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Abstract

Purpose

A 32-channel parallel transmit (pTx) add-on for 7 Tesla whole-body imaging is presented.

First results are shown for phantom and in-vivo imaging.

Methods

The add-on system consists of a large number of hardware components, including modula-

tors, amplifiers, SAR supervision, peripheral devices, a control computer, and an integrated

32-channel transmit/receive body array. B1
+ maps in a phantom as well as B1

+ maps and

structural images in large volunteers are acquired to demonstrate the functionality of the

system. EM simulations are used to ensure safe operation.

Results

Good agreement between simulation and experiment is shown. Phantom and in-vivo acqui-

sitions show a field of view of up to 50 cm in z-direction. Selective excitation with 100 kHz

sampling rate is possible. The add-on system does not affect the quality of the original sin-

gle-channel system.

Conclusion

The presented 32-channel parallel transmit system shows promising performance for ultra-

high field whole-body imaging.
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Introduction

Since the early days of MRI, a constant drive to higher main magnetic field strengths (B0) has

existed. While the increase in B0 leads to a superlinear increase in SNR at higher magnetic

fields [1, 2], the wavelengths of the electromagnetic fields at the corresponding Larmor fre-

quencies decrease. At ultra-high field (� 7T), the wavelength in tissue is shorter than the diam-

eter of a human torso. Consequently, substantial wave effects can give rise to inhomogenous

spin excitations, which can lead to contrast artifacts and complete signal dropouts in the field

of view [3–5]. Not only do these inhomogeneities affect the SNR, they also lead to varying con-

trast throughout the field of view, severely reducing the clinical utility of the resulting images.

To cope with the challenges introduced by the decreased wavelength at 7T and above, many

different techniques have been proposed. Examples of these techniques are adiabatic pulses

[6], RF shimming [7, 8], kT-points [9], 2D spokes [10], 3D tailored radiofrequency pulses [11],

Transmit SENSE [12, 13], and TIAMO [14]. Although there are many differences between

these techniques, most of them require a multi-channel transmit system. Moreover, the

obtainable transmit power efficiency, specific absorption rate (SAR) efficiency, and pTx speed-

up factor improve as the number of independent transmit channels increases [15].

Using 8- and 16-channel transmit systems, an increasing number of clinical feasibility stud-

ies at 7T have aimed at regions where imaging is hampered by severe transmit inhomogenei-

ties, for example liver [16, 17], kidneys [18], prostate [19–21], female pelvis [22], the hip joints

[23, 24], shoulder [25, 26], the heart [27], the spinal cord [28], and the breasts [29, 30], or they

cover extended regions such as the complete lower extremities [31].

Most of these studies use local transmit arrays to enhance transmit efficiency, and many of

these studies report a need for higher transmit power than what was available (generally 8 kW)

despite the use of a local array. Such arrays that are placed either directly on or very close to

the patient take up significant space in the patient bore of the magnet, reducing the maximum

patient size. To get to a more clinical workflow, where a transmit body coil is placed further

away from the patient, several stand-off arrays and arrays integrated into the bore have

recently been proposed [32–34].

In this paper we present a 32-channel transmit system add-on for 7T, including modulator

system, power amplifiers, and SAR supervision system. The 32-channel body array is inte-

grated into the MRI system by placing it in the gap between the gradient coil and liner of the

patient tunnel, similar to body coils at lower field strengths and thereby enabling a workflow

very close to conventional clinical MRI.

Methods

Ethics approval

For in-vivo measurements, informed consent was obtained from both participants included in

the study. In vivo studies were approved by the institutional review board of the University

Clinic Essen. Approval nr. 16 7214BO.

Original MR system

The vendor-provided MR System in this study is a Magnetom 7T with an AS095 gradient coil

(Gradient strength 38 mT/m, slew rate 200 mT/m/ms; Siemens Healthineers, Erlangen, Ger-

many). The nominal field of view is 50 cm in all directions, and the system has 32 receivers in

total. It is equipped with the “Step 2” 8-channel transmit system, which was not used in this

work.
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Overview of system add-on

Fig 1 shows a schematic overview of the add-on system. The system only uses 4 input signals

for synchronization with the original system, three digital signals and one analog signal. The

digital signals are 1 bit for transmit or receive state, 1 bit for the unblank signal for the transmit

amplifiers, and 1 bit as a trigger from the sequence to set the modulators to the next pre-pro-

grammed state. The analog signal is the RF signal coming from the exciter, which is the signal

that would be sent to the power amplifier in the single-channel mode of the original system.

The signal from the exciter is split up and fed to the modulators. In the original single-chan-

nel system, this signal is directly fed into the vendor power amplifiers that are combined into a

single high-power output. The output of the modulators is connected to the power amplifiers

in the magnet room. The high-power signals from the amplifiers are fed to the RF coil via

directional couplers (DiCos) and transmit/receive (T/R) switches.

To be able to switch between reception with local coils or the body array, the receive chain

of the system is modified to include RF switches. This is the only change to the vendors trans-

mit or receive path.

The RF signals for forward and reflected power are taken from the DiCos and fed into a

multiplexing power supervision unit (MUX). This unit feeds a portion of the forward power

into the receive chain and sends a logarithmic baseband voltage signal to the operating PC sys-

tem for amplitude supervision.

The operating PC is used to pre-program the modulators with a set of states before a

sequence is run. Using the trigger from the sequence, the modulators are successively switched

to the next state.

Fig 1. Simplified schematic overview of the add-on system. Arrows show the direction of communication. Black arrows indicate digital signals, red

arrows indicate low-power RF signals, orange arrows indicate high-power RF signals, and blue arrows indicate low-power low-frequency analog signals.

The dashed gray lines indicate that the enclosed components are part of the original system.

https://doi.org/10.1371/journal.pone.0222452.g001
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The logic controller receives the information about whether the MR system is in transmit

or receive mode as well as the unblank signal and distributes the signals across the add-on

system.

Modulators

The custom-built modulator units [35] use AD8345 (Analog Devices, Norwood, MA, USA) IQ

modulators to modify the exciter signal. The exciter signal is fed into the local oscillator input

at a very low power (<-30 dBm), to ensure that changes in the input are transferred linearly to

the output, since in normal operation the input power for the AD8345 is far beyond the 1 dB

compression point. The analog input voltages for I and Q are provided by MAX5100 8-bit dig-

ital-to-analog converters (DACs) (Maxim Integrated Products, Sunnyvale, CA, USA). These

DACs have an input register that allows programming them to a new value before switching

them to that new value by a trigger signal. Due to the rise time of the output operational ampli-

fiers of the MAX5100, output settling time is up to 3 μs, depending on the degree of change of

the outputs. The modulator system is divided into two half systems with 16 modulators each.

Each half system is connected to a 16-bit parallel bus provided by a digital I/O card. On a trig-

ger from the pulse sequence of the MRI system, a new bit pattern is loaded into the input regis-

ter of the DACs. After all input registers are filled with the new pattern, a trigger is issued to

simultaneously move the data from the input register to the DACs, changing the modulator

state. To account for delays, the first trigger from the sequence is sent 10 μs before the start of

the RF pulse. Adjustment of the data rate of the bus allows to fine tune the delay between the

trigger from the MRI pulse sequence and the point in time when the DACs change their

output.

To account for small offsets in the I and/or Q channel and other systematic errors after cali-

bration, the modulation strategy for pTx is performed as follows. Instead of playing out a rect-

angular pulse on the exciter and performing the modulation completely with the modulators

(“Strategy 1” in Fig 2), the exciter plays out a signal in which each sample is the maximum

amplitude across all channels. In this way, a variable dynamic range is achieved for the 8-bit

modulators. Errors due to offset in the I and/or Q channel are further decreased by shifting the

exciter phase by 180˚ for each sample, which is accounted for in the phases the modulators

apply (“Strategy 2” in Fig 2). Changing the phase each sample by 180˚ leads to alternatingly

adding and subtracting the offset. Fig 3A shows a picture of a modulator unit containing two

modulator circuits.

The modulators are run at a 100 kHz sampling rate, in accordance with the sampling rate of

the system’s gradients. Signals with higher baseband frequency can be generated by the sys-

tem’s exciter, and these are fed through the modulators, providing extra pulse form control in

addition to the modulators.

High-power amplifiers

The custom-built high-power amplifiers are designed to be used close to the magnet in order

to minimize cable losses [36]. Each amplifier consists of three amplifier stages with an overall

gain of slightly more than 60 dB. The first stage is a MGA-31189-BLKG (Broadcom Inc., San

José, USA), the second stage is a MRF6V2010NR1 (NXP Semiconductors N.V., Eindhoven,

The Netherlands), and the final amplification stage of each amplifier is a BLF188XR power

LDMOS transistor (Ampleon BV, Nijmegen, The Netherlands). With the final stage driven in

AB mode, the amplifier has a peak output of 1 kW. Without an unblank signal, the bias volt-

ages of the last two amplifier stages are set to 0 V, and the 50V power supply for the final stage

is cut off via a high power MOSFET. This ensures that no power can be transmitted without
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an unblank signal present. Each amplifier contains a 61 mF capacitor array and a high-power

voltage regulator to supply peak power during transmission. DC power supplies for the whole

system can continuously deliver 6 kW in total. In case of an emergency shutdown, the capaci-

tor arrays are discharged through load resistors inside the power supplies.

Fig 3B shows a picture of an opened power amplifier. Fig 3C shows the position of the two

power amplifier racks at the back of the magnet; the second rack is just visible at the right

border.

To ensure stable behavior independent of reflected power, circulators

(JCC0296T0298N20-GIG, JQL Electronics Inc., Rolling Meadows, USA) are connected to

the outputs of the amplifiers. These circulators have an insertion loss of 0.15 dB. Since circu-

lators are highly magnetic, the circulators are placed just outside the magnet’s passive

shielding, resulting in an extra cable length of 7 m in total (Aircell 7, SSB-Elektronik GmbH,

Lippstadt, Germany), which is shorter than the minimum cable length necessary to place

the amplifiers outside the magnet room at our site (14 m). The overall attenuation of these

cables is 0.78 dB. The air to cool the amplifiers is taken from the room’s air-conditioning

input duct by two radial fans in series and delivered via a tubular system over a distance of

15 m.

Due to the strong currents on the power supply cables of each amplifier rack, the ground of

the DC power supplies is only connected to a common ground directly at the amplifier hous-

ing, ensuring that the current of up to 60 A on the feed line is identical in both directions and

resulting in no net force on the cable as it crosses the magnetic field.

Fig 2. Simplified representation of two modulation strategies using two channels. Strategy 1 plays out a rectangular pulse on the exciter and

performs the entire modulation with the IQ modulators. Strategy 2, which is used in the implemented system, uses a pre-modulated signal from the

exciter to always use the full dynamic range of the modulators, as well as a 180˚ change in phase from sample to sample to minimize the effect of

systematic errors in the modulators.

https://doi.org/10.1371/journal.pone.0222452.g002
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Directional couplers

The custom-built directional couplers are fabricated in strip-line technology with 1.5-mm-

thick FR4 substrate material separating the strips from the top and bottom copper layers. The

distance between the conductors is 3.4 mm (center to center) and the width of 0.94 mm was

calculated numerically using CST Microwave Studio (CST AG, Darmstadt, Germany). The

coupled length is 69 mm, resulting in a coupling of -29 dB. The output is further reduced by 20

dB attenuators for both the forward and reflected output signals. To maximize directivity, the

coupled lines are terminated by a variable resistor and a trimmer capacitor, which were fine-

tuned after production. The insertion loss is 0.2 dB. The couplers are placed in two boxes with

16 DiCos each on the tables next to the amplifier racks.

Power supervision

The power supervision units get the forward and reflected signals from the directional cou-

plers. A power splitter in the forward path feeds half of the power directly to the receive chain

while the other half as well as the reflected signal are each fed into a logarithmic amplifier

AD8307 (Analog Devices, Norwood, MA, USA). With the use of the logarithmic amplifiers,

the forward and reflected signals are translated into voltage signals proportional to the loga-

rithm of the input power. Since the envelope of the RF power only changes slowly, the result is

Fig 3. Pictures of modulators and amplifiers. A) Modulator unit containing two modulators. The position of the modulator ICs is indicated by the

white arrows. B) High-power amplifier. The red arrow points to the final amplifier stage LDMOS IC. C) Power amplifier racks at the back of the magnet;

each rack accommodates 16 amplifiers.

https://doi.org/10.1371/journal.pone.0222452.g003
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a low-frequency signal that is multiplexed and sent to two NI5751 digitizer cards (National

Instruments, Austin, TX, USA) with 16 analog inputs each that are connected to the operating

PC I/O system. Here, the forward power in each channel is sampled every microsecond for

amplitude supervision [37]. The software is implemented in a LabView environment (National

Instruments, Austin, TX, USA). If the maximum allowed input power is exceeded, the supervi-

sion prevents the unblank signal from being conveyed to the amplifiers.

Receive chain

To enable automated switching between local and body coil reception as well as to feed power

supervision signals into the system’s receivers, several changes were made to the receive chain

[38]. Fig 4A shows the original receive chain of the system as provided by the vendor. It con-

tains a second-stage receive amplifier as well as a switch to allow input of power supervision

signals from the vendor-provided 8-channel transmit system. Fig 4B shows the changes made

to the receive chain. A custom-built second-stage receive amplifier and power supply for the

on-coil pre-amps is used for reception with the body coil. The second-stage amplifier (Fig 4C)

uses an MGA-62563-BLKG (Broadcom Inc., San José, USA), has a gain of 22 dB and a noise

figure of 1 dB. The input 1 dB compression point is -3.5 dBm. The power supply for the on-

coil pre-amps and the second-stage receive amplifier can be switched off during transmit

mode. This helps to protect the pre-amplifiers and reduces spurious signal in the receive path

that might affect the power supervision, reducing the demand on the off state-isolation of the

following switches. A custom-built 32-channel 2:1 switch (SRS, Fig 4D) is used to select

between local and body coil reception and another switch (SSS) is used to integrate the signals

from the directional couplers for transmit supervision. These switches are identical. Each

channel contains three MASWSS0155 GaAs SPDT switches (M/A-COM Technology Solu-

tions Inc., Lowell, MA, USA) to achieve an off-state isolation of better than -55 dB and an

insertion loss of better than -0.6 dB.

Logic controller

The logic controller receives the unblank and Tx/Rx signals from the original system. Further-

more, it accepts signals from a digital I/O card from the operating PC. These signals go

through a logic circuit and are then distributed to the power amplifiers (unblank signal), to the

receive chain (Rx amplifiers on/off, SRS and SSS switching states), and to the T/R switch con-

troller circuitry (transmit/receive state, tune/detune). All logic is implemented in hardware

using standard logic gate ICs to reduce the probability of failure as compared to microcontrol-

lers or embedded systems.

Body coil

Since the 7T MR system is equipped with the AS095 gradient coil, there is a space of 34 mm

between the bore liner (615 mm diameter) and the gradient coil (683 mm diameter). This

space is used to accommodate the integrated body array [39]. The body array is mounted on a

polycarbonate frame (Fig 5A) that consists of two halves forming a cylinder with 22 outer

faces. The length of the cylinder is 60 cm and the inside of the polycarbonate frame rests

directly on the bore liner. The longitudinal bars stand off from the bore liner so that the coil

elements have a distance of about 8 mm from the bore liner.

The coil elements are micro strip-line elements with meanders, which were chosen because

of their good intrinsic decoupling when lying side by side even in low load conditions [40].

The elements have a length of 25 cm and are arranged in 3 rings: two outer rings of 10 ele-

ments and one inner ring of 12 elements (Fig 5B). The distance between the ground plane and

32ch pTx add-on for 7T

PLOS ONE | https://doi.org/10.1371/journal.pone.0222452 September 12, 2019 7 / 20

https://doi.org/10.1371/journal.pone.0222452


the strips is 20 mm as was used in previous studies [32, 40]. The ground plane completely

encloses the coil. It is made of 0.127-mm-thick RO3010, both sides clad with copper. The cop-

per of both sides is slotted in the longitudinal direction in such a way that the copper strips of

the inner and outer layers overlap. In this way, RF currents can flow in the circumferential

direction, while eddy currents from the gradient fields are effectively blocked. For mechanical

stability the ground plane is glued with epoxy to a 1-mm FR4 sheet on the inner surface.

While micro strip-line elements with meanders are well decoupled when lying next to each

other, additional decoupling is needed for diagonally adjacent elements and elements placed

head-on. Fig 6 shows an excerpt of the schematic of the body array. Decoupling is done using

90˚ delay lines connected through a very low impedance to ground. These lines provide

another path for coupling that reduces overall coupling due to a different phase compared to

the parasitic coupling via air and tissue. The two halves of the array are not electrically con-

nected other than the connection of the ground plane.

The elements are connected to custom-built, compact T/R switches with a design similar to

[41]; the only difference to the published design is that all components were placed on one side of

a 81-mm by 42-mm PCB rather than using a folded layout to achieve a flatter profile. An appro-

priate length of low-loss cable (Aircell 5, SSB-Electronic GmbH, Lippstadt, Germany) transforms

the impedance of the pre-amp to ensure pre-amp decoupling. The T/R switches introduce an

attenuation of 1.1 dB. The Aircell 5 cables on the bore liner, connecting the T/R switches with the

coil elements and the directional couplers, have an overall attenuation of 0.58 dB.

Detuning of the elements is performed with dedicated detuning boards containing PIN

diodes that produce an RF short circuit of the transmit cable to ground when a forward cur-

rent is applied. These detuning boards are placed in the transmit chain between the power

amplifiers and the T/R switches with an appropriate length of cable to transform the short cir-

cuit to an impedance that detunes the elements.

Fig 4. Overview of the receive chain. A) shows the original receive chain as provided by the vendor. B) shows the receive chain after including custom

components. C) shows the custom second-stage amplifier with bias tee for the on-coil pre-amps. D) shows one of the 32-channel switches (SRS and

SSS).

https://doi.org/10.1371/journal.pone.0222452.g004
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EM simulations

A detailed simulation model of the prototype coil was constructed for validation purposes and

safety assessments. The model includes coil elements, the supporting frame, and the MR envi-

ronment, i.e. RF shield, cryostat, bore liner, and patient table with a length of 200 cm to

account for wave propagation [42].

Time-domain simulations were performed in CST Studio Suite 2016 (CST AG, Darmstadt,

Germany) using the finite integration technique (FIT). The simulation domain was discretized

with a hexahedral grid and 105 million mesh cells. A finer resolution was used inside the coil

volume to account for coil details and a coarser mesh was used outside the coil volume. Tuning

and decoupling of the coil elements were performed in a circuit co-simulation. All cables

between the coil elements and the directional couplers were considered.

For coil validation, a homogeneous body-size phantom filled with tissue simulating liquid

(εr’ = 45, σ = 0.55 S m-1) was simulated in the center of the coil. The phantom is a roughly

oval-shaped cylinder with a length of 50 cm, a width of 34 cm, and a height of 20.7 cm; the fill-

ing volume is 32 liters. B1+ maps for excitation of individual channels and CP+ and CP2

+ mode were exported for measurement validation. The simulated B1+ maps were compared

to maps acquired with the B1TIAMO [43] technique.

Fig 5. 32-channel body coil. A) shows the polycarbonate frame that defines the mechanical structure. B) shows an inside view of one half of the array.

16 micro strip-line elements with meanders are visible. C) shows the two halves of the array mounted on the bore liner, with the T/R switches on the

bore liner to the right side of the image (service end).

https://doi.org/10.1371/journal.pone.0222452.g005
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For safety assessments, a male and female anatomical body model with a resolution of

2x2x2 mm3 [44] were placed in head-first supine position on the table in the coil center. The

normalized electric field distributions were exported and 10g-averaged Q-matrices were calcu-

lated for every voxel in the body model. Subsequently, the Q-matrices of both body models

were compressed together using the ‘virtual observation point’ (VOP) algorithm with a maxi-

mum overestimation of 10% to 420 VOPs [45]. No differentiation was made between the

extremities and the rest of the body, so the head and trunk local SAR limit, which is more

restrictive, was used for the extremities as well.

Quality assurance

A routinely applied quality assurance (QA) protocol [46] was used to investigate the influence

of the add-on system on the performance of the original system. A 1-channel Tx / 32-channel

Rx head coil (Nova Medical, Inc., Wilmington, USA) was loaded with a tissue simulating

Fig 6. Decoupling network. Schematic of the body array showing four elements including the decoupling network for diagonally placed and head-on

elements. Ce is used to set the correct current distribution on the element, Cp and Cs are the parallel and series capacitors of the matching network, and

Cc and Zd are part of the decoupling network. The 180˚-lines are used for balancing the feed; the 90˚ delay lines are used as part of the decoupling

network. These lines are semi-rigid cables from Huber+Suhner AG, Herisau, Switzerland.

https://doi.org/10.1371/journal.pone.0222452.g006
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phantom (εr’ = 55, σ = 0.6 S/m). The QA protocol includes tests to check for the performance

of the local RF coil as well as gradient and system stability. The proper function of the RF head

coil was verified by B1, SNR, and coupling measurements (i.e. noise correlation). Unwanted

noise sources and RF spikes were searched for with noise measurements. System stability was

measured with high-duty-cycle EPI imaging (TR 1000 ms, TE 30 ms, echo spacing 0.54 ms,

BW 2112 Hz/pixel, 64 phase-encoding steps, 16 slices, FOV 220 mm, 3.4x3.4x2 mm3, 3x 250

measurements), and stability parameters such as SNR, Signal-to-Fluctuation-Noise Ratio

(SFNR), signal drift, fluctuation, and ghosting were calculated according to the recommenda-

tions of the FBRIN consortium [47].

Imaging experiments

In all imaging experiments the 32-channel body array was used for transmission as well as

reception.

For phantom measurements a torso phantom filled with tissue simulating polyvinylpyrroli-

don solution (εr’ = 45, σ = 0.55 S m-1) was used that has the same dimensions as the one used

in the simulations.

For in-vivo measurements, informed consent was obtained from both participants included

in the study. All imaging experiments with the volunteers were performed with an input

power not exceeding the maximum allowed input power for the worst-case shim set used

within an experiment, with an extra safety margin of a factor of 2. This was done to ensure that

even if an erroneous trigger signal would alter the shim setting, the SAR would remain within

the allowed limits.

B1 mapping was performed using the B1TIAMO method [43]. Absolute B1 maps were

acquired in a central transversal slice in the torso phantom and compared with simulation

data. Furthermore, B1 mapping was performed in a human volunteer (1.86 m, 80 kg) in an

axial slice through the kidneys and a coronal slice through the center of the torso with the CP

+ and CP2+ modes. In this case we define the phase for each element via its respective geomet-

rical angle in the xy-plane.

Structural imaging was performed in a healthy volunteer of above-average size (1.85 m, 95

kg). A 2D gradient echo sequence with 1.1-mm in-plane resolution and 5-mm slice thickness,

a TR of 50 ms, and a TE of 6.1 ms was used to acquire slices with a 50-cm field of view. Data

sets from the head to the thighs were acquired in three stations with approximately 10 cm

overlap. TIAMO [14] with the CP+ and CP2+ modes was used for transmit homogenization.

For the slices in the abdominal region, the volunteer was asked to place the arms above the

head. Each image was acquired during a breath hold. The vendor’s gradient distortion correc-

tion was used.

To demonstrate the selective excitation capability of the system, four different patterns

were excited in the torso phantom: the letters “ELH”, the logo of the Erwin L. Hahn Institute

for MRI, a checker board, and the logo of the German Cancer Research Center (“DKFZ”). The

pulse length was 5.36 ms (536 samples) with a variable density spiral for a 64 x 64 voxel target

in 2D spatially selective excitation, implemented in a 3D gradient echo sequence with 128 x

128 in-plane voxels. The sampling rate for the transmit pulse was 100 kHz.

Results

Implementation of the add-on system did not have detectable influence on the QA parameters

of the system apart from a 1.2 dB reduction in received signal due to the switches integrated in

the receive chain. Since these switches are behind the second receive amplifier stage, no change

in SNR was detectable. Neither an immediate impact after integration nor a longer-term drift
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during the following 6 months was found; system users did not report any impairments in

image quality that could be correlated with the integration of the add-on system.

The amplifiers were successfully tested to play out 10 ms pulses at full peak power. Duty

cycle was limited to 10% or smaller to prevent overheating of the amplifiers.

Fig 7 shows a comparison of the simulated and measured B1+ maps in the torso phantom

for the CP+ mode (A, C) and the first 16 individual elements of the body array (B, D, E, F).

The phase maps are normalized to the phase of the first channel. The maps show good agree-

ment qualitatively and quantitatively in the absolute values (A, B, C, D) as well as in the

depicted phase (E, F). The single-channel maps show good agreement even in areas far away

from the transmitting elements. The normalized root-mean-square error for the CP+ mode is

16.6%. Further values are shown in [43]. With the shim shown in Fig 7C, a B1+ amplitude of

13 μT can be reached in the center of the phantom at full peak power. Fig 7E shows an axial

cut through the body model at the position of the highest SAR in the CP+ mode, with the SAR

distribution as an overlay. The highest SAR in the case of the CP+ mode occurs in the left arm.

The values are normalized to 1W total accepted power.

Fig 8 shows in-vivo flip angle distributions for the CP+ and CP2+ modes of the body array.

Fig 8A shows a coronal structural image including the position of the transverse slice for orien-

tation. Fig 8B and 8C show the CP+ mode in transverse and coronal orientation; Fig 8D and

8E show the CP2+ mode in the respective orientations. The flip angle is fairly constant in z-

direction over a 50 cm field of view.

Structural body images are presented in Fig 9. Due to the capability of both the gradient

and RF coil to cover a 50-cm field of view, the head, torso, and thighs of a large volunteer

could be imaged in three stations. The images show good uniformity in contrast, and no com-

plete signal dropouts are visible.

Both volunteers had undergone many 7T examinations in the past and reported that the

examination was very comfortable compared to examinations with local transmit coils.

2D selective excitation examples are shown in Fig 10. The images show the central slice of

the 3D data set for which the pulse calculation was performed. The patterns show sharp edges

and only low residual background excitation.

Discussion

The results presented here show the feasibility of the presented system. Implementation is

straightforward since only very few interfaces are necessary. Only one analog and three digital

signals have to be taken from the original MRI system to make the add-on fully functional. In

comparison to the development of complete consoles [48, 49], which might pose more power-

ful tools, the big advantage is the use of the standard vendor software that clinicians and

researchers are accustomed to. For simple RF shimming with the add-on system, the vendor-

provided sequences can remain completely unchanged. When selective excitation is used, the

sequences only need minimal reprogramming to allow loading of user-provided pulses, greatly

simplifying the workflow.

Originally the RF amplifiers were placed in the magnet room to reduce the cable length to

the coil for three reasons, namely to reduce the cable losses, to use the impedance of the ampli-

fiers for coil decoupling, and to enable a feedback loop for coil decoupling. With the feedback

loop included, the amplifiers had an overall gain of about 90 dB. Together with the high in-

room RF due to waves traveling out of the bore, this led to unwanted feedback, so the loop had

to be disabled. Without the feedback loop, utilizing the amplifiers’ impedance for decoupling

led to non-linear behavior depending on the reflected power, which in turn depends on the

shim. Therefore, the circulators were included, also increasing the cable length by 7 m. Putting
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the amplifiers in the same space as the circulators was not possible because of space constraints

and cooling constraints.

The overall losses between the amplifiers and the inputs of the elements of the body array

amount to 2.79 dB. This includes 0.78 dB for the cables to and from the circulators, 0.15 dB for

the circulators, 0.20 dB for the directional couplers, 0.58 dB for the cables on the bore liner

(Aircell 5) and 1.1 dB for the T/R switches. This leads to approximately 520 W per element at

the coil.

An improved version of the system that is being installed in Heidelberg now has the ampli-

fiers outside the magnet room, with twice the amplifier peak power and cables with much

lower attenuation to account for the increased cable length, leading to approximately 1.5 dB

attenuation. This will result in roughly 900 W peak power per coil element. Moving the ampli-

fiers outside the magnet room also facilitates cooling, since active cooling with fans directly at

the amplifiers is possible and the duty cycle can therefore be increased.

The low transmit efficiency of integrated body arrays [32] is partly offset by the 32 kW total

peak power provided by the amplifiers. With the shim shown in Fig 7, a B1+ of 13 μT was

achieved in the center of the phantom. A dedicated shim for the center of the phantom using a

local 8-channel transmit array comprised of the same transmit elements and 8 kW total peak

RF power resulted in a maximum achievable B1+ of 12.4 μT [50], but covering a smaller field

of view in z-direction [32]. A mean peak B1+ of 20 μT was reported in the prostate over 6

healthy volunteers for a close-fitting 16-channel loop-dipole array [51] as well as 13.2 μT for a

Fig 7. Phantom B1 maps and SAR distribution. Comparison of simulated B1+ maps (A,B,E) and measured B1+ maps (C,D,F) in the body-sized

phantom. Please note that only half of the channels are shown for better depiction. G shows an axial cut through the body model at the position of the

highest SAR in the CP+ mode, with the SAR distribution normalized to 1 W total input power as an overlay.

https://doi.org/10.1371/journal.pone.0222452.g007
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10-element array of fractionated dipoles [52]. Higher amplifier power for the integrated body

array presented here would clearly be beneficial to improve transmission. Furthermore, a

more efficient design for the body array could lead to further improvements, since the transmit

elements in this project were not chosen for their efficiency, but for their good decoupling

[40]; dipoles have been shown to be more efficient in integrated designs [53]. Using a more

efficient coil design as proposed in [53] and increasing the amplifier peak output power to 2

kW per channel could increase the peak B1+ amplitude to 30 μT in the center of the body. Pos-

sible further improvements in addition to switching to dipoles as transmit elements include

using T/R switches with reduced attenuation (or even excluding them and only using dedi-

cated receive coils) and using cables with reduced attenuation on the bore liner.

Although the hardware of the system is conceived to apply low-power samples of the for-

ward waveforms to the receive chain during transmit, this capability was not used in the cur-

rent experiments. Instead, more conservative SAR limits based on amplitude-only supervision

were utilized [37]. Future work will target real-time monitoring of both the amplitude and

phase of the forward signal on all 32 channels, which represents a significant computational

challenge but would further relax SAR restrictions.

Integrating a body array into the MRI system leaves more space in the bore, allowing for

larger patients to be imaged, potentially with slim receive-only arrays, while local transmit

arrays tend to take up quite some space in the bore. The large field of view allows imaging of

large areas, which enables whole-body imaging with only a few stations. Among other applica-

tions, this new coil configuration might be beneficial for contrast agent free time-of-flight

imaging of the lower extremities where local coils are known to limit the patient diameter [31].

First structural images show promising homogeneity and image contrast. In this study, the

Fig 8. In-vivo flip angle maps. In-vivo flip angle maps with TIAMO image (A) for orientation. The maps show the CP+ (B, C) and CP2+ (D, E) modes

in transverse (B, D) and coronal (C, E) orientation. The maps (C,E) have a field of view of 50 cm in z-direction.

https://doi.org/10.1371/journal.pone.0222452.g008
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arms were placed outside the field of view because their high signal caused image artifacts due

to their proximity to the coil elements. Since reception in this work was done with the body

coil, a large SNR boost can be expected from local receive-only coils [54], also reducing the sig-

nal intensity differences between arms and torso. Ultimately, this would allow a workflow at

UHF that mimics common practice at lower field strengths like 1.5 and 3 T.

Even though the DACs used in the presented systems are comparably slow and need up to

3 μs until the output is settled, the selective excitation examples show that 100 kHz sampling is

possible. Imprecisions of the IQ modulators were successfully countered by using the system’s

exciter in combination with the IQ modulators to achieve a coupled modulation strategy.

Together with the large field of view, the capability for 32-channel selective excitation could

potentially be used for reduced field of view imaging of, for example, large parts of the spinal

column at UHF, which has already been shown for 16 transmit channels [55].

Since the add-on system does not affect the use of the system in standard configuration, all

imaging protocols relying on the single-channel transmit system and the affiliated local Tx/Rx

coils can still be used without any change, leading to an overall very versatile system. Future

work will have to look more deeply into the capabilities, advantages and drawbacks of a

32-channel transmit system with an integrated body coil compared to standard systems with

local transmit coils.

Fig 9. In-vivo images of a large volunteer using TIAMO. Three overlapping stations of 50 cm were acquired. The left images show

coronal views, the three images on the right show transverse views of the same volunteer. All images were acquired with the body coil

in Tx/Rx mode.

https://doi.org/10.1371/journal.pone.0222452.g009
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Conclusion

We present a 32-channel transmit system add-on that is capable of 100 kHz sampling. Struc-

tural imaging with an integrated 32-channel body array is possible and selective excitation is

shown. The system does not affect the operation of the original MRI system in single-channel

mode. The presented add-on system provides a tool for large field of view imaging and a

potentially more clinic-like workflow.
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