and used for pyrosequencing with the the MiSeq 
System (Illumina, USA) according to manufacturer’s recommen-
dations. 

Taxonomic assignments by 16S rRNA genes sequence reads

Obtained raw pyrosequencing reads were filtered on the basis of 
the barcode and primer sequences using MiSeq Control Software 
version 1.1.1 (Illumina, USA). Sequence reads were taxonomically 
assigned using the MDx-Pro ver.1 profiling program (MD Health-
care Inc., Seoul, Korea). Briefly, the quality of sequence reads was 
retained by controlling an average PHRED score higher than 20 

and read length of more than 300 bp. Operational taxonomic units 
(OTUs) were clustered using CD-HIT sequence clustering algo-
rithms and were assigned using UCLUST [34] and QIIME [35] on 
the basis of the GreenGenes 8.15.13 16S rRNA sequence database 
[36]. Based on the sequence similarities, taxonomic assignments 
were achieved at the following levels: genus, >94% similarity; fam-
ily, >90% similarity; order, >85% similarity; class, >80% similarity; 
and phylum, >75% similarity. In cases where clustering was not 
possible at the genus level due to a lack of sequence information at 
the database or redundant sequences, the taxon was named based 
on the higher-level taxonomy with parentheses.

Visualization and principal component analysis (PCA)

Data were normalized to have a mean of 0 and a standard de-
viation of 1 by linear normalization. PCA and two-dimensional 
scatter plots with axis of the first and second principal component 
were calculated and drawn using Matlab 2011a.

Statistical analysis

Two-sample comparisons were performed using Student’s t-test. 
Data clustering of pyrosequencing reads were compared using the 
χ2 test or t-test, while the comparisons between phylum composi-
tions were tested by Fisher’s exact test using GraphPad Prism 6 (San 
Diego, CA, USA). All data are presented as the mean±SEM, and a 
statistical difference was accepted at the 5% level.

RESULTS

Metagenome analysis of bodily microbiota in ASD  

individuals using bacteria-derived EVs in urine

Bacteria-derived EVs were isolated from the urine of 20 ASD 
individuals and 28 normal healthy subjects. The average age of the 
control and ASD subjects was 21.1+/- 9.5 years and 22.4 +/-4.9 
years, respectively (Table 1). ASD subjects showed mild impair-
ment of social interaction and stereotypies. The average K-CARS 
values of these ASD individuals was in the range between 31.5 
and 33.5 and IQ values were in the range between 65 and 86. The 
control group was composed of healthy volunteers who had no 
medical problems including those related to ASD. 

After the extraction of bacterial genomic DNA from the isolated 
EVs, variable regions of the 16S rRNA genes were amplified by 
PCR, and the libraries were constructed, as described previously 
[25, 26]. Subsequent DNA sequencing analyses led us to identify 
over 2,000 operational taxonomic units (OTUs) for ASD and nor-
mal individuals. There was no significant difference in the alpha 
diversity between the two groups (Fig. 1A). Among the identified 
OTUs, we assigned 30 OTUs at the phylum level, 75 OTUs at the 
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class level, 141 OTUs at the order level, 279 OTUs at the family 
level, and 619 OTUs at the genus level. Among these OTUs, we 
primarily focused on OTUs that occupied more than 0.1% of the 
identified taxons in the following analyses.

Altered microbiota profiles between ASD individuals and 

healthy subjects

Sequence readings of EVs-based 16S rDNA indicated that the 
top five members of the phyla p_Proteobacteria, p_Firmicutes, p_
Actinobacteria, p_Bacteroidetes, and p_Cyanobacteria comprised 
95.2% of the identified OTUs in healthy subjects, whereas these 

members covered 90.65% of the total OTUs in ASD individuals, 
suggesting that ASD individuals have altered phyla composition. 
More specifically, the occupancy of p_Proteobacteria decreased 
from 49.12 to 35.30%, p_Cyanobacteria decreased from 4.36 to 
1.92%, and p_Armatimonadetes decreased from 0.38 to 0.00% in 
ASD individuals (Fig. 1B~D). In contrast, the occupancy of p_Fir-
micutes increased from 24.96 to 33.07% and p_Verrucomicrobia 
increased from 0.58 to 2.37% in ASD.

The microbiota whose occupancy decreased or increased in 
ASD individuals were further analyzed at the class, order and 
family levels (Table 2, Supplemental Fig. S1). The decrease of f_

Fig. 1. The diversity and percent composition of microbiota at the phylum level in control vs. ASD subjects. (A) Rarefication curves representing the 
mean OTUs over the identified sequences of variable regions of 16S rRNA gene in control (blue) and ASD (red) subjects. Data are the mean +/- SEM 
(n=5, each). (B) Principal component analysis of microbiota diversity based on the weighted UniFrac distance and Bray-Curtis dissimilarity. Data were 
normalized to have a mean of 0 and a standard deviation of 1. Control (blue) and ASD (red). (C) Overall composition of microbiota at the phylum level 
in control (blue) and ASD (red) subjects. Those with occupancy 0.1% or higher in control and/or ASD subjects are presented. (D) The percent composi-
tion of microbiota at the phylum level in control and ASD subjects. ↑ and ↓ denote an increase and decrease in the percent composition, respectively. 
Data are the mean +/- SEM (n=5, each). * and ** denote the differences between the indicated groups at p<0.05 and p<0.01, respectively (Student’s t-test). 
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Sphingomonadaceae and f_Rhizobiaceae accounted for the major 
decrease in p_Proteobacteria in ASD. In p_Cyanobacteria, o_
Streptophyta decreased from 3.8 to 1.68%. In p_Verrucomicrobia, 
f_Verrucomicrobiaceae was the major increase (0.52 to 2.35%). In 
p_Firmicutes, f_Streptococcaceae, f_Clostridiaceae , an unclassi-
fied member of o_Clostridiales and f_Eubacteriaceae increased 
from 3.43 to 8.09% (Table 2).

The members of the genus occupied by more than 0.1% in either 
control or ASD individuals are summarized in Table 3 and Supple-
mental Table 1. Overall, 14 members at the genus level were down-
regulated in ASD and their total occupancy in ASD dropped from 
34.77 to 14.06%. On the contrary, 17 genus members were up-
regulated in ASD and their total occupancy in ASD increased 
from 6.47 to 22.58%. 

More specifically, an unclassified member of f_Enterobacteria-
ceae decreased from 8.85 to 6.08%, g_Pseudomonas decreased 
from 7.48 to 5.10%, g_Sphingomonas decreased from 4.17 to 
0.71%, g_Agrobacterium decreased from 3.83 to 0.11%, an unclas-
sified member of o_Streptophyta decreased from 3.80 to 1.68%, 
g_Achromobacter decreased from 2.42 to 0.05%, g_Roseateles 
decreased from 1.12 to 0.02%, and an unclassified member of f_
mitochondria decreased from 0.84 to 0.10% (Table 3, Fig. 2).

On the other hand, g_Streptococcus increased from 1.58 to 
4.77%, an unclassified member of o_Clostridiales increased from 
1.06 to 1.87%, an unclassified member of f_Comamonadaceae 
increased from 0.92 to 3.79%, an unclassified member of f_S24-7 
increased from 0.84 to 2.02%, g_Akkermansia increased from 0.52 
to 2.35%, g_Rhodococcus increased from 0.40% to 1.56%, and g_

Table 3. The percent composition of microbiota at the genus level in control and ASD subjects

Class Order Family Taxon
Mean±SEM (%) Fold 

change
p-value

Control ASD

Gammaproteobacteria
 
 
 
 
Alphaproteobacteria
 
 
 
 
 
 
Betaproteobacteria
 
 
 
 
Deltaproteobacteria
Bacilli
 
Clostridia
 
 
Actinobacteria
 
Bacteroidia
Flavobacteriia
Chloroplast
Verrucomicrobiae
[Fimbriimonadia]
Deinococci

Oceanospirillales
Pseudomonadales
Enterobacteriales
 
 
Sphingomonadales
Rhizobiales
 
 
 
Rickettsiales
Rhodobacterales
Burkholderiales
 
 
 
 
Desulfovibrionales
Lactobacillales
Bacillales
Clostridiales
 
 
Actinomycetales
 
Bacteroidales
Flavobacteriales
Streptophyta
Verrucomicrobiales
[Fimbriimonadales]
Thermales

Halomonadaceae
Pseudomonadaceae
Enterobacteriaceae
 
 
Sphingomonadaceae
Rhizobiaceae
 
 
Bradyrhizobiaceae
Mitochondria
Rhodobacteraceae
Comamonadaceae
 
 
 
Alcaligenaceae
Desulfovibrionaceae
Streptococcaceae
Staphylococcaceae
Unclassified
Clostridiaceae
Ruminococcaceae
Nocardiaceae
Micrococcaceae
S24-7
[Weeksellaceae]
Unclassified
Verrucomicrobiaceae
[Fimbriimonadaceae]
Thermaceae

Halomonas
Pseudomonas
Erwinia
Citrobacter
Unclassified
Sphingomonas
Agrobacterium
Unclassified 1
Unclassified 2
Unclassified
Unclassified
Rhodobacter
Roseateles
Delftia
Comamonas
Unclassified
Achromobacter
Desulfovibrio
Streptococcus
Jeotgalicoccus
Unclassified
Unclassified
Oscillospira
Rhodococcus
Kocuria
Unclassified
Cloacibacterium
Unclassified
Akkermansia
Fimbriimonas
Thermus

0.12±0.06
7.48±0.86
0.26±0.1
0.66±0.24
8.85±1.01
4.17±0.83
3.83±0.96
0.63±0.17
0.11±0.03
0.24±0.07
0.84±0.3
0.01±0.01
1.12±0.35
0.22±0.08
0.08±0.05
0.92±0.15
2.42±0.75
0.04±0.02
1.58±0.26
0.03±0.02
1.06±0.26
0.27±0.08
0.10±0.04
0.40±0.13
0.06±0.05
0.84±0.36
0.13±0.06
3.80±0.84
0.52±0.18
0.38±0.12
0.03±0.02

1.72±0.51
5.10±0.6
0.64±0.15
0.08±0.05
6.08±0.58
0.71±0.2
0.11±0.05
0.07±0.03
0.00±0.00
0.05±0.02

0.1±0.06
0.23±0.08
0.02±0.01
0.01±0.00
0.36±0.12
3.79±0.49
0.05±0.03
0.48±0.14
4.77±1.28
0.50±0.11
1.87±0.26
0.70±0.18
0.47±0.14
1.56±0.43
0.30±0.08
2.02±0.44
0.62±0.2
1.68±0.38
2.35±0.68
0.00±0.00
0.21±0.07

↑ 14.61
↓ 0.68
↑ 2.41
↓ 0.12
↓ 0.69
↓ 0.17
↓ 0.03
↓ 0.11
↓ 0.00
↓ 0.21
↓ 0.12
↑ 20.34
↓ 0.02
↓ 0.05
↑ 4.48
↑ 4.14
↓ 0.02
↑ 10.88
↑ 3.03
↑ 14.70
↑ 1.75
↑ 2.58
↑ 4.53
↑ 3.91
↑ 4.75
↑ 2.40
↑ 4.92
↓ 0.44
↑ 4.52
↓ 0.00
↑ 6.30

0.01*
0.03*
0.04*
0.02*
0.02*
0.00**
0.00**
0.00**
0.00*
0.02*
0.02*
0.02*
0.00**
0.02*
0.04*
0.00**
0.00**
0.00*
0.02*
0.00*
0.04*
0.04*
0.02*
0.02*
0.01*
0.04*
0.03*
0.03*
0.02*
0.00**
0.02*

Microbiota at the genus level whose occupancy was significantly different in ASD subjects are presented with associated higher taxonomy levels. Micro-
biota with occupancy 0.1% or higher in either normal healthy or ASD subjects were considered. ↑ and ↓ denote an increase and decrease in the percent 
composition, respectively.
Data are the mean percentage±SEM. * and ** denote significant differences between the indicated groups at p<0.05 and p<0.01, respectively (Student’s t-test).
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Halomonas increased from 0.12 to 1.72% (Table 3, Fig. 2).

DISCUSSION

Metagenome analysis of bacterial EVs in urine identifies 

altered microbiota profiles in ASD

In the present study, we demonstrated that bacteria-derived EVs 
in urine were useful for the rapid assessment of microbiota profiles 
in ASD. The metagenome analysis of urine EVs indicated that p_
Verrucomicrobia (0.58 to 2.37%, p=0.02) and p_Firmicutes (24.96 
to 33.07%, p=0.03) increased in ASD, whereas p_Cyanobacteria 
(4.36 to 1.92%, p=0.01) and p_Proteobacterium (49.12 to 35.3%, 
p=0.01) decreased. There was no significant change in p_Bacte-
roidetes (5.85 to 8.62%, p=0.11) and p_Actinobacterium (10.91 to 
11.74%, p=0.56). The altered microbiota compositions identified 
from urine EVs of ASD were partially consistent with microbiota 
compositions assessed from fecal samples reported in recent stud-
ies. The analyses of fecal microbiota compositions in previous 
studies reported that p_Actinobacteria, p_Verrucomicrobia and 
p_Cyanobacteria decreased or tended to decrease in ASD, but 
there were conflicting results for p_Firmicutes, p_Bacteroidetes 
and p_Proteobacteria (Table 4) [13, 15, 16, 19]. 

In p_Firmicutes, g_Streptococcus (1.58 to 4.77%, p=0.02), g_
Jeotgalicoccus (0.03 to 0.5%, p<0.01), g_Oscillospira (0.1 to 0.47%, 
p=0.02), and an unclassified member of f_Clostridiaceae (0.27 to 
0.7%, p=0.04) significantly increased in ASD by more than two-
fold. The genera g_Akkermansia occupied the greatest propor-

tion of the increased phylum p_Verrucomicrobia (0.52 to 2.35%, 
p=0.02), whereas in p_Proteobacterium , 12 genera decreased 
and 5 genera increased in ASD. The genera g_Pseudomonas, g_
Citrobacter , an unclassified member of f_Enterobacteriaceae, g_
Sphingomonas, g_Agrobacterium , unclassified members of f_
Rhizobiaceae , an unclassified member of f_Bradyrhizobiaceae , 
and an unclassified member of f_mitochondria, g_Roseateles, 
g_Delftia and g_Achromobacter were decreased (total 30.58 to 
12.37%), whereas g_Halomonas, g_Erwinia, g_Rhodobacter, g_
Comamonas, and an unclassified member of f_Comamonadaceae 
were increased (total 1.39 to 6.74%).

At the genus level, the present study identified g_Sphingomonas, 
g_Agrobacterium , an unclassified member of o_Streptophyta, 
g_Achromobacter , and g_Roseateles as being decreased in ASD 
by more than two-fold among the total OTUs having occupancy 
0.1% or higher in either healthy control or ASD subjects, and g_
Streptococcus , an unclassified member of f_Comamonadaceae, 
an unclassified member of f_S24-7, g_Akkermansia, g_Rhodo-
coccus , and g_Halomonas were increased in ASD. Particularly, 
g_Desulfovibrio increased in ASD (0.04 to 0.48%, p<0.01), g_
Lactobacillus tended to increase (2.56 to 5.45%, p=0.08), g_
Bifidobacterium tended to decrease (1.9 to 0.8%, p=0.06), and g_
Turicibacter tended to decrease (0.19 to 0.02%, p=0.07) in ASD, 
whereas g_Enterococcus (0.4 to 0.78%, p=0.06), g_Enterobacter 
(0.03 to 0.37, p=0.08), and g_Clostridium (0.11 to 0.31%, p=0.09) 
tended to increase in ASD. The changes in these genus members 
are broadly consistent with the results of previous reports assessed 

Fig. 2. Genus members that were downregulated or upregulated in ASD subjects. The percent composition of microbiota whose occupancy was signifi-
cantly changed at the genus level among those occupying 0.1% or higher in either control (blue) or ASD (red) subjects. Data are presented as the mean 
percentage±SEM. * and ** denote the differences between the indicated groups at p<0.05 and p<0.01, respectively (Student’s t-test).
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for fecal microbiota compositions (Table 4) [11, 13, 17, 18, 21].
The EV levels of g_Oscillospira , unclassified members of f_

Clostridiaceae and f_Eubacteriaceae, and an unclassified member 
of o_Clostridiales were increased in ASD subjects. Previous stud-
ies have reported that several species of c_Clostridia produced 
4-ethylphenyl sulfate (4-EPS) and p -cresol, which were found at 
high concentrations in the urine of ASD children. Administration 
of 4-EPS in healthy mice produced myelination deficits in the pre-
frontal cortex and sociability defects [37-39]. It was also reported 
that c_Clostridia produced propionic acid (PPA) and its related 
short-chain fatty acids (SCFAs) as fermentation products, and PPA 

infusions in rats induced ASD-linked neurochemical and behav-
ioral changes [40]. These results suggest that bacteria-derived me-
tabolites induce neurochemical and structural changes and shape 
behavioural abnormalities.

Oral treatment with Bifidobacteria fragilis ameliorated ASD-
related gastrointestinal deficits and associated behavioural ab-
normalities behavioral abnormalities in the poly (I:C)-injection 
model [41]. Bifidobacteria infantis attenuated pro-inflammatory 
immune responses and production of serotonergic precursor, 
tryptophan, and has potential anti-depressant properties [42, 43]. 
Considering these results, ASD groups with decreased EV levels 

Table 4. Summary and comparison of microbiota characterized in the present study with those identified from fecal samples in previous studies

Taxons
Mean (%)

Fold change p-value Literatures
Control ASD

Phylum
 
 
 
 
Class
Order
Family
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Proteobacteria
Firmicutes
Actinobacteria
Bacteroidetes
Verrucomicrobia
Betaproteobacteria
Clostridiales
Ruminococcaceae
Lachnospiraceae
Corynebacterium
Alcaligenaceae
Pseudomonas
Lactobacillus
Bacteroides
Staphylococcus
Faecalibacterium
Bifidobacterium
Streptococcus
Akkermansia
Blautia
Enterococcus
Collinsella
Veillonella
Lactococcus
[Ruminococcus]
Coprococcus
Leuconostoc
Dialister
Parabacteroides
Weissella
Turicibacter
Dorea
Clostridium
[Prevotella]
Desulfovibrio
Genus

49.12
24.96
10.91

5.85
0.58

10.09
11.59

5.46
3.12
2.60
2.53
7.48
2.56
2.48
2.23
2.14
1.90
1.58
0.52
0.47
0.40
0.37
0.37
0.35
0.34
0.28
0.27
0.23
0.21
0.21
0.19
0.17
0.11
0.09
0.04
0.03

35.30
33.07
11.74

8.62
2.37
6.26

15.38
6.11
2.57
3.38
0.12
5.10
5.45
2.93
2.57
2.05
0.80
4.77
2.35
0.28
0.78
0.11
0.50
0.11
0.15
0.27
0.01
1.39
0.18
0.07
0.02
0.10
0.31
0.12
0.48
0.37

↓ 0.72
↑ 1.33
↑ 1.08
↑ 1.47
↑ 4.12
↓ 0.62
↑ 1.33
↑ 1.12
↓ 0.82
↑ 1.3
↓ 0.05
↓ 0.68
↑ 2.13
↑ 1.18
↑ 1.15
↓ 0.96
↓ 0.42
↑ 3.03
↑ 4.52
↓ 0.59
↑ 1.92
↓ 0.29
↑ 1.34
↓ 0.3
↓ 0.45
↓ 0.94
↓ 0.02
↑ 6.16
↓ 0.83
↓ 0.31
↓ 0.12
↓ 0.6
↑ 2.72
↑ 1.34
↑ 10.88
↑ 11.53

0.01**
0.03*
0.56
0.11
0.02*
0.10
0.18
0.68
0.54
0.34
0.00**
0.03*
0.08
0.65
0.66
0.90
0.06
0.02*
0.02*
0.38
0.06
0.16
0.43
0.16
0.16
0.90
0.14
0.18
0.76
0.33
0.07
0.44
0.09
0.74
0.00**
0.08

↓ [19]; ↑ [13]
↓ [13]; ↑ [15]
↓ [13]
↑ [13]; ↓ [15]; ↓ [19]
↓ [19]
↑ [15]
↑ [15]
↑ [15]
↑ [15]
↑ [11]
↑ [16]
↑ [21]
↑ [18]; ↑ [11]
↑ [13]; ↑ [21]
↓ [21]
↑ [20]
↓ [13]; ↓ [18]; ↓ [21]; ↓ [17]
↓ [13]; ↓ [21]
↓ [19]; ↓ [17]
↓ [20]
↑ [21]; ↓ [18]
↓ [13]; ↑ [11]
↓ [11]
↓ [13]; ↓ [21]
↓ [13]
↓ [19]
↓ [13]
↓ [13]; ↓ [11]
↓ [11]; ↑ [13]
↓ [13]
↓ [13]
↑ [11]
↑ [21]; ↓ [13]
↑ [21]; ↓ [19]
↑ [13]; ↓ [19]
↑ [21]

The microbiota whose percent composition were significantly different in ASD subjects as characterized in the present study were compared with those 
identified from fecal samples in previous studies. ↑ and ↓ denote an increase and decrease in the percent composition, respectively. * and ** denote sig-
nificant differences between the indicated groups at p<0.05 and p<0.01, respectively (Student’s t-test).
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of g_Bifidobacterium might have benefits by probiotic treatment 
with g_Bifidobacterium.

Bacterial EVs in urine are useful for rapid assessment of 

bodily microbiota profiles in ASD

The microbiota profile assessed from urine EVs might reflect a 
large part of the gut microbiota. Nonetheless, we do believe that 
the microbiota profile assessed from urine EVs is not likely a sim-
ple alternative for microbiota profile assessed from stool. Possible 
sources for metagenome analysis of bodily microbiota may in-
clude stool bacteria, stool EVs, gut (ex, stomach and/or specific re-
gions of the small and large intestines) bacteria, respiratory exhale 
EVs, oral/nasal bacteria and EVs, urinary system bacteria and EVs, 
and blood EVs. Generally speaking, microbiota in stool represents 
the intestinal compartment, whereas microbiota in urine or blood 
reflects the whole body including the intestinal compartments, 
oral system, respiratory system, and urinary system. Nonetheless, 
among the body parts, the gut is the major source of bodily micro-
biota. It was reported that the metabolites of intestinal microbiota 
activities, including phenyllactate, p-cresol sulfate, concentrations, 
and serotonin in urine, plasma, and stool of mouse pups under-
nourished by timed separation from lactating dams, then resumed 
ad libitum nursing, were different from each other, although they 
had some correlations [44, 45]. Similar to metabolite profiles of 
intestinal microbiota activities, available information suggests that 
metagenome analysis assessed from these sources might be closely 
related, but represent some distinct landscapes. For an example, 
metagenome analysis of bacteria and bacteria-derived EV in stool 
of inflammatory bowel disease model mice indicated that the EV 
composition in stool was more drastically altered compared to that 
of bacterial composition in stool [25]. Considering that bacteria-
derived EV indicates the metabolically or pathologically activated 
microbiota [25, 27], urine EV may be more representative of the 
host’s microbiota activities than stool bacteria. 

To the best of our knowledge, this is the first report character-
izing microbiota in ASD individuals on the basis of urine EVs. 
Compared to blood and feces, urine is easily obtained in large 
volume and is readily available via a non-invasive method. Con-
sidering the general difficulties in repeated sampling microbiota 
sources from ASD individuals, particularly low functioning indi-
viduals with ASD or toddlers with ASD, using urine as a sample 
source would be a great advantage for rapid and repeated assess-
ments of microbiota changes under varying physiological contexts 
compared to the use of blood and feces. Comparative analyses of 
EV profiles from urine, blood and stool of ASD individuals will be 
valuable. Also it will be worth to understand EV profiles of ASD 
with diverse factors including age, sex, familial history, genetics, 

and ethnics.
Overall, the present study assessed urine EVs from individuals 

with mildly autistic subjects. We believe that further systematic 
and unbiased analyses of male and female subjects with broad 
ASD spectrums are necessary. This study focused on young adult 
subjects. Considering that ASD should be diagnosed in young 
children as early as 1.5~3 yr of age, this analysis should be expand-
ed to toddlers and infants.
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