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Abstract

Accurately predicting and testing the types of Pulmonary arterial hypertension (PAH) of

each patient using cost-effective microarray-based expression data and machine learning

algorithms could greatly help either identifying the most targeting medicine or adopting other

therapeutic measures that could correct/restore defective genetic signaling at the early

stage. Furthermore, the prediction model construction processes can also help identifying

highly informative genes controlling PAH, leading to enhanced understanding of the disease

etiology and molecular pathways. In this study, we used several different gene filtering

methods based on microarray expression data obtained from a high-quality patient PAH

dataset. Following that, we proposed a novel feature selection and refinement algorithm in

conjunction with well-known machine learning methods to identify a small set of highly infor-

mative genes. Results indicated that clusters of small-expression genes could be extremely

informative at predicting and differentiating different forms of PAH. Additionally, our pro-

posed novel feature refinement algorithm could lead to significant enhancement in model

performance. To summarize, integrated with state-of-the-art machine learning and novel

feature refining algorithms, the most accurate models could provide near-perfect classifica-

tion accuracies using very few (close to ten) low-expression genes.

Author summary

Pulmonary arterial hypertension (PAH) is a serious and progressive disease, with only a

roughly 50% of 5-year survival rate even with best available therapies. Accurately detect-

ing/differentiating different forms of PAH and developing drugs that could directly target

at genes involved in PAH pathogenesis are essential. We proposed a computational

approach using low-cost microarray data collected from a clinical trial and had accurately

predicted each PAH group. In particular, we considered the fact that there might exist

some low-expression genes that were usually discarded by researchers but might function
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collectively and significantly controlling the disease in each case. Therefore, we had devel-

oped different filtering algorithms that intentionally selected those low-expression genes

for constructing prediction model. Using a few highly informative low-expression genes

that had never been extensively investigated before, our systematic approach had pro-

duced models that could offer prefect accuracy in predicting PAH. Additionally, our anal-

ysis also found that the composition of gene factors controlling the PAH etiology under

each form are quite different from each other.

Introduction

Pulmonary arterial hypertension (PAH) is a fatal and progressive disease characterized by

increasing pulmonary vascular resistance leading to heart failure and death [1–4]. A significant

amount of research has been conducted previously, which greatly enhanced understanding of

the molecular mechanisms and etiology involved in PAH. However, the underlying interactive

effects of different genetic mutations and fundamental mechanisms of vascular dysfunction

remains unclear [4]. For example, mutation in bone morphogenetic protein (BMP) receptor

type II (BMPR2) was found to be significantly correlated with the development of both herita-

ble (HPAH) and the idiopathic form of PAH (IPAH) [5]. In another study, a known BMP sig-

naling regulator, transcription factor MSX1, was found to be strongly correlated with IPAH

cases [1]. Additionally, genes expression signatures from IPAH patients were either tightly

clustered with HPAH group or in an isolated cluster [4]. These findings suggest that different

forms of PAH might share the majority of the molecular origins/signaling pathways but there

might exist some distinct factors modulating the primary genetic expression in each case [1].

Furthermore, the majority of the PAH cases in human beings were found to be unassociated

with BMPR2 mutation [1], and some other factors have been identified to be partially contrib-

uting to IPAH [6,7]. We attributed the difficulty in fully unraveling the genetic factors causing

PAH largely to the lack of high-quality patient data in conjunction with advanced data pro-

cessing algorithms, limited comprehension of the genetic etiology, and overlook of some of the

important low-expression genes that might interactively affect PAH as a whole.

Microarray-based gene sequencing provides a fast and cost-effective screening technology,

and has been used in many PAH studies to identify important signaling pathways that could

impact PAH pathogenesis [3,8,9]. Particularly, more than 25 microarray studies have been

conducted on human PAH in the past ranging from single-gene expression to more complex

pathway analyses, providing large quantity of data pertaining to PAH pathogenesis. Following

common data processing protocols, the majority of these microarray data analysis routines

involve background noise reduction and normalization. Additionally, the differentially

expressed genes are typically ranked by their logarithmically transformed fold change values

or by moderated t-statistic values. The low-expression genes [e.g. log-transformed probe inten-

sity values < 27 or 28, or the inter-quartile range (IQR) detected threshold values] are typically

considered unreliable and treated as ‘noises,’ which are usually removed from the dataset man-

ually [10–12] or by applying the IQR filtering algorithm provided by software packages such as

the Bioconductor [13, 14]. However, we expect that these low-expression genes might have sig-

nificant interactive effects in PAH etiology and might become very informative when func-

tioning collectively. We hypothesized that using advanced data-science algorithms in

conjunction with high-quality clinical research data would reveal significant coexisting con-

trolling factors and interactive genes (including those with low-expression values) that could

impact PAH pathogenesis.

Low-expression genes might collectively influence PAH
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The primary goal of this study was to identify a small group of genes (including low-expres-

sion genes) and construct classification models that could accurately predict each patient’s PAH

status. To accomplish this, we ranked and selected genes according to their contribution towards

the model construction processes. Particularly, our research group had formulated a novel recur-

sive feature elimination algorithm integrated with conventional machine learning data analysis

paradigm. Three popular supervised machine learning algorithms were selected for the modeling

processes, including Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), and

Artificial Neural Networks (ANN). All three algorithms rely on labelled training data to find a

linear combination of features (e.g. LDA), a maximized margin of a decision boundary (e.g.

SVM), or an optimized neuron-edge network structure (e.g. ANN) that could best separate data

belonging to different groups. Additionally, this project investigated the possibility of construct-

ing highly accurate prediction models in determining different forms of PAH, which, if worked,

could provide great potential for future clinical usage and commercialization. The main dataset

was obtained as Affymetrix array-based gene expression data from anticoagulated whole blood

samples collected from 86 patients, which includes the healthy control group (22 patients), the

IPAH group (20 patients, BMPR2 mutation excluded), the HPAH (17 patients) and the BMPR2

mutation carriers that have no clinical signs of disease (27 Unaffected Mutation Carriers, UMC).

Our classification models indicated excellent performance in distinguishing each individual

patient group (Control vs. IPAH vs. HPAH vs. UMC); and separating the control group vs. the

combination of HPAH and IPAH, as well as the HPAH group vs. UMC. Additionally, different

gene filtering criteria were used to test the assumption that there might exist clusters of impor-

tant low-expression genes collectively controlling the forms of PAH in human beings.

Results

The overall data analysis scheme/workflow is presented in Fig 1. Without using any filtering

routine that is commonly embedded in many microarray software packages for duplication

removal and high IQR probe retention, our preliminary filtering methods resulted in dramatic

differences in the number of retained probe sets as indicated in Fig 2. Particularly, removing

genes with at least one group average smaller than 256 (or synonymously AGA>256) yielded

only 10,230 features, which is 18.7% of the entire gene count from the raw microarray results.

Likewise, if only genes with at least one group average smaller than 256 were selected

(ALOGA<256), 44,383 genes would be retained, accounting for 81.3% (equals 1–18.7%) of the

entire gene count. For comparison purposes, the conventional IQR-detected threshold filter-

ing (All>12, which corresponds to probe-sets with expression profile IQR> 0.3) allowed

38,597 genes pass the screening process [13,14].

For each combination of classification tasks and feature filtering methods, we investigated

the modeling performance synthesizing results from repeated MCCV, including feature rank-

ing, model training and testing. Furthermore, average classification accuracies were reported

based on the number of ranked features (refined or unrefined) used by each model that could

lead to the lowest error rate (or synonymously, the highest accuracy). Again, we anticipated

that this number (number of ranked features providing the greatest accuracy) could be highly

variable depending on the nature of the classification task per se as well as the feature ranking

and classification algorithms used under each routine.

Multiclass classification for distinguishing each individual PAH patient

group

Fig 3 depicts the error rate (measured as the number of miss-predicted patients divided by the

total number of patients) change when more genes from the ranked feature list were included
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in the prediction model. Solid or empty markers indicate algorithms incorporating SIRRFE-

based refinement, or without, respectively. Edge color differences indicate different classifica-

tion algorithms (black-ANN, blue-LDA, and red-SVM).

Regardless of incorporating SIRRFE or not, LDA-based classification algorithms always

resulted in an error peak across all feature filtering methods. Using very few (less than 50)

Fig 1. The overall data analysis design and logic flow. The first step was performed using the RMA function in the

Affy Package. The rest of the workflow was implemented using the Matlab Programming Language version R2017a

(The MathWorks, Inc., Natick, Massachusetts).

https://doi.org/10.1371/journal.pcbi.1007264.g001

Fig 2. Number of genes retained after applying different feature filtering methods including: keeping all genes (All); genes with average expression values larger

than 12 (All>12), a value detected by the IQR threshold detection method; genes with All PAH Group Average expression values larger than 128 (AGA>128) or

256 (AGA>256); genes with At Least One PAH Group Average expression value larger than 128 (ALOGA>128) or 256 (ALOGA>256); as well as with At Least

One PAH Group Average expression value smaller than 128 (ALOGA<128), or 256 (ALOGA<256).

https://doi.org/10.1371/journal.pcbi.1007264.g002
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ranked genes, both SIRRFE-refined SVM and LDA algorithms produced lower error rates

compared with other data processing routines. Generally speaking, the ANN-based algorithms

were not as accurate as the other two. The enhanced modeling performance, particularly in the

top 200 genes range, caused by SIRRFE were extremely significant under All Genes (Fig 3A),

All>12 as identified by the IQR method (Fig 3B), ALOGA<128 (Fig 3H), and ALOGA<256

(Fig 3H) filtering methods; and moderately significant under ALOGA>128 (Fig 3E) and

ALOGA>256 (Fig 3F) methods. Across all feature filtering methods, it was greatly evident that

both ALOGA<128 (Fig 3G) and ALOGA<256 (Fig 3H) had resulted in incomparably supe-

rior performance than others. Both filtering methods provided very small error rates using

very few ranked genes (less than 50). Additionally, the ALOGA<128 (Fig 3G) filtering method

appeared to be the optimal. SIRRFE refined SVM routines provided stable and satisfactory per-

formance across all filtering methods. Additionally, SIRRFE refined LDA routines produced

superior results around the top 370 genes range compared with SVM, but used substantially

greater number of features. Interestingly, both AGA>128 (Fig 3C) and AGA>256 (Fig 3D) fil-

tering methods tended to produce the worst results (>0.24 error rates), followed by both

ALOGA>128 (Fig 3E) and ALOGA>256 (>0.23 error rates, Fig 3F). It was also noteworthy

that it seemed inclusion of more ranked genes in those non-SIRRFE refined routines could

always boost performance; however, adding more than 200 SIRRFE refined ranked genes into

different classification algorithms could lead to little or even compromised performance. This

accented the efficiency and effectiveness of our SIRRFE-based feature ranking/selection

algorithms.

Binary classification-the healthy control vs. the combination of HPAH and

IPAH

Comparing all classification algorithms used in this task, both ANN and SVM yielded very

similar performance, and both appeared to be better algorithms than LDA as indicated Fig 4.

This was particularly obvious when very small quantity of ranked genes were used (<50).

Regardless feature filtering methods, SIRRFE provided little improvement when LDA algo-

rithm was used. Furthermore, under AGA>256 (Fig 4D), no improvement was observed

across all three classification algorithms. However, SIRRFE generally enhanced model classifi-

cation performance of both ANN and SVM-based algorithms. We also found similar error

peaks while using LDA-based algorithms as reported in the previous session. Likewise, we

observed that different feature filtering methods could have tremendous impact on the model-

ing results. In this binary classification case, we found that ALOGA<128 (Fig 4G),

ALOGA<256 (Fig 4H), and no filtering (Fig 4A) could all provide very low error rates. Partic-

ularly, ALOGA<128 (Fig 4G) and 256 (Fig 4H) generated perfect classification (zero error

rate) using less than 20 genes. Additionally, the majority of classification routines reached opti-

mal accuracy within the top 100 genes ranking range, and the performance enhancement for

including more genes diminished rapidly.

Fig 3. Classification error rate (1-accuracy) vs. the top number of ranked genes used by models, constructed to distinguish

each individual PAH patient group. Different feature filtering methods were used including: (a) keeping all genes (All); (b)

genes with average expression values larger than 12 (All>12), a value detected by the IQR threshold detection method; genes

with All PAH Group Average expression values larger than 128 (c, AGA>128) or 256 (d, AGA>256); genes with At Least One

PAH Group Average expression value larger than 128 (e, ALOGA>128) or 256 (f, ALOGA>256); as well as with At Least One

PAH Group Average expression value smaller than 128 (g, ALOGA<128), or 256 (h, ALOGA<256). Additionally, six feature

ranking and classification routines were used, including: a simple one-way Analysis of Variances (ANOVA) method followed by

Linear Discriminant Analysis (ANOVA+LDA), Support Vector Machine-based (ANOVA+SVM), or Artificial Neuron

Network-based (ANOVA+ANN) classifications; with or without incorporation of a novel Sliced Inverse Regression-based

Recursive Feature Elimination algorithm (SIRRFE).

https://doi.org/10.1371/journal.pcbi.1007264.g003
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Binary classification-HPAH vs. UMC

Overall, the impacts of various feature filtering methods on the model performance signifi-

cantly outweighed that attributed to different classification algorithms as indicated in Fig 5.

Apparently, any kind of “denoising” filtering method [e.g. AGA>128, 256 (Fig 5C and 5D);

All>12, (Fig 5B); or ALOGA>128,256 (Fig 5E and 5F)] had caused increased error rates.

Additionally, both ALOGA<128 (Fig 5G) and ALOGA<256 (Fig 5H) as well as All-Genes-

Included (Fig 5A) methods provided superb results (zero error) under all classification algo-

rithms. This effect became even more pronounced when SIRRFE was incorporated. In general,

all algorithms worked equally well under ALOGA<128 (Fig 5G), ALOGA<256 (Fig 5H), and

All-Genes-Included methods (Fig 5A); except for the similar error peak induced by LDA as

reported in the other classification tasks described preciously. Again, we observed significant

performance boost using SIRRFE. One finding that was very unique for this classification task

was that inclusion of more (>50) ranked genes in our classification routine had significantly

increased error rates except for those high-performance filtering methods [e.g. ALOGA<128,

256, and All (Fig 5A, 5G and 5H)].

Optimal model analysis

As expected, the multiclass classification for distinguishing each individual PAH patient group

was the most challenging classification task, which required larger number of genes for achiev-

ing acceptable accuracies and the final outcome depended greatly on the type of classification

algorithms used. Additionally, the performance enhancement using SIRRFE was very signifi-

cant. The binary classification of the healthy control vs. the combination of HPAH and IPAH

seemed to be much easier, with the majority of models yielding zero error rates using less than

20–30 genes. The contributions of different classification algorithms and SIRRFE refinement

were not as great as those filtering methods. Finally, the binary classification task involving

HPAH vs. UMC appeared to be the most responsive towards different feature filtering meth-

ods, with significant advantages observed under ALOGA<128, 256, or All-Genes-Included

methods.

To further examine the optimal models that provided the lowest error rates (highest accu-

racy) using the least number of ranked genes, we provided a detailed summarization in

Table 1. Additionally, considering that SIRRFE generally resulted in improved performance as

indicated in Figs 3–5, we only reported the optimal SIRRFE-refined results for simplicity pur-

poses. For the multiclass classification (Control vs. IPAH vs. HPAH vs. UMC), our best routine

(ALOGA<128 with ANOVA+SIRRFE+LDA) achieved an accuracy value of 0.98 using 199

ranked genes. On average, ALOGA<128 appeared to be the optimal filtering method (average

accuracy = 0.96) and LDA algorithm seemed to be the best classification algorithm without

considering the numerical stability and the error peak observed in Fig 3. For the binary classifi-

cation of the healthy control vs. the combination of HPAH and IPAH, the majority of the

Fig 4. Classification error rate (1-accuracy) vs. the top number of ranked genes used by models, constructed to distinguish

the healthy control vs. the combination of HPAH and IPAH patient groups. Different feature filtering methods were used

including: (a) keeping all genes (All); (b) genes with average expression values larger than 12 (All>12), a value detected by the

IQR threshold detection method; genes with All PAH Group Average expression values larger than 128 (c, AGA>128) or 256

(d, AGA>256); genes with At Least One PAH Group Average expression value larger than 128 (e, ALOGA>128) or 256 (f,

ALOGA>256); as well as with At Least One PAH Group Average expression value smaller than 128 (g, ALOGA<128), or 256

(h, ALOGA<256). Additionally, six feature ranking and classification routines were used, including: a simple one-way Analysis

of Variances (ANOVA) method followed by Linear Discriminant Analysis (ANOVA+LDA), Support Vector Machine-based

(ANOVA+SVM), or Artificial Neuron Network-based (ANOVA+ANN) classifications; with or without incorporation of a novel

Sliced Inverse Regression-based Recursive Feature Elimination algorithm (SIRRFE).

https://doi.org/10.1371/journal.pcbi.1007264.g004
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routines yielded perfect accuracies. Therefore, judging from the number of ranked genes for

achieving the perfect prediction, both SIRRFE-refined LDA and SVM algorithms with

ALOGA<128 filtering provided perfect accuracy using only eight genes. Overall, the

ALOGA<128 filtering method appeared to be the optimal (average accuracy = 1, average

number of ranked genes used = 11) and SVM seemed to be the best classification algorithm

(average accuracy = 0.99, average number of ranked genes used = 19). Finally, the optimal

model for the binary classification of HPAH vs. UMC was obtained using the ALOGA<128 fil-

tering method and the SIRRFE-refined SVM algorithm, providing a perfect classification accu-

racy using only 10 ranked genes. On average, the ALOGA<128 filtering method appeared to

be the optimal (average accuracy = 1, average number of ranked genes used = 18) and both

LDA and SVM seemed to be good classification algorithm (average accuracy = 0.97, average

number of ranked genes used = 14–16). Again, we thought SVM should be considered supe-

rior over LDA due to the error peak observed under LDA as indicated in Fig 5.

Finally, similar to what was reported in Figs 3–5, the binary classification of the healthy

control vs. the combination of HPAH and IPAH seemed to be the easiest task, providing a

Fig 5. Classification error rate (1-accuracy) vs. the top number of ranked genes used by models, constructed to distinguish

the HPAH vs. UMC patient groups. Different feature filtering methods were used including: (a) keeping all genes (All); (b)

genes with average expression values larger than 12 (All>12), a value detected by the IQR threshold detection method; genes with

All PAH Group Average expression values larger than 128 (c, AGA>128) or 256 (d, AGA>256); genes with At Least One PAH

Group Average expression value larger than 128 (e, ALOGA>128) or 256 (f, ALOGA>256); as well as with At Least One PAH

Group Average expression value smaller than 128 (g, ALOGA<128), or 256 (h, ALOGA<256). Additionally, six feature ranking

and classification routines were used, including: a simple one-way Analysis of Variances (ANOVA) method followed by Linear

Discriminant Analysis (ANOVA+LDA), Support Vector Machine-based (ANOVA+SVM), or Artificial Neuron Network-based

(ANOVA+ANN) classifications; with or without incorporation of a novel Sliced Inverse Regression-based Recursive Feature

Elimination algorithm (SIRRFE).

https://doi.org/10.1371/journal.pcbi.1007264.g005

Table 1. The maximum accuracy (lowest error rate) with the least number of ANOVA-ranked genes achieved by different feature filtering methods and classifica-

tion algorithms refined by SIRRFE under various classification tasks, including: the multiclass classification for distinguishing each individual PAH patient group

(Control vs. IPAH vs. HPAH vs. UMC), binary classification of the healthy control vs. the combination of HPAH and IPAH, and the binary classification of HPAH

vs. UMC.

Goal 1: Control vs. IPAH vs. HPAH vs. UMC

The Maximum Accuracy (Number of Ranked Genes used) with Different Gene Filtering Methods Average

All Genes All > 12 AGA>128 AGA>256 ALOGA>128 ALOGA>256 ALOGA<128 ALOGA<256

Classification Algorithms LDA 0.91 (335) 0.86 (325) 0.76 (917) 0.76 (794) 0.75 (876) 0.77 (832) 0.98 (199) 0.97 (287) 0.84 (570)

SVM 0.9 (58) 0.82 (41) 0.73 (182) 0.72 (8) 0.77 (218) 0.75 (19) 0.97 (31)� 0.93 (104) 0.82 (82)

ANN 0.87 (32) 0.77 (41) 0.69 (191) 0.66 (221) 0.71 (43) 0.68 (22) 0.94 (87) 0.92 (74) 0.78 (89)

Average 0.89 (142) 0.82 (135) 0.73 (430) 0.71 (341) 0.74 (379) 0.73 (291) 0.96 (106) 0.94 (155) 0.81 (247)

Goal 2: Control vs. (IPAH + HPAH)

Classification Algorithms LDA 1 (13) 1 (16) 0.99 (12) 0.99 (188) 0.99 (419) 0.99 (18) 1 (8)� 1 (18) 0.99 (86)

SVM 1 (13) 1 (13) 1 (13) 0.99 (56) 0.99 (9) 0.99 (21) 1 (8)� 1 (12) 0.99 (18)

ANN 1 (24) 1 (14) 1 (13) 0.99 (55) 0.99 (62) 0.99 (19) 1 (16) 1 (27) 0.99 (29)

Average 1 (17) 1 (14) 0.99 (13) 0.99 (100) 0.99 (163) 0.99 (19) 1 (11) 1 (19) 0.99 (45)

Goal 3: HPAH vs. UMC

Classification Algorithms LDA 1 (22) 1 (130) 0.95 (10) 0.94 (10) 0.94 (13) 0.98 (11) 1 (15) 1 (16) 0.97 (28)

SVM 1 (17) 1 (14) 0.94 (11) 0.92 (13) 0.98 (22) 0.97 (15) 1 (10)� 1 (23) 0.97 (16)

ANN 1 (49) 1 (49) 0.94 (12) 0.92 (16) 0.96 (25) 0.95 (19) 1 (30) 1 (35) 0.96 (30)

Average 1 (29) 1 (64) 0.94 (11) 0.93 (13) 0.96 (20) 0.97 (15) 1 (18) 1 (25) 0.97 (25)

�Indicates the optimal routine (filtering method + classification algorithm) evaluated based on accuracy (the greater the better) and the number of ranked genes used

(the smaller the better).

https://doi.org/10.1371/journal.pcbi.1007264.t001
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very high accuracy (overall average = 0.99) using a small number of ranked genes (overall aver-

age = 49). The multiclass classification (Control vs. IPAH vs. HPAH vs. UMC) was the most

challenging task with an overall accuracy of 0.81 using 247 genes on average. Across all classifi-

cation goals/tasks, the ALOGA<128 filtering method consistently provided the highest accu-

racy with the least number of genes utilized.

Gene expression analysis

To further analyze the refined list of highly informative genes (Table 1) used for constructing

the optimal classification models, and to evaluate the possibilities of distinguishing patient

groups without relying on advanced machine learning algorithms for comparison purposes;

we also performed conventional unsupervised hierarchical clustering that is commonly used

in microarray data analysis. Using this method, genes that share similar expression patterns

are more likely to be clustered together. Particularly, we selected the identical groups of genes

used for constructing the optimal machine learning classification model under each task

(Table 1). For the first classification task (Control vs. IPAH vs. HPAH vs. UMC), SVM-based

algorithm achieved an accuracy value of 0.97 using only 31 filtered (ALOGA<128) and

SIRRFE-refined genes (Table 1). The LDA-based model provided slightly better accuracy

(0.98) under the same filtering method, but used substantially larger number of genes (199),

thus, was not considered optimal. Instead of using SVM-based algorithms, unsupervised hier-

archical clustering identified five groups of patients based on the expression pattern of these 31

genes. As indicated in Fig 6A, Group I patients primarily belonged to the Control group.

Group II, III, and V consisted mainly of patients from the IPAH, UMC, and HPAH groups,

respectively. Group IV had a mixture both IPAH and HPAH patient groups. From a genetic

expression perspective, it appeared that certain protein coding genes such as the KIAA1217,

TNFRSF25, ADCY5, NFIA (FLJ39164), and LHFP; as well as some non-protein coding genes,

such as the LINC01181 (FLJ10489) typically had relatively higher expression values in the con-

trol patient groups than others. Genes such as the CARD19 (c9orf89), PIK3C3, LINC00308

(C21orf74), SLC7A5P1 (LAT1-3TM), BDNF, NECAB1 (EFCBP1), ZNF221 usually had higher

expression values in the IPAH patient group. The LINC00461 (LOC645323), DACH1, TXL

NGY (CYORF15A), CADPS, SSTR2, ZNF335 genes all had relatively higher expression values

in the UMC patient group. According to the KEGG pathways database [15], PIK3C3 is greatly

involved in the phosphatidylinositol signaling system, SSTR2 is involved in the cAMP signal-

ing pathway and the neuroactive ligand-receptor interaction processes, and BDNF is involved

in the neurotrophin signaling pathway. For the second classification task (control vs. the com-

bination of HPAH and IPAH), both LDA and SVM-based algorithms under the ALOGA<128

filter provided perfect accuracies using only eight SIRRFE-refined genes (Table 1). Using the

identical list of genes and unsupervised hierarchical clustering method, three major patient

clusters could be identified as Group I dominated by Control-group patients; Group II, pre-

dominately IPAH patients; and Group III, mainly HPAH patients as indicated in Fig 6B. Addi-

tionally, each individual gene behaved differently among different patient groups. Both LHFP

and FTCD genes seemed to have greater expression values in the Control patient group than

the other two. For the last classification task (HPAH vs. UMC), SVM-based model achieved

perfect accuracy using 10 genes filtered by the ALOGA<128 method (Table 1). Unsupervised

hierarchical clustering method identified two patient clusters using the same 10 genes, includ-

ing Group I consisting of mainly HPAH patients, and Group II mainly UMC patients as indi-

cated in Fig 6C. Both PLLP and SGCA genes had greater expression values in HPAH patient

groups than UMC. LEF1 genes indicated drastically increased expression levels in certain

UMC patients than HPAH. Other genes lacked consistency in expression values between
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patient groups, such as CYP21A2 and SYNE2. To summarize, all unsupervised hierarchical

clustering models yielded very limited performance compared to machine learning-based

models, which typically offered near-perfect/perfect accuracies.

Finally, Fig 7 summarized the average gene expression values and their corresponding stan-

dard errors within each patient group under the optimal feature filtering method (ALOGA <

128) as indicated in Table 1. The most remarkable finding was that out of the total 46 genes

used by the optimal models across all three classification tasks, only four genes had at least one

group average expression value larger than 128 (SSTR2, MEST, LEF1, and FAM38B). In other

words, more than 91% of the highly informative genes used for constructing the optimal mod-

els had all group averages less than 128. Additionally, each classification routine tended to gen-

erate a separate list of features. Only three genes were shared between tasks 1 and 2, including

LHFP, MRNA, and MEST. Last but not the least, 27 out of the total 46 genes (60%) had probe

intensity values smaller than 12, a threshold identified by the IQR filtering algorithm.

Fig 6. Conventional unsupervised hierarchical clustering indicated poor patient group separation compared to machine

learning-based models. Clustered heat maps were generated using (a) the identical 31 ranked genes used for constructing the

support vector machine-based (SVM) multiclass classification model, which distinguishes each individual PAH patient group

(Control vs. IPAH vs. HPAH vs. UMC) with an accuracy value of 0.97; (b) the identical eight ranked genes used for constructing

SVM-based classification model, which distinguish the healthy control vs. the combination of HPAH and IPAH with a perfect

accuracy; and (c) the identical 10 genes used for constructing the SVM-based classification model, which separates HPAH vs.
UMC with a perfect accuracy All expression levels are standardized along the row dimension and the hierarchical cluster trees are

generated using unsupervised linkage functions based on the inner squared/unweighted average distance between all pairs of

objects in any two clusters. Clustering of patients are depicted by the dendrogram on top with cluster numbers labeled in Latin

numbers. Higher expression levels are represented as increasing red, lower ones are represented as increasing blue, and white

represents close to the average. All gene names are appended to the right of the map with clustering dendrogram appended to the

left. Detailed clustering of patient expression profiles, including each patient’s PAH status and gene probe identifications

information, was included at S1 Fig.

https://doi.org/10.1371/journal.pcbi.1007264.g006

Fig 7. Expression values and standard errors of genes within each patient group under the optimal feature filtering method (ALOGA< 128) used for (blue bars)

distinguishing each individual PAH patient group (Control vs. IPAH vs. HPAH vs. UMC) with an accuracy value of 0.97; (red bars) distinguishing the healthy

control vs. the combination of HPAH and IPAH with a perfect accuracy; and (green bars) distinguishing the HPAH vs. UMC with a perfect accuracy. Genes labeled

using more than one color bar indicate sharing by multiple classification tasks. Additionally, the group averages of the UMC patient group, as well as the Control and

IPAH groups were not displayed under the red bar and the green bar labelled genes, respectively; because they are not used in these classification tasks.

https://doi.org/10.1371/journal.pcbi.1007264.g007
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Original array data are available at S1 Appendix and S2 Appendix. IQR-based threshold

detection report, codes and detailed modeling results files are made openly available at S3

Appendix. Detailed clustering of patient expression profiles (Fig 6), including each patient’s

PAH status and gene probe identifications information, is presented in S1 Fig.

Discussion

In this study, we designed and implemented a novel and efficient data analysis paradigm using

high-quality clinical data obtained from cultured, unaffected tissues that are free of contamina-

tion from drug effects with well-controlled confounding influence from other pathogenesis/

molecular factors. The reason for using cultured blood samples as a proxy for evaluating PAH

etiology is three-folds. First, the genetic expressions of fresh blood cells are largely impacted by

drug effects, the inflammatory state in the lungs of PAH patients, and by other factors induced

by individual variations. These factors could entirely override the impacts of baseline genetic

differences (particularly on those low-expression genes), and eventually make them invisible.

On the other hand, variations in gene expression in these cultured peripheral blood mononu-

clear cells are free of contamination and also reflect the key underlying differences in gene

expression, particularly related to PAH, which is true across tissue types in while-body metab-

olism and has been verified by our group in several previous studies [16,17]. Second, bone-

marrow derived cells are found to be more essential to many disease processes. Particularly,

transplantation of patient-derived bone marrow has been enough to induce PAH in mice [18],

and transplantation of mutant mice with wild-type bone marrow ameliorates it [19] in more

than one model [20]. Therefore, these cultured blood cells actually have important etiological

roles in identifying PAH.

To directly test the hypothesis that low-expression genes might be greatly informative in

differentiating different forms of PAH patient groups, we proposed a series of feature filtering

methods including a traditional IQR-based filtering method and others that are rarely used in

conventional microarray-based clinical studies. As a matter of fact, information relating to

adopting similar approaches in other disease studies of human being or other organisms is

extremely limited, even non-exist. Again, this is because the majority of these low-expression

genes are typically removed manually by the researchers or by certain “denoising” algorithms

or feature filtering functions offered by many software packages (e.g. IQR) as part of the stan-

dard data analysis pipeline. Furthermore, in this study, we also formalized a novel feature

ranking/selection algorithm (SIRRFE), which provided excellent modeling performance when

incorporated with state-of-art machine learning algorithms. Several findings could provide

important insights into designing innovative algorithmic approaches for analyzing microarray

data and enhance our understanding on the molecular pathogenesis of PAH and its interrela-

tionship with BMPR2 mutation.

Some highlights from this research finding are described in the following. First, as indicated

in Fig 2, our most efficient gene filtering method (ALOGA < 128) only resulted in a small

reduction in the number of probe sets selected (26% less). However, the performance boost

was quite remarkable as presented in Figs 3–5. This was consistently observed across all filter-

ing methods as indicated in Figs 3–5, but the most obvious effect was found in Fig 5. This indi-

cated that there exist a decent portion of genes that have high expression values across all

patients but are indeed less informative in identifying different PAH patient groups. Likewise,

genes with at least one PAH patient group average less than 128 (or 256), including those with

all group averages less than 128 (or 256), could actually serve as important signature features

for constructing accurate and robust classification models. Removing these genes could cause

significant losses in feature number (Fig 2) and increased error rates as observed under
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AGA>128 and AGA>256 (Figs 3–5). Generally speaking, the more low-expression genes

(<12 or 128) removed from the dataset, the less accurate the models became. This was consis-

tently observed in Figs 3–5 as indicated by the increased error rates from All genes, All>12,

AGA>128 to AGA>256. This, again, indicated that low-expression genes are indeed impor-

tant. Particularly, even the conventional IQR-based low-expression gene filtering could result

in elimination of highly informative low-expression genes. Therefore, extra caution should be

used while adopting various feature filtering methods/algorithms. To date, the main-trend

microarray-based data analysis still focuses on the post-filtering stage (e.g. t-test, correction

methods, p-value, etc.), but our study highlighted that the importance of pre-analysis filtering

methods/algorithms should never be overlooked. Second, our SIRFE-based feature refining

algorithm resulted in a significant reduction in error rate across several filtering methods and

classification algorithms. Particularly, it became extremely effective once incorporated with

more complex non-parametric algorithms, such as the ANN and SVM. The general superior

performance of SVM than ANN could be caused by the incorporation of kernel methods and

the uncertainties associated with the optimal ANN structure setting (e.g. number of hidden

layers, number of neurons, types of excitation functions, etc.). This finding could potentially

lay the essential groundwork for future work in the bioinformatics domain, where information

abounds with using state-of-the-art algorithms such as ANN, SVM, deep learning, etc.; but

efficient feature ranking/selection algorithms is always lacking. Third, the LDA-based algo-

rithms always resulted in an error peak around the top 50 to 100 ranking feature region. We

attributed this primarily to the functionality limitation of LDA itself because no other classifi-

cation methods had produced similar trends. Last but not the least, all SIRRFE refined algo-

rithms had produced very impressive optimal accuracy values (overall average 0.93) across

various combinations of gene filtering methods and classification algorithms as indicated in

Table 1. However, the number of genes used for achieving these optimal accuracy values varied

greatly. This finding again accented the effectiveness of SIRRFE. More importantly, the ability

for generating highly accurate classification/prediction models with only 8 to 31 features based

on cross validated datasets could lead to the development of clinical analysis software packages

for future use. We expect that similar methodology, model construction and data analysis rou-

tines could be extended to other pathological domains besides PAH.

The clustered heat maps (Fig 6A–6C) of all the three classification tasks provided an over-

view of the general patterns of the gene expression and sample grouping across the 86 patients

using conventional unsupervised hierarchical clustering methods. It was noteworthy that the

gene lists used in the clustering analysis were filtered and refined by SIRRFE, and were identi-

cal to those used in advanced machine learning models (e.g. SVM and LDA) indicated in

Table 1. However, unlike SVM or ANN, which transformed original data using kernel tricks

or abstract neural network structure to achieve near-perfect classification; conventional unsu-

pervised hierarchical clustering failed to separate patient groups accurately even with filtered

and SIRRFE-refined genes (Fig 6). Therefore, the chances for achieving great classification per-

formance using unsupervised clustering methods with unfiltered/unrefined gene lists are

extremely low. Additionally, it was noteworthy that none of the filtering nor SIRRFE algo-

rithms depended on any classification model. Therefore, there were no biases towards any

classification method. As indicated in this study, the overall performance of conventional heat

map-based microarray data analysis was extremely limited, particularly when solving complex

data analytic problems. Due to the fact that many informative genes identified in each task

were low-expression genes, information relating to their functionality and molecular pathways

are extremely scanty. Some highlights included KIAA1217 genes identified to be highly infor-

mative for completing the first, also the most challenging classification task. It was recently

found as a novel Rearranged-during-Transfection fusion gene detected in a small portion of
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lung adenocarcinomas and was known as an oncogenic driver factor [21]. Another important

gene identified in task 1, Dachshund 1 (DACH1) was found as an inhibitor that could prevent

proliferation and invasion of lung adenocarcinoma cells as well as growth of tumor cells

through repression of other factor genes [22]. For both task one and two (control vs. the com-

bination of HPAH and IPAH), the mesoderm-specific transcript (MEST) gene, also known as

the paternally expressed gene 1, was recognized as of high importance. It was found to be cor-

related with frequent loss of imprinting in lung adenocarcinoma cases [23,24]. For the last clas-

sification task (HPAH vs. UMC), the lymphocyte enhancement factor 1 (LEF1) gene, which

plays important roles in mediating lung tumor occurrence [25,26], had relatively greater

expression values than others. Additionally, the 21-hydroxylase instruction gene (CYP21A2),

another highly informative gene for task three, was recently found in the developing distal epi-

thelium of the human developing lungs, potentially with its products binding to the glucocorti-

coid receptor and exert certain intracrine actions [27].

There are some potential limitations associated with this study. First of all, only a limited

number of machine learning algorithms were used in the model construction and validation

processes. We expected this shouldn’t affect the result interpretation much because those

selected ones represent some of the most popular methods in data science domain. Addi-

tionally, the main goal of this study was to test the hypothesis stating that clusters of low-

expression genes might collectively control PAH, thus, model construction procedure per se
was not as important as obtaining the optimal models and the identification of the most

informative gene list/ranking. Third, because the primary goal of this study was to identify a

comprehensive ranking list of genes that could be uniformly evaluated using different gene

filtering and classification algorithms, no separate initial feature ranking method was used

for each data analysis routine. However, our SIRRFE-based gene refining algorithms was

carried out independently within each classification method. Fourth, our optimal model

analysis was based on the minimal MCCV error. We noted that the MCCV process involves

randomness. Other models, especially those with gene numbers similar to the optimal mod-

els, might have MCCV errors not statistically different from the optimal models. In other

words, one may derive a different optimal model by running the same program with differ-

ent random seeds. However, provided the models were built and selected by using the same

gene ranking list, we would expect they share sufficient overlap and the change of optimal

models should not affect our primary findings much. Fifth, our approach used kernel

method-based classification algorithms as a proxy for evaluating the importance of all genes

used in each task. The underlying methods considered the interactions and correlations

among all features, but these interactive relationships were not explicitly modeled or pre-

sented in this work, emphasizing the necessity for using interactive component modeling/

selection methods in future research [28]. Sixth, adding another set of independent valida-

tion cohort could greatly strengthen the study. However, due the lack of publicly available

high quality datasets, it is not possible to validate these machine learning models on other

datasets at the present time. The particular dataset used in this study is unique; because it is

obtained from cultured, unaffected, and uncontaminated tissues. The underlying geneti-

cally based differences in gene expression are easily overwhelmed by effects of end-stage

diseases and treatments (e.g. prostacyclin) as those obtained from fresh isolated blood sam-

ples, making them unusable for this kind of tasks. Meanwhile, we also recognize that the cell

immortalization processes, which should keep cross-group comparisons valid, might mask

or enlarge certain differences in gene expression. However, the baseline genetic differences

should be preserved and captured by our data analysis. We felt that the standard cross-vali-

dated modeling paradigm (e.g. MCCV) should provide adequate independency and control

over model over-fitting. Last but not the least, our work relied on the hypothesis that gene
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expression differences are essentially caused by genetic functional differences, thus, the cap-

tured differences were the cause of PAH instead of the consequences.

To date, microarray analysis has become an effective and powerful tool widely used by

many scientists in PAH research, providing reliable detection of genome-wide expression dif-

ferences among patient groups [6]. Information abounds with use of standard microarray data

analysis pipeline, which involves background noise reduction and normalization followed by

gene expression analysis using fold change values or t-statistics, as well as co-expression pat-

terns detection using different clustering/scaling algorithms (e.g. principal component analy-

sis). Additionally, the IQR-based filtering methods are still dominating, which involves great

amount of empiricism and subjectivity in the q-value threshold selection processes [13,14].

Only a few studies focused on investigating the signal threshold of gene expression when ana-

lyzing microarray data, and almost all of them endorsed the removal of low-expression data.

For example, Li et al. [12] adopted novel signal threshold algorithms, which greatly reduced

false positive/negative rates compared with two-fold change methods. The algorithms incorpo-

rated a two-step filtration strategy, which was very similar to our feature filtering methods but

using slightly different cutoff values (100 and 200). In another study, Aris et al. [11] performed

sensitivity analysis on different probe set intensity extraction methods and found that the min-

imum intensity cutoff thresholds were the most influential parameter affecting performance,

and low intensity genes should be eliminated for achieving better sensitivity. More impor-

tantly, the study explicitly emphasized the removal of low-expression noisy data using cutoff

intensity value of 100, which produced relatively stable performance with reasonable false posi-

tive rate. The most important finding of this study was that a large portion of the highly infor-

mative genes were low-expressed, regardless of cutoff threshold identification methods (IQR-

based or simple probe intensity value-based approaches). Thus, if conventional IQR-based

methods were adopted, 60% of highly informative genes would be eliminated before reaching

the phase for identifying differentially expressed genes. To date, information related to the

evaluation and investigation of low-expression genes from microarray data is still extremely

limited. Oftentimes, attention was given to how different filtering algorithms/methods could

be used for effectively removing low-expression genes [29] or how signal intensity of these

genes be enhanced [30]. For example, a previous study indicated that microarrays with long

oligonucleotide probes could greatly improve signal intensity of low-expression genes, which

might greatly influence the results [31]. Little research has evaluated the importance and/or

the collective effects of low-expression genes on various animal and human diseases. Particu-

larly, systematic modeling work focusing on PAH pathobiology is almost nonexistent. We

believe similar molecular pathways and/or genetic mechanisms should also exist in the etiology

of other types of diseases, and explicitly modeling the genetic signaling network and interplay

could provide important insights into better understanding of the underlying mechanisms of

the pathogenesis of PAH. These are not the main focuses of this study, but are indeed impor-

tant future directions.

Conclusion

In conclusion, this research indicated that low-expression genes, typically removed during the

background de-noising processes when analyzing microarray data, possess important biologi-

cal information for controlling PAH. Conservatively speaking, even though each individual

low-expression gene might be of little importance, the clusters of many should provide signifi-

cant synergetic impacts on many pathophysiological processes. Integrating the information

provided by these clusters of highly informative low-expression genes with advanced machine

learning algorithms and novel feature ranking/refining methods (e.g. SIRRFE) could help
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construct robust classification models that can accurately predict each patient’s PAH status

using very few genes. Finally, we acknowledge that using other advanced sequencing method

such as RNA-seq could lead to more important findings in novel pathway/biomarker identifi-

cation and risk evaluation related to PAH [4,31,32], thus, should also be investigated using

similar approaches as proposed in this study in the future.

Methods

Ethics statement

Human subject research ethnic statement is included in the manuscript and approved by

the Vanderbilt University School of Medicine. Study protocols were approved by the

VUMC Institutional Review Board. All participants had given written consent to participate

in clinical studies and underwent genetic counseling according to guidelines established by

the American College of Cardiology Foundation and the American Heart Association prior

to blood sampling.

Data preparation

All patient data were obtained from the Vanderbilt Pulmonary Hypertension Research Cohort

(VPHRC), which houses more than 40 year of clinical and biologic specimens of patients,

including those with IPAH and HPAH and their detailed medical history and family pedigree.

Various forms of PAH mutations were detected particularly in the HPAH patient group,

including frameshift, insertion/deletion, missense, and nonsense mutations. All PAH patients

were diagnosed by specialist physicians at Vanderbilt University Medical Center (VUMC) or

other regional hospitals. PAH was determined either by autopsy evidences indicating plexo-

genic pulmonary arteriopathy without alternative causes or by cardiac/clinical criteria widely

accepted internationally [33]. Study subjects of VPHRC were recruited via the Vanderbilt Pul-

monary Hypertension Center, the Pulmonary Hypertension Association, and the NIH Clinical

Trials website (http://clinicaltrials.gov). Study protocols were approved by the VUMC Institu-

tional Review Board. All participants had given written consent to participate in clinical stud-

ies and underwent genetic counseling according to guidelines established by the American

College of Cardiology Foundation and the American Heart Association prior to blood sam-

pling [34]. Ehylenediaminetetraacetic acid (EDTA) anticoagulated blood samples were care-

fully sampled at the time of hospitalization or clinical visits and then mailed via commercial

blood shipping kit. Genomic DNA was isolated using the Puregene DNA Purification Kits

(Gentra, Minneapolis, Minn.). Mutations of BMPR2 gene were performed by RT-PCR

described previously, and the results were reported in a recent paper published by our research

group [35]. We performed lymphocyte sampling/culturing from all patient groups using

exactly the same protocols established in previously published article [16]. In particular, lym-

phocytes were isolated from anticoagulated whole blood within 48 hr of collection and were

then exposed to Epstein-Barr Virus (EBV) to induce cell immortalization. Two ml blood was

diluted with 2 ml Phosphate-Buffered Saline (PBS) solution, layered on top of 3 ml of Lympho

Separation Medium (MP Biomedicals) and centrifuged for 10 minutes at 1,000 × G at room

temperature. Using a Pasteur pipet, the lymphocytes were removed from the serum/Lympho

Sep Media interface, washed in 10 ml PBS and then resuspended in 3 ml lymphoblast media

(RPMI 1640 media containing L-glutamine, and 20% fetal bovine serum) containing 2 μg/ml

cyclosporine. The lymphocytes were then infected with 3 ml Epstein-Barr virus (EBV) and

transferred to a T-25 vent capped flask. The cells were incubated at 37˚C/5% CO2 and fed

weekly with lymphoblast media plus cyclosporine until signs of growth occurred. RNA was

isolated from cultured lymphocytes using a Qiagen RNeasy mini kit (Valencia, Calif.).
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Complimentary DNA was synthesized and biotin-labeled complimentary RNA was produced

by in-vitro transcription reaction. Affymetrix HGU133 Plus 2 microarrays (Affymetrix, Foster

City, Calif.) were hybridized with 20 μg cRNA. Hybridization, washing, staining, and array

probe scanning were carried out according to the protocol specified in the Affymetrix Gene-

Chip Expression Analysis Manual.

Datasets

The detailed patient characteristics data and microarray expression results analyzed using the

Robust MultiArray Average algorithm (RMA) and R2.13/Bioconductor2.8 analysis were

reported in a previous study conducted by our group [1]. In that study, we deliberately

removed genes that have low-expression values according to common practices. For this

study, we used the original background-corrected, normalized/summarized expression data

processed by RMA function in the Affy Package. The summarized data contained 54,613 fea-

tures (gene probes) for each of the 86 samples (patients), including 22 healthy control, 20

IPAH, 17 HPAH, and 27 UMC patients.

Classification targets and preliminary filtering

One specific goal for the current research was to construct classification tools/models that

could provide the maximum accuracy while predicting patients’ PAH status using the least

amount of genes. Considering the fact that the complexity of the nature for the proposed tasks

could greatly affect the performance, we established classification targets using the following

grouping regime: 1) multiclass classification with each PAH group forming its own target

group, 2) binary classification including the healthy control vs. the combination of HPAH and

IPAH, 3) binary classification including HPAH vs. UMC; with the anticipated computational

difficulty levels arranged in a descending order.

Again, we expected that some low-expression genes might collectively affect certain PAH

pathogenesis pathways and were usually removed manually by the researchers or by the pre-

processing algorithms (e.g. IQR) embedded in microarray software packages. In light of this,

we used eight different feature filtering methods based on the RMA-normalized microarray

data, including: using all genes; or genes with average expression values larger than 12

(All>12), a value detected by the IQR threshold detection method [13,14]; or using genes with

all PAH group average expression values larger than 128 (AGA>128) or 256 (AGA>256); or

genes with at least one PAH group average expression value larger than 128 (ALOGA>128) or

256 (ALOGA>256); or genes with at least one group average expression value smaller than

128 (ALOGA<128) or 256 (ALOGA<256). The rationale for this feature filtering regime is

that: method 1 could preserve all expression data including those “noises”; method 2 serves as

a comparison method commonly used by researchers, which removes low-expression genes

based on IQR expression profile values; methods 3 and 4 closely imitated popular manual pre-

processing algorithms, which treat low-expression genes as undependable/unreliable features;

methods 5 and 6 would remove consistently low-expressed genes across all patient groups; and

method 7 and 8 should capture the clusters of low-expression genes that might be greatly

informative at distinguishing different PAH groups when functioning collectively.

Feature ranking/selection and classification

For each classification task and preliminary filtering method combination (3 groupings ×
8 filtering methods = 24 combinations) as indicated in the previous session, a standard

workflow of feature ranking, selection, model construction and validation was carried out

independently.
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Firstly, we performed the one-way Analysis of Variance (ANOVA) for each gene and

ranked the genes according to their p-values. A small p-value indicated that the mean gene

expression values were significantly different between two groups, so that the gene could

potentially serve as a good biomarker for distinguishing one group from the other. The smaller

the p-value was, the more significant the differences were. Particularly, for each classification

task, a different set of p-values were generated accordingly (four, two, and two groups for task

one, two, and three; respectively). Note that one-way ANOVA was somewhat analogous to the

correlation methods in two groups setting. It is simple and effective methods widely used for

feature ranking. However, its major drawbacks is that it fails to generate compact gene sets

and it may miss some complementary or highly correlated genes that have little contribution

when functioning alone [36]. Thus, in our study, we retained the top 1000 genes based on the

p-value (p-values < 0.001), which conserved the majority of highly informative genes for each

classification task and effectively controlled the computational complexity before entering the

feature refining step.

Secondly, we proposed a novel Sliced Inverse Regression-based Recursive Feature Elimina-

tion algorithm (SIRRFE) in this study to further refine the feature ranking list. Sliced inverse

regression (SIR) is a popular dimension reduction method in multivariate statistics and has

been used in many fields of science [37, 38]. It can be used in both regression and classification

problems. For classification problem, it typically reduces the dimension of the data with k tar-

get groups (classes) down to the most k-1 relevant dimensions by solving a generalized eigen-

decomposition problem:

Gb ¼ lSb;

Where Γ is the between group covariance matrix and S is the covariance matrix of the whole

data. The eigenvectors β associated to large eigenvalues are called effective dimension reduc-

tion (EDR) directions and could be used for transforming the original high dimension data to

low dimensional data. Each reduced dimension becomes a linear combination of the original

features. In this paper, we proposed an innovative recursive feature refining algorithm based

on SIR, which used the magnitude of the coefficient associated each gene to rank its impor-

tance. Particularly, since our dataset has a very high dimensionality (54,613 in the case of using

all genes or 1000 after preliminary selection after ANOVA) but limited sample size (86

patients), using SIR as a direct feature ranking method might greatly compromise the accuracy

of the feature ranking; which is a classic problem called “curse of dimensionality,” well known

in the machine learning community. However, the least informative feature could always be

considered as less influential/informative and a recursive feature elimination (RFE) procedure

could well overcome this problem [36,39,40]. Therefore, we proposed the following SIRRFE

Algorithm:
Inputs:
Training samples: X0 = [xij]i = 1:N,j = 1:G with N being the number of
patients and G0 the number of genes, class labels: y = [y1,y2,. . .yN]

T, k
= number of groups, feature ranking list r = [],
Initialize: S = 1: G0, X = X0,G = G0
Updates:
• Run SIR algorithm to obtain the EDR directions associated to the
largest l = min(G,k−1) eigenvalues β1 = [β11,β12,. . .,β1G],β2 = [β21,
β22,. . .,β2G],. . ., βl = [βl1,βl2,. . .,βl,G]
• Find g� ¼ argmin1�g�Gb

2

1;g þ b
2

2;g þ � � � þ b
2

lg

• r = [S(g�),r]
• S = S\S(g�)
• X = [xij]i = 1:N,j2S
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• G = G−1
Repeated until: S = [] (or equivalently G = 0)
Outputs:
Updated feature ranking list r

Finally, we tested the diagnosis power of the genes that were refined by SIRRFE or not

using three popular machine learning algorithms (LDA, SVM, and ANN) that have been

widely used in a broad array of problem domains [41–46]. Specifically, we used the Statistics

and Machine Learning Toolbox of Matlab Programming Language (The MathWorks, Inc.,

Natick, Massachusetts) for implementation. Additionally, we used 0.0001 to slightly regularize

the covariance matrix in LDA to guarantee its invertibility when it is singular. For SVM, we

adopted the one-versus-one coding design and applied linear kernel SVM for each binary clas-

sification problem. For ANN, we used five hidden layers in setting the neural network struc-

ture. Monte-Carlo cross validation (MCCV) technique was used in the model training and

validating processes. Specifically, the entire dataset was randomly divided into two sections,

with 80% of the samples retained for training the remaining 20% for testing. The classification

model was then built using the training set and the testing set was used for prediction and per-

formance evaluation. This process was repeated 100 times and the average values of perfor-

mance indices were reported. For performance evaluation, we only evaluated the average

accuracy defined as the total number of correctly predicted patients divided by the total num-

ber of patients. We ignored other evaluation metrics (e.g. precision, recall, area under the ROC

curve, etc.) because the structure of the dataset was generally balanced, meaning the number

of patients from each group was relatively similar to each other. The second task, which com-

bines two PAH groups (HPAH plus IPAH) into one target group, provided a slightly unbal-

anced structure; but should not be considered as highly skewed.

In summary, for each target grouping and filtering method combination, we performed

ANOVA-based gene ranking/selection, SIRRFE-based refinement, and three different

machine learning algorithm-based training and prediction routines; namely, ANOVA

+SIRRFE+LDA, ANOVA+SIRRFE+SVM, and ANOVA+SIRRFE+ANN. Additionally, we

also run the experiments without using SIRRFE (ANOVA+LDA, ANOVA+SVM, and

ANOVA+ANN) to verify its effectiveness.

Supporting information

S1 Appendix. Original array data.

(ZIP)

S2 Appendix. Original array data.

(ZIP)

S3 Appendix. IQR-based threshold detection report, codes and detailed modeling results

files.

(ZIP)

S1 Fig. Detailed clustering of patient expression profiles based on conventional unsuper-

vised hierarchical clustering indicated poor patient group separation compared to

machine learning-based models.

(PDF)

Author Contributions

Conceptualization: James West.

Low-expression genes might collectively influence PAH

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007264 August 12, 2019 22 / 25

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007264.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007264.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007264.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007264.s004
https://doi.org/10.1371/journal.pcbi.1007264


Data curation: James West.

Formal analysis: Qiang Wu.

Methodology: Qiang Wu, James West.

Resources: James West.

Supervision: Jiangping Bai.

Writing – original draft: Song Cui.

Writing – review & editing: Song Cui.

References
1. Austin ED, Menon S, Hemnes AR, Robinson LR, Talati M, Fox KL, et al. Idiopathic and heritable PAH

perturb common molecular pathways, correlated with increased MSX1 expression. Pulm Circ. 2011;

1:389–398. https://doi.org/10.4103/2045-8932.87308 PMID: 22140629

2. Fessel JP, Hamid R, Wittmann BM, Robinson LJ, Blackwell T, Tada Y, et al. Metabolomic analysis of

bone morphogenetic protein receptor type 2 mutations in human pulmonary endothelium reveals wide-

spread metabolic reprogramming. Pulm Circ. 2012; 2:201–213. https://doi.org/10.4103/2045-8932.

97606 PMID: 22837861

3. Fessel JP, Chen X, Frump A, Gladson S, Blackwell T, Kang C, et al. Interaction between bone morpho-

genetic protein receptor type 2 and estrogenic compounds in pulmonary arterial hypertension. Pulm

Circ. 2013; 3:564–577. https://doi.org/10.1086/674312 PMID: 24618541

4. West JD, Austin ED, Gaskill C, Marriott S, Baskir R, Bilousova G, et al. Identification of a common

Wnt-associated genetic signature across multiple cell types in pulmonary arterial hypertension. Am. J.

Physiol. Cell Physiol. 2014; 307:C415–430. https://doi.org/10.1152/ajpcell.00057.2014 PMID:

24871858

5. Lane KB, Machado RD, Pauciulo MW, Thomson JR, Phillips JA, Loyd JE, et al. Heterozygous germline

mutations in BMPR2, encoding a TGF-beta receptor, cause familial primary pulmonary hypertension.

Nat. Genet. 2000; 26:81–84. https://doi.org/10.1038/79226 PMID: 10973254

6. Remillard CV, Tigno DD, Platoshyn O, Burg ED, Brevnova EE, Conger D, et al. Function of Kv1.5 chan-

nels and genetic variations of KCNA5 in patients with idiopathic pulmonary arterial hypertension. Am. J.

Physiol. Cell Physiol. 2007; 292:C1837–1853. https://doi.org/10.1152/ajpcell.00405.2006 PMID:

17267549

7. Yu Y, Keller SH, Remillard CV, Safrina O, Nicholson A, Zhang SL, et al. A functional single-nucleotide

polymorphism in the TRPC6 gene promoter associated with idiopathic pulmonary arterial hypertension.

Circulation, 2009; 119:2313–2322. https://doi.org/10.1161/CIRCULATIONAHA.108.782458 PMID:

19380626

8. Hemnes AR Zhao M, West J, Newman JH, Rich S, Archer SL, et al. Critical Genomic Networks and

Vasoreactive Variants in Idiopathic Pulmonary Arterial Hypertension. Am. J. Respir. Crit. Care Med.

2016;194464–475.

9. Hoffmann J, Wilhelm J, Olschewski A, Kwapiszewska G. Microarray analysis in pulmonary hyperten-

sion. Eur. Respir. J. 2016; 48:229–241. https://doi.org/10.1183/13993003.02030-2015 PMID:

27076594

10. Mariani TJ, Budhraja V, Mecham BH, Gu CC, Watson MA, Sadovsky Y.A variable fold-change thresh-

old determines significance for expression microarrays. FASEB J. 2002; 17:321–323. https://doi.org/

10.1096/fj.02-0351fje PMID: 12475896

11. Aris VM, Cody MJ, Cheng J, Dermody JJ, Soteropoulos P, Recce M, et al. Noise filtering and nonpara-

metric analysis of microarray data underscores discriminating markers of oral, prostate, lung, ovarian

and breast cancer. BMC Bioinformatics, 2004; 5:185. https://doi.org/10.1186/1471-2105-5-185 PMID:

15569388

12. Li X, Kim J, Zhou J, Gu W, Quigg R. Use of signal thresholds to determine significant changes in micro-

array data analyses. Genet. Mol. Biol. 2005; 28:191–200.

13. Aluru M, Zola J, Nettleton D, Aluru SReverse engineering and analysis of large genome-scale gene net-

work. Nucleic Acids Res. 2012; 41: e24. https://doi.org/10.1093/nar/gks904

14. Chockalingam S, Aluru M, Aluru S. Microarray data processing techniques for genome-scale network

inference from large public repositories. Microarrays 2016; 5:23.

Low-expression genes might collectively influence PAH

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007264 August 12, 2019 23 / 25

https://doi.org/10.4103/2045-8932.87308
http://www.ncbi.nlm.nih.gov/pubmed/22140629
https://doi.org/10.4103/2045-8932.97606
https://doi.org/10.4103/2045-8932.97606
http://www.ncbi.nlm.nih.gov/pubmed/22837861
https://doi.org/10.1086/674312
http://www.ncbi.nlm.nih.gov/pubmed/24618541
https://doi.org/10.1152/ajpcell.00057.2014
http://www.ncbi.nlm.nih.gov/pubmed/24871858
https://doi.org/10.1038/79226
http://www.ncbi.nlm.nih.gov/pubmed/10973254
https://doi.org/10.1152/ajpcell.00405.2006
http://www.ncbi.nlm.nih.gov/pubmed/17267549
https://doi.org/10.1161/CIRCULATIONAHA.108.782458
http://www.ncbi.nlm.nih.gov/pubmed/19380626
https://doi.org/10.1183/13993003.02030-2015
http://www.ncbi.nlm.nih.gov/pubmed/27076594
https://doi.org/10.1096/fj.02-0351fje
https://doi.org/10.1096/fj.02-0351fje
http://www.ncbi.nlm.nih.gov/pubmed/12475896
https://doi.org/10.1186/1471-2105-5-185
http://www.ncbi.nlm.nih.gov/pubmed/15569388
https://doi.org/10.1093/nar/gks904
https://doi.org/10.1371/journal.pcbi.1007264


15. Okuda S, Yamada T, Hamajima M, Itoh M, Katayama T, Bork P, et al. KEGG Atlas mapping for global

analysis of metabolic pathways. Nucleic Acids Res.2008; 36:W423–6. https://doi.org/10.1093/nar/

gkn282 PMID: 18477636

16. West JD, Cogan J, Geraci M, Robinson L, Newman J, Phillips JA, et al. Gene expression in BMPR2

mutation carriers with and without evidence of pulmonary arterial hypertension suggests pathways rele-

vant to disease penetrance. BMC Med. Genomics. 2008; 1:45.

17. Austin ED, Cogan JD, West JD, Hedges LK, Hamid R, Dawson EP, et al. Alterations in oestrogen

metabolism: implications for higher penetrance of familial pulmonary arterial hypertension in females.

Eur. Respir. J. 2009; 34:1093–1099. https://doi.org/10.1183/09031936.00010409 PMID: 19357154

18. Asosingh K, Farha S, Lichtin A, Graham B, George D, Aldred M, et al. Pulmonary vascular disease in

mice xenografted with human BM progenitors from patients with pulmonary arterial hypertension. Blood

2012; 120:1218–1227. https://doi.org/10.1182/blood-2012-03-419275 PMID: 22745307

19. Yan L, Chen X, Talati M, Nunley BW, Gladson S, Blackwell T, et al. Bone Marrow-derived Cells Contrib-

ute to the Pathogenesis of Pulmonary Arterial Hypertension. Am. J. Respir. Crit. Care Med. 2016;

193:898–909. https://doi.org/10.1164/rccm.201502-0407OC PMID: 26651104

20. Bloodworth NC, Clark CR, West JD, Snider JC, Gaskill C, Shay S, et al. Bone Marrow-Derived Proan-

giogenic Cells Mediate Pulmonary Arteriole Stiffening via Serotonin 2B Receptor Dependent Mecha-

nism. Circ. Res. 2018; 123:e51–e64. https://doi.org/10.1161/CIRCRESAHA.118.313397 PMID:

30566041

21. Lee MS, Kim RN, I H, Oh DY, Song JY, Noh KW, et al. Identification of a novel partner gene, KIAA1217,

fused to RET: Functional characterization and inhibitor sensitivity of two isoforms in lung adenocarci-

noma. Oncotarget 2016; 7:36101–36114. https://doi.org/10.18632/oncotarget.9137 PMID: 27150058

22. Han N, Yuan X, Wu H, Xu H, Chu Q, Guo M, et al. DACH1 inhibits lung adenocarcinoma invasion and

tumor growth by repressing CXCL5 signaling. Oncotarget 2015; 6:5877–5888. https://doi.org/10.

18632/oncotarget.3463 PMID: 25788272

23. Kohda M, Hoshiya H, Katoh M, Tanaka I, Masuda R, Takemura T, et al. Frequent loss of imprinting of

IGF2 and MEST in lung adenocarcinoma. Mol. Carcinog. 2001; 31:184–191. PMID: 11536368

24. Nakanishi H, Suda T, Katoh M, Watanabe A, Igishi T, Kodani M, et al. Loss of imprinting of PEG1/

MEST in lung cancer cell lines. Oncol. Rep. 2004; 12:1273–1278. PMID: 15547750

25. Bleckmann A, Siam L, Klemm F, Rietkotter E, Wegner C, Kramer F, et al. Nuclear LEF1/TCF4 correlate

with poor prognosis but not with nuclear β-catenin in cerebral metastasis of lung adenocarcinomas.

Clin. Exp. Metastasis 2013; 30:471–482. https://doi.org/10.1007/s10585-012-9552-7 PMID: 23224985

26. Qiu J, Hao Y, Huang S, Ma Y, Li X, Li D, et al. MiR-557 works as a tumor suppressor in human lung can-

cers by negatively regulating LEF1 expression. Tumour Biol. 2017; 39:1010428317709467. https://doi.

org/10.1177/1010428317709467 PMID: 28639890

27. Bouhaddioui W, Provost PR, Tremblay Y. CYP21A2 expression is localized in the developing distal epi-

thelium of the human perinatal lung and is compatible with in situ production and intracrine actions of

active glucocorticoids. J. Steroid Biochem. Mol. Biol. 2016; 163:12–19. https://doi.org/10.1016/j.jsbmb.

2016.03.024 PMID: 27004467

28. Wu Q, Guinney J, Maggioni M, Mukherjee S. Learning gradients: predictive models that infer geometry

and dependence. J. Mach. Learn. Res. 2010; 11:2175–2198.

29. Sha Y, Phan JH, Wang MD. Effect of low-expression gene filtering on detection of differentially

expressed genes in RNA-seq data. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2015; 2015:6461–6464.

https://doi.org/10.1109/EMBC.2015.7319872 PMID: 26737772

30. Ramdas L, Cogdell DE, Jia JY, Taylor EE, Dunmire VR, Hu L, et al. Improving signal intensities for

genes with low-expression on oligonucleotide microarrays. BMC Genomics 2004; 5:35. https://doi.org/

10.1186/1471-2164-5-35 PMID: 15196312

31. Mura M, Anraku M, Yun Z, McRae K, Liu M, Waddell TK, et al. Gene expression profiling in the lungs of

patients with pulmonary hypertension associated with pulmonary fibrosis. Chest 2012; 141:661–673.

https://doi.org/10.1378/chest.11-0449 PMID: 21835902

32. Rhodes CJ, Wharton J, Boon RA, Roexe T, Tsang H, Wojciak-Stothard B, et al. Reduced microRNA-

150 is associated with poor survival in pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med.

2013; 187:294–302. https://doi.org/10.1164/rccm.201205-0839OC PMID: 23220912

33. Laumanns IP, Fink L, Wilhelm J, Wolff JC, Mitnacht-Kraus R, Graef-Hoechst S, et al. The noncanonical

WNT pathway is operative in idiopathic pulmonary arterial hypertension. Am. J. Respir. Cell Mol. Biol.

2009; 40:683–691. https://doi.org/10.1165/rcmb.2008-0153OC PMID: 19029018

34. McLaughlin VV Archer SL, Badesch DB, Barst RJ, Farber HW, Lindner JR, et al. ACCF/AHA 2009

expert consensus document on pulmonary hypertension: a report of the American College of Cardiol-

ogy Foundation Task Force on Expert Consensus Documents and the American Heart Association:

Low-expression genes might collectively influence PAH

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007264 August 12, 2019 24 / 25

https://doi.org/10.1093/nar/gkn282
https://doi.org/10.1093/nar/gkn282
http://www.ncbi.nlm.nih.gov/pubmed/18477636
https://doi.org/10.1183/09031936.00010409
http://www.ncbi.nlm.nih.gov/pubmed/19357154
https://doi.org/10.1182/blood-2012-03-419275
http://www.ncbi.nlm.nih.gov/pubmed/22745307
https://doi.org/10.1164/rccm.201502-0407OC
http://www.ncbi.nlm.nih.gov/pubmed/26651104
https://doi.org/10.1161/CIRCRESAHA.118.313397
http://www.ncbi.nlm.nih.gov/pubmed/30566041
https://doi.org/10.18632/oncotarget.9137
http://www.ncbi.nlm.nih.gov/pubmed/27150058
https://doi.org/10.18632/oncotarget.3463
https://doi.org/10.18632/oncotarget.3463
http://www.ncbi.nlm.nih.gov/pubmed/25788272
http://www.ncbi.nlm.nih.gov/pubmed/11536368
http://www.ncbi.nlm.nih.gov/pubmed/15547750
https://doi.org/10.1007/s10585-012-9552-7
http://www.ncbi.nlm.nih.gov/pubmed/23224985
https://doi.org/10.1177/1010428317709467
https://doi.org/10.1177/1010428317709467
http://www.ncbi.nlm.nih.gov/pubmed/28639890
https://doi.org/10.1016/j.jsbmb.2016.03.024
https://doi.org/10.1016/j.jsbmb.2016.03.024
http://www.ncbi.nlm.nih.gov/pubmed/27004467
https://doi.org/10.1109/EMBC.2015.7319872
http://www.ncbi.nlm.nih.gov/pubmed/26737772
https://doi.org/10.1186/1471-2164-5-35
https://doi.org/10.1186/1471-2164-5-35
http://www.ncbi.nlm.nih.gov/pubmed/15196312
https://doi.org/10.1378/chest.11-0449
http://www.ncbi.nlm.nih.gov/pubmed/21835902
https://doi.org/10.1164/rccm.201205-0839OC
http://www.ncbi.nlm.nih.gov/pubmed/23220912
https://doi.org/10.1165/rcmb.2008-0153OC
http://www.ncbi.nlm.nih.gov/pubmed/19029018
https://doi.org/10.1371/journal.pcbi.1007264


developed in collaboration with the American College of Chest Physicians, American Thoracic Society,

Inc., and the Pulmonary Hypertension Association. Circulation 2009; 119:2250–2294. https://doi.org/

10.1161/CIRCULATIONAHA.109.192230 PMID: 19332472

35. Machado RD Aldred MA, James V, Harrison RE, Patel B, Schwalbe EC, et al. Mutations of the TGF-

beta type II receptor BMPR2 in pulmonary arterial hypertension. Hum. Mutat. 2006; 27:121–132.

https://doi.org/10.1002/humu.20285 PMID: 16429395

36. Guyon I, Weston J, Barnhill S, Vapnik V. Gene Selection for Cancer Classification using Support Vector

Machines. Mach. Learn. 2002; 46:389–422.

37. Pan Q, Dias D. Sliced inverse regression-based sparse polynomial chaos expansions for reliability anal-

ysis in high dimensions. Reliab. Eng. Syst. Safe. 2017; 167:484–493.

38. Lin Q, Zhao Z, Liu JS. On consistency and sparsity for sliced inverse regression in high dimensions.

Ann. Statist. 2018; 46:580–610.

39. Hu X, Wang Y, Wu Q. Multiple authors detection: a quantitative analysis of dream of the red chamber.

Adv. Adpat. Data Anal. 2014; 6:1450012.

40. Hughes JM, Mao D, Rockmore DN, Wang Y, Wu Q. Empirical mode decomposition analysis for visual

stylometry. IEEE Trans. Pattern Anal. Math. Intell. 2012; 34:2147–2157.

41. Carleo G, Troyer M. Solving the quantum many-body problem with artificial neural networks. Science

2017; 355:602–606. https://doi.org/10.1126/science.aag2302 PMID: 28183973

42. Cui S, Youn E, Lee J, Maas SJ. An improved systematic approach to predicting transcription factor tar-

get genes using support vector machine. PLoS ONE 2014; 9:e94519. https://doi.org/10.1371/journal.

pone.0094519 PMID: 24743548

43. Rebentrost P, Mohseni M, Lloyd S. Quantum support vector machine for big data classification. Phys.

Rev. Lett.2014; 113:130503. https://doi.org/10.1103/PhysRevLett.113.130503 PMID: 25302877

44. Sharma A, Paliwal KK. Linear discriminant analysis for the small sample size problem: an overview. Int.

J. Mach. Learn. Cyb. 2015; 6:443–454.

45. Wu L, Shen C, Hengel A. Deep Linear Discriminant Analysis on Fisher Networks: A Hybrid Architecture

for Person Re-identification. Pattern Recognit. 2016; 65: 238–250.

46. Zhang Y, Dong Z, Wang S, Ji G, Yang J. Preclinical Diagnosis of Magnetic Resonance (MR) Brain

Images via Discrete Wavelet Packet Transform with Tsallis Entropy and Generalized Eigenvalue Proxi-

mal Support Vector Machine (GEPSVM). Entropy 2015; 17:1795–1813.

Low-expression genes might collectively influence PAH

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007264 August 12, 2019 25 / 25

https://doi.org/10.1161/CIRCULATIONAHA.109.192230
https://doi.org/10.1161/CIRCULATIONAHA.109.192230
http://www.ncbi.nlm.nih.gov/pubmed/19332472
https://doi.org/10.1002/humu.20285
http://www.ncbi.nlm.nih.gov/pubmed/16429395
https://doi.org/10.1126/science.aag2302
http://www.ncbi.nlm.nih.gov/pubmed/28183973
https://doi.org/10.1371/journal.pone.0094519
https://doi.org/10.1371/journal.pone.0094519
http://www.ncbi.nlm.nih.gov/pubmed/24743548
https://doi.org/10.1103/PhysRevLett.113.130503
http://www.ncbi.nlm.nih.gov/pubmed/25302877
https://doi.org/10.1371/journal.pcbi.1007264

