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Abstract

Background: Detecting single nucleotide polymorphism (SNP) interactions is an important and challenging task in
genome-wide association studies (GWAS). Various efforts have been devoted to detect SNP interactions. However, the
large volume of SNP datasets results in such a big number of high-order SNP combinations that restrict the power of
detecting interactions.

Methods: In this paper, to combat with this challenge, we propose a two-stage approach (called HiSSI) to detect
high-order SNP-SNP interactions. In the screening stage, HiSSI employs a statistically significant pattern that takes into
account family wise error rate, to control false positives and to effectively screen two-locus combinations candidate
set. In the searching stage, HiSSI applies two different search strategies (exhaustive search and heuristic search based
on differential evolution along with χ2-test) on candidate pairwise SNP combinations to detect high-order SNP
interactions.

Results: Extensive experiments on simulated datasets are conducted to evaluate HiSSI and recently proposed and
related approaches on both two-locus and three-locus disease models. A real genome-wide dataset: breast cancer
dataset collected from the Wellcome Trust Case Control Consortium (WTCCC) is also used to test HiSSI.

Conclusions: Simulated experiments on both two-locus and three-locus disease models show that HiSSI is more
powerful than other related approaches. Real experiment on breast cancer dataset, in which HiSSI detects some
significantly two-locus and three-locus interactions associated with breast cancer, again corroborate the effectiveness
of HiSSI in high-order SNP-SNP interaction identification.

Keywords: Genome-wide association studies, High-order SNP interactions, Statistically significant pattern, Family
wise error rate, Differential evolution

Background
It has been widely recognized that single nucleotide
polymorphisms (SNPs) are associated with a variety of
human complex diseases. Genome-wide association study
(GWAS) has became a powerful tool for detecting SNPs
and detected hundreds of single SNPs associated with
complex diseases [1]. However, these single SNPs can only
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explain a portion of the theoretical estimated heritability
of complex diseases [2]. Complex diseases are influenced
by various genetic variants and environmental factors.
Therefore, SNP-SNP interactions defined as various joint
effects of genetic variations should also be considered to
better understand etiology of complex diseases.

Existing approaches for searching two-locus SNP
interactions can be grouped into three categories: exhaus-
tive search, stochastic search and machine learning
based search. Methods based on exhaustive search
enumerate all possible SNP combinations of two-locus
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and perform interaction tests for each combination.
Ritchie et al. [3] proposed the multifactor dimensional-
ity reduction (MDR) approach, which partitions genotype
combinations into two classes and exhaustively searches
the best SNP combination by predicting the disease sta-
tus. Stochastic methods use the random sampling proce-
dures to search the space of SNP combinations. Zhang
et al. [4] proposed a Bayesian epistasis association map-
ping approach, which iteratively uses the Markov chain
Monte Carlo to search two-locus interactions. Machin-
ing learning methods [5], such as random forest, neural
networks and support vector machines, also have been
applied to discover SNP interactions. Bureau et al. [6]
focused on measures of predictive importance and applied
random forest to discover predictive polymorphisms or
markers of a phenotype, which are likely to affect disease
susceptibility.

There are some challenges in detecting high-order SNP
interactions. The first is the computational challenge.
Although the overall complexity is linear with the number
of individuals, it becomes exponential with the increase
of locus. For example, for a dataset containing 1 mil-
lion SNPs, the number of combinations to be tested is
tremendous: 5×1011 pairwise interactions, 1.7×1017 3-
way interactions, 8.3×1027 5-way interactions [7]. There-
fore, exhaustively searching high-order epistatic interac-
tions would be a heavy computational burden. The second
is the statistical challenge. To balance the false-positive
rate and false-negative rate, many stringent significance
thresholds should be applied.

Several high-order SNP interactions detection
approaches were developed to attack the aforementioned
challenges. Xie et al. [8] proposed EDCF (Epistasis
Detector based on the Clustering of relatively Frequent
items) to detect multi-locus epistatic interactions based
on two-locus interaction models. EDCF is a two-stage
method, it firstly groups all genotype combinations
into three clusters and then evaluates the significance
of interaction modules based on χ2-test. Guo et al. [9]
proposed a two-stage method called DCHE (Dynamic
Clustering for High-order genome-wide Epistatic interac-
tions detecting). DCHE dynamically groups all genotype
combinations into three to six subgroups, and then sep-
arately adopts χ2-test to evaluate the candidate pairwise
combination in each subgroup. Yang et al. [10] proposed
a stochastic search method (DECMDR). DECMDR
combines the differential evolution algorithm [11]
with a classification based multifactor-dimensionality
reduction to detect the significant associations
between cases and controls among all possible SNP
combinations.

These high-order SNP interactions detection
approaches still have some limitations. Most of these
approaches do not control false positives and apply

Bonferroni correction [12] in multiple hypothesis test for
GWAS. Bonferroni correction is simple, but it is often
overly conservative when the number of SNP is very
huge. The correction comes at the cost of increasing the
probability of producing false negatives, i.e., reducing
statistical power [13, 14].

In this paper, we propose a two-stage approach named
HiSSI to detect high-order SNP interactions based on
candidate pairwise SNP combinations. In the screening
stage, a statistically significant pattern considering fam-
ily wise error rate (FWER) is introduced to control false
positives in multiple hypothesis test. HiSSI makes the
statistically significant pattern faster and more memory-
efficient via a fast Westfall-Young permutation testing
[15], and obtains a corrected significant threshold to
screen significant pairwise SNP combination candidates.
In the search stage, HiSSI employs two different strate-
gies to search high-order SNP interactions. For a small
set, HiSSI uses the exhaustive search. For a large set,
HiSSI employs a heuristic search technique named dif-
ferential evolution (DE) algorithm [10, 11] along with
χ2-test. We conduct simulation studies with various
two-locus and three-locus disease models to compara-
tively study the power of HiSSI and that of state-of-
the-art approaches, including EDCF [8], DCHE [9] and
DECMDR [10]. The empirical study demonstrates that
our proposed HiSSI is generally more powerful than these
approaches. Further study on a real breast cancer (BC)
dataset shows that HiSSI also detects some two-locus
and three-locus combinations that are significantly asso-
ciated with breast cancer. These experiments prove that
HiSSI is capable to identify high-order interactions from
genome-wide data.

Methods
Problem statement
Suppose a genotype dataset include N samples and M
SNPs. We use y to denote the phenotype (including case
and control), P(s(i, j)) to denote the pattern of pairwise
SNP (i-th SNP and j-th SNP) combinations. Let N1 and N0
denote the number of affected samples (i.e., cases) and the
number of controls.

Suppose a SNP with a major allele A, and a minor allele
a. Three genotypes of a SNP are the homozygous refer-
ence genotype (AA), the heterozygous genotype (Aa), and
the homozygous variant genotype (aa). Generally, these
three genotypes are encoded as {0, 1, 2}. In this paper, for
k-th (k = {0, 1, 2}) genotype of i-th (i = {1, 2, . . . , M}) SNP,
we encode it as {0, 1} by the ratio of the number of case
and the number of control, which can be calculated as:

Rik = N0ik
N1ik

× ω (1)
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where N0ik and N1ik denote the number of k-th geno-
type of i-th SNP under control and case set, respectively;
ω = N1

N0
is a balance factor to control the influence of

unbalanced GWAS datasets. If Rik > 1, the genotype is
encoded by 1; otherwise, encoded by 0. In this way, each
SNP is encoded by {0, 1}. For each pairwise SNP combi-
nation P(s(i, j)), it is also encoded by {0, 1} instead of nine
genotype combinations as follows:

P(s(i, j)) =
{

0 Si = 0 and Sj = 0
1 otherwise (2)

where Si and Sj denote the i-th and j-th SNPs.
In the screening stage, HiSSI attempts to find all sig-

nificant candidate pairwise SNP combinations (snpi, snpj)
such that P(s(i, j)) is statistically associated with the phe-
notype y after correction for multiple hypothesis testing.
In the search stage, HiSSI tries to find out high-order
SNP interactions based on candidate set. The whole pro-
cedure of HiSSI is illustrated in Fig. 1. The following two
subsections elaborate on these two stages, respectively.

Stage 1: screening pairwise SNP combinations
For each pairwise SNP combination P(s(i, j)), we can
obtain the 2×2 contingency table for P(s(i, j)) and pheno-
type y as Table 1.

HiSSI evaluates the association between the phenotype
y and the variable P(s(i, j)) by χ2-test [16]. Suppose pi,j is
the corresponding p-value of the two-locus combination
(snpi, snpj) derived from the contingency table. If pi,j ≤
δ∗ (δ∗ is the corrected significant threshold), HiSSI deems
the two-locus combination is significant and places it into
candidate set.

HiSSI utilizes the minimum attainable p-value and the
set of testable SNP combinations at significance level δ

to make the permutation-testing more fast and efficient.
Since the minimum attainable p-value �(x) is symmetric
about N/2 [17], there are only �N

2 � +1 different values of
�(x) denoted as {δ0, δ1, . . . , δ� N

2 �}, which is a monotoni-
cally decreasing sequence. �(δ) is the testable region, one
two-locus combination (snpi, snpj) is testable if and only if
the marginal x ∈ �(δ). �k =[ σ k

l , σ k
r ]

⋃
[ N − σ k

r , N − σ k
l ]

Fig. 1 Procedure overview of HiSSI
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Table 1 Contingency table for two-locus combinations and
phenotype

Variables P(s(i, j)) = 1 P(s(i, j)) = 0 Total

y=case a N1 − a N1

y=control x − a N0 − (x − a) N0

Total x N − x N

x is the number of samples whose P(s(i, j)) take value 1. a has the same
interpretation as x but restricted to cases.

can be computed by starting from �(δ0) =[ 0, N] and
iteratively shrinked to obtain �(δk) from �(δk−1).

At initialization, HiSSI generates J phenotypes based
on J permutations, initializes J different minimum p-
values {p(j)

min}J
j=1 =1 (the maximum value a p-value can

take) and initializes the corrected significance threshold
as δ = δ1, δ1 is the largest value that �(x) can take other
than the trivial value δ0 = 1, which deems all SNP pairs
that are testable and significant. Then, HiSSI computes
the corresponding testability region �k and σ k

l . For each
two-locus combination, HiSSI computes x(i,j) and check
if the combination is testable or not in the current cor-
rected significance level δ. If xi,j ∈ �k , the combination
is testable and needs to be processed. In such case, HiSSI
does not need to exhaustively analyze all two-locus com-
binations, and only needs to analyze these combinations
whose marginal x is in testable region �. By updating
the minimum p-values by J permutations, FWER can be
obtained. If FWER(δ) > α, k needs to be increased so as
to decrease FWER(δ) to control the false positives. The
corrected significance threshold δ∗ can be calculated as
follows:

δ∗ = max{δ|FWER(δ) ≤ α} (3)

The above processes are summarized in Algorithm 1.
Once the corrected significance threshold δ∗ is

obtained, for each two-locus combination, HiSSI com-
putes the marginal xi,j and ai,j, which is the number of
{P(si(i, j))}N

i=1 under the cases, and then computes the
corresponding p-value via χ2-test. If pi,j ≤ δ∗, HiSSI
deems the combination is significant and places it into
the candidate set.

Stage 2: high-order SNP interactions detection
In the search stage, HiSSI provides two strategies (exhaus-
tive search and DE-based search) to search high-order
SNP interactions based on candidate set.

Exhaustive search for small candidate set
Exhaustive search is affordable when the candidate set is

small and has a larger chance to detect high-order SNP
interactions than heuristic search. HiSSI applies exhaus-
tive search on a small candidate set. To exhaustively search

Algorithm 1 Seek Corrected Significant Threshold δ∗
1: Input: Genotype dataset D, phenotype y, number of

permutations J and target FWER α

2: Output: Corrected significance threshold δ∗
3: Function Main()
4: for t = 1, . . . , J
5: y(t) ← rand_permute(y)
6: p(t)

min ← 1
7: end for
8: for each two-locus combination (snpi, snpj) (i ∈

[ 0, M − 1] , j ∈[ 1, M] )

9: Set k ← 1 and compute δk , �k and σk
10: Compute xi,j = {P(s(i, j))}N

n=1
11: if xi,j ∈ �k then
12: Process_SNP()
13: end if
14: end for
15: End Function
16: Function Process_SNP()
17: for t = 1, . . . , J
18: Compute p(t)

i,j

19: p(t)
min ← min(p(t)

min, p(t)
i,j )

20: end for
21: while FWER(δ) > α

22: Set k ← k + 1 and recompute δk , �k and σk
23: end while
24: End Function

K-SNP (K ≥ 3) interactions, HiSSI combines all candidate
SNP pairs to a set of K-SNP, and computes the corre-
sponding p-value obtained by χ2-test of K-SNP. HiSSI
reports these combinations whose p-values are smaller
than the corrected significant thresholds δ∗ of K SNPs,
obtained by the Algorithm 1.

Heuristic search for large candidate set
For a large candidate set, HiSSI employs a heuristic search
approach based on differential evolution (DE) algorithm
[11, 18–23] with χ2-test to identify high-order SNP inter-
actions. DE is a powerful heuristic and parallel direct
search approach with few control variables. Here, we take
K = 3 as an example to illustrate the process of detecting
high-order interactions. The DE-based search strategy is
presented as follows.

1. Initialization: for the candidate set C obtained from
the first stage, a target vector is employed to
represent a combination of three SNPs from C and
defined as: :

Xi,g = (f1,i,g , f2,i,g , f3,i,g |f ∈ C), i = 1, 2, . . . , ps
(4)
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where ps is the population size, i.e., the number of
randomly generated target vectors; g means the
g-th iteration. i is the i -th target vector in the
population, fj,i,g(j = 1, 2, 3) represents one of the
three SNPs in the i -th target vector in the g-th
generation. At the initialization (g=0),
fj,i,g(j = 1, 2, 3) are randomly generated as follows:

fj,i,0 = randj([ 0, 1)) × (upper − lower) + lower, j = 1, 2, 3
(5)

where upper and lower are the upper and lower
bounds of the indexes of the candidate set.
randj([ 0, 1)) randomly generates a uniformly
distributed random value within the range [0,1).

2. Mutation: in the mutation operation, each target
vector generates a mutant vector:

Vi,g+1 = Xr1,g + F · (Xr2,g−Xr3,g), i = 1, 2, . . . , ps
(6)

where r1, r2 and r3 ∈ (1, 2, . . . , ps) are the random
indices of the population, and they are mutually
different. Xr1,g , Xr2,g and Xr3,g are the selected three
target vectors. F ∈[ 0, 2] is a real and constant factor
that controls the amplification of differential
variation (Xr2,g−Xr3,g).

3. Recombination: in the recombination operation, the
mutant vector Vi,g+1 and the current target vector
Xi,g are incorporated to generate a trial vector:

Ui,g+1 = (u1,i,g+1, u2,i,g+1, u3,i,g+1) (7)

where

uj,i,g+1 =
{

vj,i,g+1, if randb(j)≤CR or j=rnbr(i)
xj,i,g , if randb(j)>CR or j 	=rnbr(i)

j = 1, 2, 3

(8)

where randb(j) is the j -th evaluation of a uniform
random number generator with an outcome in
[ 0, 1], CR ∈[ 0, 1] is the crossover constant. rnbr(i)
is a randomly chosen index in (1, 2, 3), it ensures that
Ui,g+1 obtains at least one parameter from Vi,g+1.

4. Boundary constraints [10]: a trail vector must be
checked whether it is a feasible SNP combination
(i.e., no parameters in the trial vector outside of the
problem space), and can be adjusted as follows:

uj,i,g+1 =

⎧⎪⎨
⎪⎩

randj([ 0, 1)) × (upper − lower) + lower,
if (uj,i,g < lower or uj,i,g+1 > upper)

xj,i,g , otherwise
(9)

5. Selection: the selection operation determines
whether the target vector Xi,g is replaced by the trial
vector Ui,g+1 in the next generation or not. An

evaluation function is used to evaluate the target
and trial vectors. Here, HiSSI employs the
chi-square test as the evaluation function. If the
corresponding p-value of trial vector Ui,g+1
obtained by chi-square tese yields a better value
than the corresponding p-value of target vector Xi,g ,
namely p(Ui,g+1) < p(Xi,g), then the target vector
Xi,g+1 is set to Ui,g+1 in the next generation;
otherwise, Xi,g+1 is set to Xi,g .

Through the above four iterative operations (step (2)-
(5)), the value of the target vector can be improved by
competing between target vectors and trial vectors. These
four operations are repeated until the maximum num-
ber of generations (gmax) is reached, and the target vector
with the best fitness value is the detected high-order SNP
interaction.

FWER control
In GWAS, SNP interaction detection leads to a multi-
ple hypothesis testing problem that generates lots of false
positives. To alleviate this problem, Boferroni correction
[12] and permutation-testing [24], are widely used for cor-
recting the multiple testing problem. However, Bonferroni
correction only works when the number of test patterns
is known in advance and small [14]. HiSSI applies a fast
permutation-testing method [15] to strictly control the
family wise error rate (FWER), defined as the possibility of
producing at least one false positive. In the permutation-
testing, HiSSI generates a re-sampled dataset by randomly
permuting the phenotype. Then, HiSSI computes the min-
imum p-value across all genotype combinations. Repeat-
ing the permutation for a sufficiently number (J) of times,
it obtains J different minimum p-values {p(t)

min}J
t=1. The

FWER can be evaluated as:

FWER(δ) = 1
J

J∑
t=1

1[ p(t)
min ≤ δ] (10)

where 1[ ·] is an indicator function which takes value 1 if
its argument is true and 0 otherwise; δ is the corrected
significance threshold.

FWER control requires FWER ≤ α with α being the
desired significant threshold. By doing this, the corrected
significant threshold δ is chosen appropriately. The opti-
mal δ∗ is obtained by solving the same optimization
problem as Equation (3). In addition, the optimization
problem also can yield the highest power (the probability
of detecting true positives), and strictly control the FWER.

Results
In this section, we evaluate the performance of HiSSI on
both simulated and real datasets. In the simulated study,
we compare HiSSI with EDCF [8], DCHE [9], DECMDR
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[10] and HiSSI-BC on different disease models (includ-
ing two-locus and three-locus) with different parameters
settings. HiSSI-BC is a variant of HiSSI, it obtains the
corrected significant threshold using the Bonferroni cor-
rection. We adopt the same measure of power suggested
by Wan et al. [25] as follows:

Power = D′

D
(11)

where D′ is the number of datasets where exist true SNP
interactions, and D is the number of all datasets. The def-
inition of marginal effect size λ of a disease locus is the
same as the one used in Zhang et al. [4]:

λ = pAa/pAA
(1 − pAa)/(1 − pAA)

− 1 (12)

where pAA and pAa denote the penetrance of genotype
AA and Aa, respectively. For the real study, we apply
HiSSI on the real breast cancer (BC) GWAS dataset col-
lected from Wellcome Trust Case Control Consortium
(WTCCC) [26].

Experiments on simulated datasets
To do comprehensive experimental comparison, we con-
duct simulation experiments on both two-locus and
three-locus disease models. Since the number of candi-
date SNP combinations is small after screening in the first
stage, we apply exhaustive search to detect high-order
interaction.

Two-locus disease models
Three two-locus disease models (Model1, Model2 and
Model3) are used to compare HiSSI with EDCF [8], DCHE
[9], DECMDR [10] and HiSSI-BC. Model1 and Model2
are proposed by Marchini et al. [27], where Model1 with a
threshold effect, and Model2 with a multiplicative effect.
Model3 is proposed by Zhang et al. [4] with an addi-
tive effect. The marginal effect size is relatively small in
the simulation study, λ = 0.2 for Model1, Model2, and
Model3. Minor allele frequencies (MAFs) are the same
for both loci at three levels: MAF = 0.1, 0.2 and 0.4; and
for Linkage disequilibrium (LD), r2 is set to 0.7 and 1.0:
r2 = 0.7 is simulated for disease loci ungenotyped, but
their LD markers genotyped; r2 = 1.0 is simulated for
directly genotyped disease loci. We use the same simula-
tion program as [4] to simulate 100 datasets under each
parameter setting for each disease model. Each dataset
contains 100 SNPs, and the sample size is fixed to 1000,
2000 and 4000.

Figure 2 reveals the performance of different approaches
on these three models. The power of all methods improves
significantly when the sample size increasing from 2000
to 4000, and r2 changing from 0.7 to 1. However, the

power of most approaches decreases as the MAFs of dis-
ease associated markers varying from 0.2 to 0.4. The trend
is consistent with the results in [4, 27].

Across all models, HiSSI outperforms HiSSI-BC, which
evidences that the adopted permutation test is more effec-
tive than Bonferroni correction for controlling false pos-
itives in multiple hypothesis test. In addition, HiSSI also
has a better performance than other approaches (EDCF,
DCHE and DECMDR) for Model1–Model3 except some
cases, Model1 with N = 2000, r2 = 0.7, MAF = 0.4, and
Model2 with r2 = 1.0, MAF = 0.4. In these cases, HiSSI
has a lower power than EDCF and DCHE. That is because
HiSSI may lose some genetic associations, since it parti-
tions two-locus genotype combinations into two groups,
which is much smaller than the number of genotypes. On
the contrary, EDCF and DCHE partition genotype com-
binations into more groups than HiSSI; EDCF has three
groups, DCHE has three to six groups; whose numbers
are larger than two and can retain more genetic infor-
mation. In most cases, DECMDR has the lowest power,
since it applies heuristic search and only reports the opti-
mal solution. Another interesting observation is that the
power of EDCF drastically decreases when N = 4000 with
r2 = 0.7 and MAF = 0.2. One possible reason is that EDCF
divides each three-locus combinations into three groups
and uses the chi-square test with two degrees of free-
dom to measure the significance, resulting in more false
positives.

In addition, high-dimensional simulation datasets with
1000 SNPs, 2000 and 4000 samples on Model2 are also
used to test HiSSI and other comparing approaches. The
settings of MAF and LD are the same as before and
the simulation datasets are also generated by the same
simulation program as Zhang et al. [4].

Figure 3 reveals the performance of different approaches
on Model2 with 1000 SNPs. Similarly, the power of all
approaches significantly increases when the sample size
increase from 2000 to 4000, r2 varies from 0.7 to 1; and
decreases when MAF varies from 0.2 to 0.4. For the model
with 1000 SNPs, HiSSI still outperforms HiSSI-BC, which
confirms the effectiveness of permutation test on high-
dimensional datasets. HiSSI has a better performance
than other approaches except r2 = 1.0, MAF = 0.4. In such
case, HiSSI has a lower power than EDCF and DCHE.
EDCF loses its power when N = 4000 with r2 = 0.7 and
MAF = 0.2. All these results are consistent with the results
on the small simulation datasets with Model2.

Three-locus disease models
We use two three-locus disease models (Model4 and
Model5) to test the ability of HiSSI in detecting high-
order SNP interactions. Model4 is a three-locus interac-
tion model proposed by Zhang et al. [4]. Model5 is the
extension of Model1, which is a two-locus interaction
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Fig. 2 Powers of different approaches on three two-locus disease models (Models 1–3) with 100 SNPs. Powers of DCHE, DECMDR, EDCF, HiSSI and
HiSSI-BC on three two-locus disease models with different minor allele frequency (MAF), sample size (N) and linkage disequilibrium (LD); HiSSI-BC is
a variant of HiSSI that uses the Bonferroni correction to obtain the corrected significant threshold. N0 is the number of controls, N1 is the number of
cases, and M is the number of SNPs. The absence of a bar indicates no power. (a) Model1; (b) Model2; (c) Model3

Fig. 3 Powers of different approaches on Model 2 with 1000 SNPs. Powers of DCHE, DECMDR, EDCF, HiSSI and HiSSI-BC on Model2 under different
minor allele frequency (MAF) and linkage disequilibrium (LD) with 1000 SNPs, 2000 and 4000 samples; HiSSI-BC is a variant of HiSSI which uses the
Bonferroni correction to obtain the corrected significant threshold. N0 is the number of controls, N1 is the number of cases, and M is the number of
SNPs. The absence of a bar indicates no power
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model with a threshold effect. The sample size increases
from 2000 to 4000; the minor allele frequencies (MAFs)
is set to 0.1, 0.2, and 0.4; the r2 changes from 0.7 to 1.0;
and the marginal effect is set to λ = 0.3 for Model4 and
Model5. We use the same simulation program in Zhang et
al. [4] to simulate 100 datasets under each parameter set-
ting for each disease model, and each dataset contains 100
SNPs.

Figure 4 shows the performance of different approaches
on two three-locus disease models for high-order interac-
tions detection. The power of all approaches significantly
improves with the sample size increasing from 2000 to
4000, and r2 changing from 0.7 to 1. Besides, for Model5,
the power of most approaches decreases with MAFs of the
disease associated markers varying from 0.2 to 0.4. This
trend is consistent with the results in two-locus disease
model. However, the trend is not obvious for Model4 with
MAF varying from 0.1 to 0.4.

For these two models, HiSSI again has a better per-
formance than HiSSI-BC, which shows that permutation
test is also more effective than Bonferroni correction
in detecting high-order interactions. In addition, HiSSI
obtains the highest power for Model4–Model5 except
some cases, Model4 with N = 2000, r2 = 1.0, MAF
= 0.2, 0.4; and N = 4000, MAF = 0.4. In these cases,
HiSSI has a lower power than EDCF and DCHE. That

is due to the same reason as two-locus disease mod-
els, resulting more false positives in HiSSI. For both
models, the power of EDCF still drastically decreases
when N = 4000 with r2 = 0.7 and MAF = 0.2, that is
consistent with the results in two-locus disease model.
Since EDCF, DCHE and HiSSI-BC all employ corrected
Bonferroni correction to calculate the threshold, from
the power between HiSSI between these methods, we
can conclude that permutation test is more effective
than Bonferroni correction for controlling false positives
in multiple hypothesis test. In most cases, DECMDR
has the lowest power, since it applies heuristic search
in a larger search space and only reports the optimal
solution.

Besides, high-dimensional simulation datasets with
1000 SNPs, 2000 and 4000 samples on Model4 and
Model5 are also used to test HiSSI and other comparing
approaches. The settings about MAF and LD are the same
as the simulation datasets with 100 SNPs. Figure 5 reveals
the performance of different approaches on Model4 and
Model5 with 1000 SNPs. The trend for power of all
approaches is consistent with that on the small simulation
datasets. For both the two models, HiSSI still has a bet-
ter power than HiSSI-BC; and HiSSI obtains the highest
power except Model4 with MAF = 0.4, and N = 2000, r2 =
1.0, MAF = 0.2. In these cases, the power of HiSSI is lower

Fig. 4 Powers of different approaches on two three-locus disease models (Models 4–5) with 100 SNPs. Powers of DCHE, DECMDR, EDCF, HiSSI and
HiSSI-BC on two three-locus disease models with different minor allele frequency (MAF), sample size (N) and linkage disequilibrium (LD); HiSSI-BC is
a variant of HiSSI that uses the Bonferroni correction to obtain the corrected significant threshold. N0 is the number of controls, N1 is the number of
cases, and M is the number of SNPs. The absence of a bar indicates no power. (a) Model4; (b) Model5
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Fig. 5 Powers of different approaches on two three-locus disease models (Models 4–5) with 1000 SNPs. Powers of DCHE, DECMDR, EDCF, HiSSI and
HiSSI-BC on two three-locus models under different minor allele frequency (MAF) and linkage disequilibrium (LD) with 1000 SNPs, 2000 and 4000
samples; HiSSI-BC is a variant of HiSSI that uses the Bonferroni correction to obtain the corrected significant threshold. N0 is the number of controls,
N1 is the number of cases, and M is the number of SNPs. The absence of a bar indicates no power. (a) Model4; (b) Model5

than EDCF and DCHE. All these results are consistent
with the results on small simulation datasets.

In addition, we also conduct experiments on two mod-
els (two-locus and three-locus models) without marginal
effect with 100 and 1000 SNPs. The experimental set-
tings, results and analysis can be found in Additional file 1.
All simulated models used in simulated experiments are
showed in Additional file 2.

Experiment on the breast cancer dataset
A real breast cancer dataset (BC) collected from WTCCC
project [26] is used to further evaluate HiSSI. It is reported
that breast cancer is caused by a combination of genetic
and environmental risk factors [28]. The BC dataset con-
tains 15347 SNPs from 1045 affected individuals and
3893 normal individuals. Quality control is performed to
exclude very low rate samples and SNPs. For a SNP, if its
call rate <95% across all samples, or its p-value (Hardy-
Weinberg equilibrium) < 0.0001 in controls, or with MAF
< 0.1, the SNP will be excluded. For a sample, if its call rate
< 98%, the sample will be excluded. Through the quality
control, the BC dataset contains 1045 case samples and
3893 control samples with 5607 SNPs.

Some significant two-locus and three-locus combi-
nations on BC dataset identified by HiSSI is shown
in Table 2. In the two-locus combinations, (rs1108842,
rs2289247) is in gene GNL3 on chromosome 3. The

protein encoded by GNL3 may interact with p53 and may
be involved in tumorigenesis. (rs2242665, rs2856705) is on
chromosome 6, where rs2856705 is susceptibly associated
with breast cancer [29]. (rs1801197, rs6971091) is on chro-
mosome 7, where rs1801197 is located in gene CALCR.
It is evidenced that rs1801197/CALCR can lead to breast
cancer [29]. (rs365990, rs7158731) is on chromosome 14,
where rs365990 is in gene MYH6, and rs7158731 is in gene
ZNF839. MYH6 encodes the alpha heavy chain subunit of
cardiac myosin, and mutations in this gene cause familial
hypertrophic cardiomyopathy and atrial septal defect 3. It
is reported that MYH6 and ZNF839 are associated with
breast cancer [29]. (rs8059973, rs3785181) is on chromo-
some 16, where rs8059973 is in gene DBNDD1, rs3785181
is in gene GAS11. rs8059973/DBNDD1 is associated with
breast cancer [29]. GAS11 includes 11 exons spanning 25
kb and maps to a region of chromosome 16 that is some-
times deleted in breast and prostrate cancer. This gene is
a putative tumor suppressor gene and is reported as being
associated with breast cancer [30]. (rs2822558, rs2822787)
is on chromosome 21, where rs2822558 is located in gene
ABCC13. ABCC13 is a member of the superfamily of
genes encoding ATP-binding cassette (ABC) transporters.
It is reported that rs2822558/ABCC13 is related to breast
cancer [29].

In the three-locus combination, (rs879882, rs2523608,
rs805262) is on chromosome 6. rs879882 is in gene
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Table 2 Significant two-locus and three-locus combinations identified by HiSSI on WTCCC BC data

Significant Interaction Chromosome and Related Genes Single-Locus p-Value Interaction p-Value

(rs1108842, rs2289247) (chr3: GNL3, chr3: GNL3) (1.139 × 10−2, 5.981 × 10−1) 6.048 × 10−45

(rs1130643, rs10017772) (chr4: SPARCL1, chr4: DCHS2) (2.823 × 10−1, 3.830 × 10−1) 2.865 × 10−8

(rs3761967, rs715748) (chr5: BDP1, chr5: BDP1) (1.720 × 10−1, 4.073 × 10−1) 1.238 × 10−54

(rs2242665, rs2856705) (chr6: SLC44A4, chr6: *) (3.484 × 10−4, 6.178 × 10−8) 4.369 × 10−25

(rs1801197, rs6971091) (chr7: CALCR, chr7: FAM71F1) (4.983 × 10−2, 6.728 × 10−1) 2.504 × 10−10

(rs365990, rs7158731) (chr14: MYH6, chr14: ZNF839) (8.807 × 10−3, 3.319 × 10−3) 1.636 × 10−6

(rs8059973, rs3785181) (chr16: DBNDD1, chr16: GAS11) (3.019 × 10−4, 1.464 × 10−3) 4.050 × 10−7

(rs2822558, rs2822787) (chr21: ABCC13, chr21: SAMSN1-AS1 ) (6.630 × 10−3, 1.662 × 10−1) 4.207 × 10−21

(rs879882, rs2523608, rs805262) (chr6: POU5F1, chr6: HLA-B, chr6: BAG6) (2.711 × 10−1, 7.096 × 10−1, 5.836 × 10−4) 1.030 × 10−11

*Indicates that the related gene is unknown.

POU5F1, which plays a key role in embryonic develop-
ment and stem cell pluripotency [31]. rs2523608 is located
at gene HLA-B and belongs to human leukocyte antigen
(HLA) class I heavy chain paralogs. HLA class I anti-
gen expression plays a central role in the immune system
and is closely related to the aggressiveness and prognosis
of BC [32]. rs805262 belongs to gene BAG6, which was
first characterized as part of a cluster of genes located
within the human major histocompatibility complex class
III region. In addition, BAG6 is implicated in the control
of apoptosis and is associated with basal cell carcinoma
[33]. These identified significant two-locus and three-
locus combinations demonstrate that HiSSI is capable to
detect SNP interactions on genome-wide data.

Parameter setting
• In the screening stage, we set J = 100 (number of

permutations), α = 0.05 (target FWER).
• In the search stage, there are four common

parameters of DE algorithm: population size (ps),
generation size (g), the scaling factor (F) and
crossover constant (CR). We set these parameters
according to previous studies [10, 34] For real dataset,
we set: ps = 500, g = 500, F = 0.5 and CR = 0.5.

Discussion
Comparison between HiSSI and other approaches

• Comparison between HiSSI and HiSSI-BC: HISSI-BC
is a variant of HiSSI, the main difference between
HiSSI and HiSSI-BC is that HiSSI employs a fast
permutation test to obtain corrected significant
threshold, while HiSSI-BC uses the Bonferroni
correction. For all simulation datasets on different
disease models (including two-locus and three-locus),
HiSSI always outperforms HiSSI-BC, which
demonstrates that permutation test is more effective
than Bonferroni correction in correcting multiple
testing.

• Comparison between HiSSI and EDCF, DCHE: HiSSI
utilizes a statistically significant pattern combined
with permutation test to partition genotype
combinations into two subgroups, which considers
FWER to control false positives; while EDCF
partitions genotype combinations into three
subgroups, and DCHE dynamically partitions
genotype combinations into three to six subgroups.
Moreover, both EDCF and DCHE utilize the
Bonferroni correction to correct multiple testing.
The results on simulation datasets reveals HiSSI has
a better performance than EDCF and DCHE, which
proves the effectiveness of significant pattern in
controlling false positives.

• Comparison between HiSSI and DECMDR: both
DECMDR and HiSSI utilize differential evolution
(DE) algorithm to identify SNP interactions.
DECMDR utilizes DE algorithm in the whole search
space and uses the classification based
multifactor-dimensionality reduction (CMDR) as a
fitness measure to evaluate values of solutions in the
DE process. While HiSSI utilizes DE algorithm in a
smaller search space based on candidate set and the
chi-square test as the fitness measure in DE process,
it has a higher probability to search the true
interactions. Since MDR is time-consuming and only
reports the optimal solution, DECMDR has a lower
power than other approaches in most cases.

The advantages and limitations of HiSSI
The development of HiSSI is to overcome of the lim-
itations of existing approaches on detecting high-order
SNP interactions from genome-wide data. HiSSI displays
several advantages over existing methods:

• HiSSI applies a FWER-constrained statistically
significant pattern to strictly control false positives in
multiple hypothesis test.
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• HiSSI utilizes a fast permutation testing to obtain
corrected significant threshold, which avoids
analyzing all two-locus combinations, greatly reduces
the total runtime; and also avoids the conservatism of
Bonferroni correction.

• HiSSI provides two alternative search strategies,
exhaustive search and heuristic search for different
sizes of GWAS datasets.

The running time of HiSSI is relatively long compared
with other approaches. It is a general problem for exist-
ing approaches that employ permutation test. Although
HiSSI utilizes a fast permutation test, which is faster than
traditional permutation test, it is still time-consuming
compared with heuristic algorithms and those approaches
with Bonferroni correction. In addition, HiSSI does not
directly control the main effects, which may introduce
the negative influence of main effects for pairwise SNP
combinations; and HiSSI only partitions genotype com-
binations into two groups, which may lose some genetic
association. These limitations may degrade the perfor-
mance of HiSSI. Future work can be extended to address
the above limitations.

Conclusions
Detecting potential SNP-SNP interactions in GWAS is
an indispensable and challenging problem. In this paper,
we proposed a two-stage method called HiSSI to solve
the problem. In the screening stage, HiSSI controls the
false positives using an efficient statistically significant
pattern that considers the family wise error rate, and
obtains significant candidate pairwise SNP combinations.
In the search stage, HiSSI utilizes two different strategies,
exhaustive search and DE-based search, to detect high-
order SNP interactions. Exhaustive search is applied to
a small candidate set, and DE-based search is used for
a large candidate set. A series of simulation experiments
on both two-locus and three-locus disease models show
that HiSSI is more powerful than other related approaches
in detecting SNP interactions. Further experiment on a
real WTCCC dataset corroborates that HiSSI is capable to
identify high-order SNP interactions from genome-wide
data.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12920-019-0584-6.

Additional file 1: Experiments on models without marginal effect. Two
disease models (a two-locus and a three-locus models) without marginal
effect are used to test the performances of different approaches under
different parameter settings.

Additional file 2: Simulated disease models. Simulated two-locus and
three-locus models used in the simulation experiments are listed in tables.
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