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Introduction
Metabolic (dysfunction)-associated fatty liver disease (MAFLD) has become a major 
health problem in developed countries. It has become the first pandemic liver disease 
in China, and its prevalence rate is ballooning. It is a genetic stress disorder related 
to the environment and to obesity, hypertension, hyperlipidemia, and type 2 diabetes 
[1]. The lifestyle of patients with MAFLD has a direct effect on disease development; 
for example, host microbial environment disorders and endocrine and metabolic 
environment disorders driven by poor diet and exercise habits are important factors 
in the development of MAFLD. Currently, MAFLD is highly heterogeneous; thus, cat-
egorizing all patients with a diverse and differential array of disease drivers as patients 
with non-alcoholic fatty liver disease (NAFLD) can negatively impact clinical deci-
sion making. Therefore, NAFLD has been renamed as MAFLD [2–7], and MAFLD 
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is used instead of NAFLD in this article. The latest diagnostic criteria for MAFLD 
are based on histology (biopsy sample), imaging or blood biomarker evidence of fat 
accumulation in the liver (hepatic steatosis) with one of the following three criteria: 
overweight/obesity, diagnosis of type 2 diabetes mellitus (T2DM), or evidence of 
metabolic dysregulation [8–10]. Most drugs currently on the market are focused on 
weight and diet control, but they may produce side effects; for example, pioglitazone 
may cause weight gain. In addition, orlistat has no significant effect on liver fibrosis, 
and surgical procedures may be traumatic. Therefore, more effective and safer medi-
cations are needed [11, 12].

The G protein-coupled receptor (GPCR) superfamily has many extensively studied 
members [13, 14]. GPR119 is a member of the GPCR superfamily. GPR119 activa-
tion has ligand-dependent dual effects: pancreatic secretion of insulin in a glucose-
dependent manner and intestinal secretion of incretins (glucagon-like peptide-1 
[GLP-1] and glucose-dependent insulinotropic peptide [GIP]) [15]. In addition, many 
studies have shown that the activation of GPR119 causes an increase in intracellu-
lar cyclic AMP (cAMP) levels and the release of incretins, including GLP-1, GIP, and 
glucagon-like peptide-2 (GLP-2) [16]. GLP-1 is a peptide secreted by human small 
intestinal L cells. It has regulatory effects on the gastrointestinal tract, blood sugar 
regulation, and improvement of insulin resistance, such as reducing dietary intake, 
increasing satiety, increasing gastrointestinal motility and prolonging the time of 
gastric emptying [17]. Habib et  al. demonstrated that GLP-1 and peptide YY (PYY) 
are colocalized in L cells, suggesting that PYY is involved in reducing dietary intake 
[18]. Studies have shown that the fatty acid amide-induced activation of GPR119 on 
intestinal L cells may promote more focused and specific GLP-1/PYY activity, includ-
ing inhibiting gastric emptying, regulating satiety, and inhibiting intestinal peristalsis 
[19]. GLP-2, a sister protein of GLP-1, is synthesized in the brain stem and released 
by intestinal L cells. It has the functions of promoting nutrient absorption, protect-
ing the intestinal barrier, reducing intestinal permeability, and exerting anti-inflam-
matory effects [20–23]. GLP-2 can also reduce dietary intake, although the effect is 
less pronounced than that of GLP-1. Importantly, Hsieh J et  al. found that GLP-2 
can increase fat absorption through the stimulated CD36 pathway and can promote 
the release of chylomicrons, lipoprotein particles that transport exogenous hypertri-
glyceridemia (TG), and ultimately promote lipolysis and inhibit an increase in body 
weight, which is undoubtedly beneficial for patients with MAFLD [24].

GLP-1 is expressed in the body for a short time because dipeptidyl peptidase 4 
(DPPIV) quickly decomposes it. Therefore, increasing the level of glucagon-like peptide 
or inhibiting its decomposition is of potential clinical significance for treating MAFLD. 
A recent study by Shuyong Zhang and others found that Gordonoside F, a steroid gly-
coside isolated from the African cactiform Hoodia gordonii, directly targets GPR119 to 
induce weight loss [25]. Even with slight weight loss, insulin resistance, abnormal blood 
glucose and blood pressure respond and improve quickly [21, 26]. Because GPR119 has 
significant advantages in blood glucose regulation, it has been a drug target to treat type 
2 diabetes mellitus with many excellent results [27, 28]. Here, we update and discuss the 
potential therapeutic effect of the GPR119/incretin axis in MAFLD to provide a basis for 
the transformation of innovative clinical results of MAFLD.
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Gene and tissue distribution of GPR119

GRP119 has been described in various studies and has many aliases, such as SNORF25, 
GPCR2, 19AJ, OSGPR116, and glucose-dependent insulinotropic receptor [29–34]. Rob-
ert Fredriksson et al. first determined that GPR119 is an orphan receptor in the rhodop-
sin family [35]. Akatoshi Soga et al. confirmed, for the first time, in 2005 that GPR119 is 
activated by lysophosphatidylcholine (LPC), indicating that GPR119 is a de-orphanized 
GPCR [36]. GPR119 pertains to the biogenic amine and MECA (melanocortin, endothe-
lial differentiation gene, cannabinoid, and adenosine) cluster of receptors [35, 37]. The 
human GPR119 gene is located on chromosome X at Xp26.1; it contains only one coding 
exon and encodes a protein of 335 amino acid bases. Also, the GPR119 gene is predicted 
to be widely present in other mammals, including rats, mice, rabbits, horses, and cat-
tle. Among them, human GPR119 shares 82%, 37% and 73.7% amino acid identity with 
mouse, fugu and rat GPR119, respectively [35].

In terms of tissue distribution, Zhi-l Ian GC and others found that compared with the 
entire pancreas, the expression of GRR119 is mainly distributed in the β cell fraction 
of the islet population, and it is also highly expressed in the gastrointestinal tract GLP-
1-producing cells and GIP-producing cells, such as intestinal endocrine cells [15, 38, 39]. 
The main controversy is the distribution of other organs, especially in the brain and liver. 
Some researchers have found that GPR119 also exists in mouse liver, rat insular cortex 
gustatory insula, human brain, liver, skeletal muscle, and myocardium [33, 38, 40–42]. 
However, Odori S and others found that GPR119 mRNA was not detected in esophagus, 
liver or cerebrum in human tissues [43]; the different results may be due to low expres-
sion levels or differences in detection conditions. More researchers should adopt more 
sensitive and unified detection schemes to clarify its distribution (see Fig. 1).

GPR119 ligands

GPR119 is mainly a stimulatory G protein α-subunit (Gas)-coupled G protein-coupled 
receptor [44], but it seems to be related to Gai and Gaq and can interact with β-arrestin 
[45]. Identifying its ligands and clarifying related physiological responses are essential to 
treat diseases [46]. We referenced and updated the list of ligands appropriately [15, 41]. 
The ligands are mainly categorized into endogenous ligands (see Table 1) and synthetic 
agonists (see Table 2). Many studies of GPR119 agonists have focused on their aspects of 
promoting insulin secretion and improving glucose tolerance. However, MAFLD is cor-
related with the pathological factors of T2DM, and hence GPR119 agonists have poten-
tial as therapeutic agents for alleviating MAFLD.

Endogenous ligands of GPR119

Oleoylethanolamide (OEA), LPC, retinoic acid, palmitoylethanolamide (PEA), arachi-
donoylethanolamide (AEA), etc., are considered  to be endogenous ligands that acti-
vate GPR119 on intestinal endocrine cells (ECCs) to activate adenylate cyclase (AC), 
thereby increasing the downstream cAMP and increasing the release of incretins, 
causing a series of physiological effects [47–51]. The rank order of the effectiveness of 
various ligands to activate GPR119 is first OEA, then LPC, PEA, stearoylethanolamide 
(SEA), and finally AEA [49]. Ryouta Kogure et al. found that the ω-3 unsaturated fatty 
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acid metabolite 5-hydroxy-eicosapentaenoic acid (5-HEPE) also activates GPR119 with 
an efficacy approximately equal to that of OEA [52]. N-oleoyldopamine (OLDA), a lipid 
amide, can be extracted from the bovine striatum and has been a potent endogenous 
ligand for GPR119 along with other hydroxybenzyl lipid amides. The potency of OLDA 
is equivalent to the potency of OEA [53, 54]. In addition, some lysophospholipids and 
other lipid breakdown products, such as LPC, oleic acid, and 1-Oleoyl glycerol (1-OG), 
can activate GPR119, but because of their low potency, their activity has not been deter-
mined [55].

LPC

For all the studied lysophospholipids, LPC produced by phospholipase A2 (PLA2) 
seems to be the most effective in activating GPR119 [55]. LPC activates GPR119 to 
cause glucose-dependent insulin release (GSIS). It has been a promising candidate for 
anti-T2DM [56]. The earliest discovery showing that LPC can promote insulin release 
was made by Metz et al. [57], who discovered various LPCs in 1986, including LPC 16:0, 
LPC 18:0, and LPC 18:1, all of which are present in human plasma [56]. Moreover, LPC, 
as a marker for a variety of liver diseases, is elevated in MAFLD, but saturated LPC is 
reduced in patients with advanced cirrhosis, and it is associated with mortality risk [58]. 

Fig. 1 Tissue distribution of GPR119. GPR119 may be present in the brain, gastrointestinal digestive system, 
pancreas, liver, and heart, but there is still controversy (indicated with question marks in the figure). The 
reason may be low expression or differences in detection methods. In the future, some strict detections are 
still needed
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In addition, LPC can protect against hepatitis by binding to type II natural killer T cells, 
produce anti-inflammatory effects in inflammatory diseases, increase anti-inflammatory 
factor levels and reduce the production of inflammatory mediators, including interleu-
kin-6 (IL-6) and nitric oxide (NO) [59]. In contrast, Gurunathan Murugesan et al. found 
that the chemotactic effect of LPC on monocyte chemotactic protein-1 (MCP-1), inter-
leukin-8 (IL-8) and RANTES may have a pro-inflammatory effect [60]. Therefore, the 
role of LPC in inflammation needs further confirmation.

2‑Oleoyl glycerol (2‑OG)

Being among the most effective natural agonists of GPR119, OEA and 2-monoacylg-
lycerols (2-MAGs), triglyceride metabolites, have been extensively studied, especially 
2-OG. The study of Jeppe H. Ekberg et al. proved that in triglyceride metabolism, 2-OG 
activates GPR119 to promote the secretion of incretins, and when combined with GRP40 
agonist, has a synergistic effect [44]. Whether 2-OG specifically activates GPR119 is not 
clear because of the instability of 2-OG itself. H.A. Hassing et al. first used 2-oleyl glyc-
eryl, a 2-OG analog, in wild-type and GPR119-knockout mice and found that GPR119 
improves glucose tolerance and is eliminated by GPR119 antagonists [16]. Katrine B. 
Hansen et al. used human GPR119-transfected COS-7 cells to confirm that 2-OG and 

Table 1 GPR119 endogenous ligands

NA not applicable

Name EC50 (μM) Refs.

2-Oleoyl glycerol (2-OG) 2.5–17 [44] [121] [61] [62]

Oleoylethanolamide (OEA) 0.2–5 [15, 63]

N-Oleoyl-dopamine (OLDA) 3.2 [53]

Lysophosphatidylethanolamine 5.7 [36]

Lysophosphatidylinositol 5.7 [36]

Lysophosphatidylserine  > 30 [36]

Lysophosphatidic acid  > 30 [36]

Sphingosylphosphorylcholine  > 30 [36]

Oleic acid  > 1000 [36]

Palmitoyl-lysophosphatidylcholine (16:0-lysoPC) 1.6–2.1 [36]

Stearoyl-lysophosphatidylcholine (18:0-lysoPC) 3.3 [36]

Oleoyl-lysophosphatidylcholine (18:1-lysoPC) 1.5–9 [36]

5-Hydroxy-eicosapentaenoic acid (5-HEPE) 0.03–3 [52]

Palmitoylethanolamide (PEA) 0.84 [61]

Linoleoylethanolamide (LEA) 0.56–5 [61]

2-Linoleoyl glycerol 12 [61]

2-Palmitoyl glycerol 11 [61]

2-Arachidonoyl glycerol NA [61]

1-Oleoyl glycerol(1-OG) 2.8 [61]

1-Linoleoyl glycerol 36 [61]

Anandamide NA [61]

Oleamide 4.5 [53]

N-Arachidonoyldopamine NA [53]

N-Oleoyl-tyrosine 0.7 [53]

Arachidonoyl ethanolamide (AEA) NA [51]
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Table 2 GPR119 synthetic agonists

Name Chemical structure EC50 (μM) Pharmacological 
effects in vivo and 
in vitro

Refs.

AR231453 0.0047–0.009 AR231453 increases 
the levels of cAMP, 
GLP-1, and insulin

[68, 71, 72]

PSN821 Structure not disclosed NA PSN821 can reduce 
weight and increase 
GLP-1 levels

[79, 122]

MBX-2982 0.0039 MBX-2982 increases 
GLP-1 secretion, 
improves blood glu-
cose control, inhibits 
fat production and 
reduces cholesterol

[123, 124]

GSK1292263 NA GSK1292263 reduces 
HbA1c levels and 
glucose excursion

[123, 125]

LEZ763 Structure not disclosed NA NA [79]

JNJ-38431055 0.046 JNJ-38431055 reduces 
glucose excursion

[55, 76]

DS-8500a 0.0515 DS-8500a improves 
abnormal glu-
cose intolerance, 
increases GLP-1, 
insulin secretion 
and high-density 
lipoprotein choles-
terol concentrations, 
reduces total cho-
lesterol, low-density 
lipoprotein choles-
terol and triglyceride 
concentrations

[126–132]

ZYG-19 Structure not disclosed NA NA [79]

AR246881 0.0097 NA [76]

BMS-903452 0.014 BMS-903452 reduces 
glucose excursion, 
increases GLP-1 and 
insulin secretion

[79]

AR44006 Structure not disclosed 0.1704 AR44006 increases 
insulin secretion

[63]

AR435707 Structure not disclosed 0.0277 AR435707 increases 
insulin secretion

[63]
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Table 2 (continued)

Name Chemical structure EC50 (μM) Pharmacological 
effects in vivo and 
in vitro

Refs.

GSK-
1104252A

0.05 NA [79]

APD668 0.0027 APD668 reduces cho-
lesterol, TG levels, 
body weight ALT 
and AST

[55]

ARN-II NA ARN-II enhances GLP-1 
secretion, increases 
cAMP level

[133]

AZ1 NA AZ1 enhances GLP-1 
secretion, increases 
cAMP level

[133]

AZ2 NA AZ2 enhances GLP-1 
secretion, increases 
cAMP level

[133]

AZ3 NA AZ3 enhances GLP-1 
secretion, increases 
cAMP level

[133]

AS1269574 2.5 AS1269574 protects 
β cell function and 
alleviates disorders 
of glucose and lipid 
metabolism

[134]

AS1535907 1.5–4.8 AS1535907 protects 
β cell function and 
promotes insulin 
secretion

[135–137]

AS1907417 1.1 AS1907417 enhances 
intracellular cAMP, 
GSIS, and human 
insulin promoter 
activity and regu-
lates adipogenesis

[91]

AS1669058 0.11 AS1669058 improves 
glucose tolerance 
and promotes insu-
lin secretion

[79]
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Table 2 (continued)

Name Chemical structure EC50 (μM) Pharmacological 
effects in vivo and 
in vitro

Refs.

PSN119-2 0.4 NA [76, 79]

PSN632408 1.9 PSN632408 could 
increase the cAMP 
level and insulin 
secretion

[138]

PSN375963 8.4 PSN375963 increases 
insulin and GLP-1 
secretion

[40]

PSN119-1 0.5 PSN119-1 increases 
insulin and GLP-1 
secretion

[139]

PSN119-1 M 0.2 PSN119-1 M increases 
insulin and GLP-1 
secretion

[139]

Compound 3 1.7 Compound 3 
increases insulin and 
GLP-1 secretion

[139]

Compound 1 0.5 Compound 1 
increases insulin and 
GLP-1 secretion

[139]

HD0471953 Structure not disclosed NA HD0471953 can 
improve glucose tol-
erance and increase 
cAMP level

[83]

HD044703 structure not disclosed 0.11 HD044703 can 
improve glucose tol-
erance and enhance 
cAMP, GLP-1 and 
insulin secretion

[140]

HD0471042 Structure not disclosed 0.65–0.85 HD0471042 can 
improve glucose tol-
erance and enhance 
cAMP, GLP-1 and 
insulin secretion

[141]
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NA not applicable

Table 2 (continued)

Name Chemical structure EC50 (μM) Pharmacological 
effects in vivo and 
in vitro

Refs.

ZB-16 0.00725 ZB-16 enhances 
GLP-1 and insulin 
secretion, decreases 
blood glucose levels 
and improves glu-
cose utilization

[142]

HBK001 0.03 HBK001 promotes the 
release of GLP-1, 
improves glucose 
tolerance and 
protects islet β cell 
function

[90]

compound 8 0.013 Compound 8 reduces 
the level of blood 
glucose

[143]

other monoacylglycerols activated GPR119 to increase the secretion of GLP-1 and other 
hormones and suggested that GPR119 acts as a fat sensor [61]. Interestingly, Karen Kle-
berg et al. found that 2-OG formed by lipoprotein esterase (LDL) acts as a lipid signal 
transducer in the vascular system [62].

Oleoylethanolamide (OEA)

OEA, as an endogenous fatty acid derivative, is a natural agonist of GPR119 [15, 63]. 
OEA is a peroxisome proliferator activated receptor α (PPAR-α) agonist that reduces 
food intake and promotes lipid oxidation [64]. In addition, OEA may reduce fat gain 
in high-fat diet mice by activating the GPR119 pathway [65]. Studies have shown that 
bile acids regulate OEA production and activate GPR119 to regulate gastric emptying 
and increase satiety in experimental mouse models [66]. Hilary A. Overton et al. found 
that GPR119 at least partially mediated the effect of OEA on food intake, and they 
orally administered to rats PSN632408, a new agonist of GPR19, which inhibited food 
intake and white fat accumulation [40]. Similarly, Flock, Grace et al. used AR6231453, 
a GPR119 agonist, and found that it inhibited gastric emptying through a GPR119-
dependent pathway and prolonged gastric emptying time [67]. However, it is still unclear 
whether the gastric inhibitory effect of OEA-activated GRP119 is specific. Hong Lan 
et  al. used GPR119-knockout mice to find that GPR119 is unnecessary for the gastric 
inhibitory effect of OEA [68]. Moran et al. found that the gastric inhibitory effect pro-
duced by OEA may involve pancreatic polypeptide (PPY) [50]. OEA can trigger effects 
similar to those observed after bariatric surgery, including reduced food intake, reduced 
fat mass, increased GLP-1 release, and reduced lipid levels, which are undoubtedly ben-
eficial to patients with MAFLD [69].
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Synthetic GPR119 ligands

Because of the great attraction of targeting GPR119 to T2DM, many synthetic GPR119 
agonists have appeared. Here are some of the ligands and pharmacological effects of syn-
thetic GPR119.

AR231453

AR231453 is the first GPR119 agonist developed by Arena Pharmaceuticals 
(EC50 = 0.0047–0.009 uM) [70, 71]. Chu et al. found that AR231453 strongly stimulated 
glucose-dependent insulin release and cAMP accumulation by testing in cells trans-
fected with human GPR119 and rat islets, but there was almost no response in GPR119-
deficient mice or those lacking GPR119 cells [68]. Also, Marty et al. found that the use 
of AR231453 significantly increased the release of GLP-1 from rat intestinal L cells [72]. 
AR231453 has been used in several pre-clinical studies on diabetes, showing that it can 
regulate glucose homeostasis and increase the secretion of incretins [73, 74]. It is worth 
noting that GPR119 expression within murine B cells may not be important for the 
response to hyperglycemia or the direct insulin secretion response to GRP119 agonists 
in isolated mouse pancreatic islets and GPR119 β-cell-deficient mice [75].

APD597

APD597, also known as JNJ-38431055, is a synthetic GPR119 agonist. Some clinical tri-
als are currently ongoing or completed to evaluate its pharmacokinetics, safety, toler-
ability, and role in obesity and T2DM. Semple et al. fount that JNJ-38431055 (3–30 mg/
kg PO) significantly improved the glucose excursion of diabetic experimental rats [76]. 
Studies have demonstrated that oral administration of APD597 is safe and well toler-
ated, and it can increase the secretion of incretin and insulin and decrease incremental 
plasma glucose excursion during oral glucose tolerance test in T2DM patients, but the 
final hypoglycemic effect is not ideal [77]. In a double-blind, randomized and placebo-
controlled study, oral JNJ-38431055 (2.5–800 mg) in healthy male volunteers is also safe 
and well tolerated, and it can increase the concentrations of GLP-1, GIP, and PYY. Com-
pared with the placebo group, APD597 did not significantly increase insulin secretion or 
glucose excursion, but it had a higher insulin secretion rate in a graded glucose infusion 
study [78].

AS1669058

AS1669058  (EC50 = 0.11  μM) is a new generation of GPR119 small molecule agonist 
reported by Astellas company and further improved from AS1269574  (EC50 = 2.5 μM) 
[79]. Oshima et  al. found that AS1669058 dose-dependently stimulates insulin secre-
tion in HIT-H15 cells and isolated rat pancreatic islets. Administration of 1  mg/kg of 
AS1669058 significantly improved the glucose tolerance of ICR mice, and administra-
tion of 3 mg/kg of AS1669058 twice a day for a week reduced the glucose level of db/db 
mice [80].

Others

There are still many synthetic GPR119 agonists, including PSN632408, HD0471953, 
MBX2982, GSK1292263, and BMS903452, and some are undergoing clinical trials (see 
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Tables 2 and 3), most of which concern their role in T2DM. It was found that PSN632408 
could increase the cAMP level and insulin secretion of HEK293 cells transfected with 
GPR119 [81]. In 2019, Fang et  al. synthesized and evaluated a series of novel fused 
pyrimidine derivatives as GPR119 agonists; some of these analogs (16, 19, 26, 28, 42) 
have high GPR119 agonistic activity [82]. Single dose administration of HD0471953 
can improve the oral glucose tolerance test (OGTT) in normal C57BL/6  J mice, and 
increase insulin secretion and GLP-1 level. Also, HD0471953 stimulates a dose-depend-
ent increase in cAMP levels in the HIT-T15 β cell line, and it reduces the body weight, 
high-density lipoprotein (HDL), LDL cholesterol, TG and epididymal fat in experimental 
T2DM mice [83]. Compared with normal mice, BMS903452 at the dose of 0.1–0.3 mg/
kg reduced the glucose excursion by 30–40% in an OGTT, BMS903452 and a DPP-IV 
inhibitor synergistically regulated GLP-1 levels in a Sprague–Dawley rat model, and 
BMS903452 (0.03 mg/kg/day) reduced fasting blood glucose levels and increased insu-
lin secretion in db/db mice [79]. BMS903452 at 0.1–120 mg was safe and tolerable to 
healthy subjects in a clinical trial, but no significant increase in plasma total GLP-1 level 
was observed in the first 24 h of treatment [84].

The relationship between the GPR119/incretin axis and MAFLD

The secretory response of incretins is due to the activation of enteroendocrine cells 
after food intake by the intestinal system. The principle incretins are GIP and GLP-1, 
produced by K cells in the proximal gut and L cells in the distal gut, respectively [85]. 
GPR119 activated by various factors can promote the secretion of incretins, which may 
attenuate MAFLD, including its effect on sugar metabolism, lipid metabolism, inflam-
mation, and the intestinal micro-ecosystem. This process may involve the cAMP/
protein kinase A (PKA)/cAMP response element-binding protein (CREB) and extra-
cellular signal-regulated protein kinase 1 and 2 (ERK1/2) pathways. When GPR119 is 
activated by a variety of endogenous and exogenous factors, heterotrimeric G-protein 
activates adenylate cyclase (AC) and then activates PKA/mitogen-activated protein 
kinase kinase1/2(MEK1/2)/ERK1/2 protein sequentially to play a physiological role. The 
primary source of AC is adenosine triphosphate (ATP) mediated by the Class-III AC/
ADCY (adenylate cyclase) family. PKA enhances intracellular calcium influx through the 
phosphorylation of voltage-dependent calcium channel (VDCC), thus increasing insulin 
secretion [86] (see Fig. 2).

The GPR119/incretin axis enhances glucose metabolism

Insulin resistance and hyperglycemia accompany glucose metabolism disorders in 
MAFLD patients, and hyperglycemia increases the production of intracellular reac-
tive oxygen species (ROS), which destroy mitochondrial function and lead to hepato-
cyte apoptosis, which aggravates MAFLD [87–89]. The GPR119/incretin axis may have 
unique advantages for attenuating hyperglycemia. Huan et al. discovered that HBK001, 
a new candidate GPR119 agonist and DPP4 inhibitor, promotes the release of GLP-1, 
improves glucose tolerance and protects islet β cell function [90]. Furthermore, Kim et al. 
found that HD0471953, a GPR119 agonist, attenuates disorders of insulin sensitivity and 
blood sugar control [83]. Yoshida et al. found that AS1269574 protects β cells function 
and alleviates disorders of glucose and lipid metabolism by reducing triglyceride and 
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non-esterified free fatty acid (NEFA) levels in the body [91]. Studies have shown that 
AS1907417 in three cell lines, HEK293 cells, NIT-1 cells, and MIN-6-B1 cells, enhances 
intracellular cAMP, GSIS, and human insulin promoter activity and regulates adipogen-
esis [91]. Therefore, further attention should be paid to its unique advantages in lipid 
metabolism.

The GPR119/incretin axis enhances lipid metabolism

MAFLD patients often present with reduced glycolysis and very low-density lipoprotein 
(VLDL) output due to insulin resistance and other factors; thus, TG levels in the liver 
increase, and TG accumulates in liver cells, causing liver cell degeneration, inflamma-
tion and insulin resistance in the liver to worsen, forming a vicious cycle. Studies have 
shown that lipid infusion increases the expression of GPR119 in volunteers [92]. The 
increase in cAMP caused by the GPR119/incretin axis can protect β cells from oxida-
tive damage and lipid-induced apoptosis [93, 94]. The agonist-induced GPR119/incretin 
axis can reduce stearoyl-coA desaturase -1(SCD-1) mRNA levels by attenuating insu-
lin resistance, leading to decreased liver adipogenesis [95]. Kim et al. used DA-1241, a 
GPR119 agonist, to inhibit adipogenesis and reduce steatosis through the inactivation of 
sterol regulatory element-binding protein-1c (SREBP-1c), the key factor of adipogenesis 
mediated by AMPK signaling [96]. Similarly, MBX-2982/GSK1292263, after the second 
phase of a clinical trial on synthetic ligands, was confirmed to function through the same 
mechanism as in liver cells and HepG2 cells to inhibit fat production and reduce cho-
lesterol [38]. Bahirat et  al. found that the use of APD668 alone in an MAFLD mouse 
model induced by a high-fat diet (HFD) can lower cholesterol and TG levels, reduce 
body weight and improve insulin resistance. In particular, when used together with lin-
agliptin, a DPP4 inhibitor, APD668, may reduce liver steatosis, attenuate weight gain, 
and reduce alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels 
by inhibiting lipogenic-related gene (SREBP-1c, FASN and SCD-1) levels. The authors 
speculate that the direct activation of GPR119 and the prolonged time of GLP-1 may 
cause its effect. Using a DPP4 inhibitor or GLP-1 agonist alone can reduce fat formation, 
activate the AMP-activated protein kinase (AMPK) pathway and enhance insulin sensi-
tivity. The combined use of the two agents has a synergistic effect, suggesting their com-
bination in the treatment of MAFLD [97–100]. Nitika Arora Gupta et al. used HepG2 
and Huh7 cells to prove that GLP-1 can act on glucagon-like peptide-1 receptor (GLP-
1R), another GPCR, thereby reducing the content of TG in the liver [101]. Therefore, the 
GPR119/incretin axis may have a synergistic effect with other GPCR receptors. In addi-
tion, Psichas et  al. found that chylomicrons, lipoprotein particles that transport exog-
enous TG, hydrolyze TG into long-chain fatty acids (LCFAs) and monomers through 
an independent mechanism with the participation of lipoprotein esterase (LPL), which 
GPR119 recognizes to enhance the release of incretins [26]. The GPR119/incretin axis 
not only has advantages in regulating TG content but is also quite effective in lowering 
cholesterol. Recently, Yan-Wei Hu et al. found that oxidized LDL induces the expression 
of lincRNA-DYNLRB2 to upregulate GPR119 and ABCA1, an essential protein in anti-
cholesterol transport, which increases apoA-I-mediated cholesterol efflux and inhibits 
related inflammatory factor expression [102]. Importantly, GPR119 agonists such as 
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APD668 and GSK1292263 were also found to reduce cholesterol levels, although the 
mechanism is not yet clear [79, 100].

The GPR119/incretin axis and inflammation

In MAFLD, hepatic steatosis and intestinal microbial secretions can activate Kupffer 
cells (KCs) to release proinflammatory factors, such as TNF-α, IL-6, and interleukin-1β 
(IL-1β), which cause inflammation [103]. Magdalena Grill et al. found that an increase in 
the endogenous ligand OEA of GPR119 may exert an anti-inflammatory effect in inflam-
matory bowel disease [104]. Similarly, as mentioned above, the endogenous GPR119 
ligand LPC also has anti-inflammatory effects. Notably, the effect of GPR119/incretins 
on inflammation seems to be achieved by indirectly enhancing GLP-1. By using the nor-
mal mouse model of stably expressed rAd-GLP-1, Y.-S. Lee et al. found that GLP-1 can 
reduce not only fat accumulation but also the expression of pro-inflammatory factors, 

Fig. 2 Relationship between MAFLD and the GPR119/incretin axis. When GPR119 is activated by different 
ligands, it leads to an increase in cAMP and combines with PKA to secrete incretins. After further activating 
the corresponding receptor, it can improve the disease characteristics in MAFLD through the ERK1/2 
signaling pathway. AC, adenylyl cyclase. cAMP, cyclic AMP. PKA, protein kinase A. ERK1/2, extracellular 
signal-regulated protein kinase 1 and 2
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such as TNF-α, IL-6, and macrophage infiltration and inflammatory pathways, thereby 
inhibiting inflammation [105]. GLP-1 can inhibit IL-1, interleukin-18 (IL-18), and 
nuclear factor-kappa B (NF-κB) to reduce inflammation in adipose tissue [106]. In sum-
mary, its correlation with inflammation deserves further experimental exploration.

The GPR119/incretin axis regulates gut microbes

The intestine has an enormous surface area and diverse functions. As one of the impor-
tant organs of the human body, the intestine is host to microbes that act as media for 
communication with the outside world and are indispensable for human health [107, 
108]. Recently, Chepurny et al. found that AS1269574 acts as a dual agonist to activate 
GPR119 and TRPA1 cation channels to promote calcium influx and the release of incre-
tin hormones, suggesting the possibility that the dual effects of the intestinal liver axis 
and quantum channels can be controlled [109]. Cohen et al. used bioinformatics to find 
that the part encoded by the N-acyl amide gene of human symbiotic bacteria interacts 
with GPR119 by mimicking human lipid signaling molecules, such as 2-OG, showing 
a way to treat metabolic diseases thought to regulate intestinal microbes [110]. Fitri-
akusumah et  al. found that MAFLD is significantly associated with the overgrowth of 
intestinal flora [111]. The overgrowth of intestinal flora in MAFLD patients can cause 
changes in the permeability of the intestinal mucosa and the destruction of tight junc-
tion structures, resulting in lipopolysaccharides (LPS) and other substances entering the 
blood, and they interact with Toll-like receptors through NF-kB and other pathways, 
producing inflammatory mediators and triggering chronic inflammation and insulin 
resistance (IR) [112, 113]. Lund et al. found that activation of endogenous GPR119 pro-
motes enteroendocrine cells to enhance the release of serotonin. Although it may have a 
pro-inflammatory effect, in most cases, the latter can protect the intestinal barrier and 
secrete intestinal protective mucus [114, 115]. After activation of GPR119, the release 
of GLP-2 has a protective effect on the intestinal barrier and inflammation. Patrice D 
Cani et al. found that the use of GLP-2 antagonists abrogated the improvements to the 
intestinal barrier induced by intestinal microbes, suggesting a specific effect between 
intestinal L cells and intestinal microflora [108]. Recently, Png CW et al. discovered that 
a gut microbe, A. muciniphila, is related to several diseases with increased intestinal per-
meability [116, 117]. Amandine Everard et al. used this bacterial treatment to improve 
endotoxemia, inflammation, and insulin resistance related to metabolic disorders. It has 
been proven that this bacterial treatment can increase 2-OG levels. Importantly, 2-OG 
can also activate GPR119 [118].

Future prospects and challenges

Metabolex and Sanofi-Aventis signed a massive investment agreement to develop the 
latest GPR119 pharmacological agent. Although there are currently approved injections 
of liraglutide and exenatide that directly target GLP-1, the discovery of GPCRs has led to 
opportunities for innovative development of oral active drugs [119], and there are many 
clinical GPR119 agonists (see Table 3). GPR119 is highly expressed in the digestive sys-
tem, such as the gastrointestinal pancreas, and there is little evidence that it is expressed 
in the human central nervous system; thus adverse side effects in the nervous system 
are avoided. Another problem for GPR119 treatment is the development of related 
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candidate compounds. Although there are currently excellent specific GPR119 agonists, 
their efficacy is another competing element affecting the future drug development mar-
ket, and there are excellent comments and discussions about this aspect of drug devel-
opment [79]. Although most of the current clinical trials of GPR119 have focused on 
treating T2DM, and some of the experimental results are not ideal, the safety and tol-
erability of MBX-2982 and PSN821 are worthy of recognition, and GLP-1 secretion is 
increased. Therefore, as long as chronic metabolic diseases such as MAFLD continue 
to exist and no specific drug is found, comprehensive investigation into potential effects 
of GPR119 and well-designed clinical trials still need to be conducted. In addition, the 
GPR119 sequence of rodents and humans are different, so there may be differences in 
the translation of results based on various rodent experimental models to clinical prac-
tice, which is also an important factor that should be considered [120].

Conclusion
The GPR119/incretin axis may have a protective effect on MAFLD through a series of 
physiological effects by attenuating insulin resistance, reducing fat production, reduc-
ing dietary intake, reducing weight gain, increasing cholesterol outflow, and interacting 
with intestinal microbes. However, as a Gas-coupled receptor, GPR119 has a single path-
way of action that may provide only a small contribution to the attenuation of metabolic 
diseases, and there may be synergy between receptors of different coupling pathways. 
Therefore, further research is urgently needed in the future to determine the effect 
that may be related to the GPR119/incretin axis and convert it into an effective clinical 
MAFLD treatment plan.
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