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Detection of cell-type-specific risk-CpG sites
in epigenome-wide association studies
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In epigenome-wide association studies, the measured signals for each sample are a mixture
of methylation profiles from different cell types. Current approaches to the association
detection claim whether a cytosine-phosphate-guanine (CpG) site is associated with the
phenotype or not at aggregate level and can suffer from low statistical power. Here, we
propose a statistical method, High REsolution (HIRE), which not only improves the power of
association detection at aggregate level as compared to the existing methods but also
enables the detection of risk-CpG sites for individual cell types.
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pigenome-wide association studies (EWAS) aim to identify

cytosine-phosphate-guanine (CpG) sites associated with

phenotypes of interest, such as disease status!—3, smoking
history®°, body mass index®, and age”-8. However, because the
samples in EWAS are measured at the bulk level rather than at
the single-cell level, the obtained methylome for each sample
shows the signals aggregated from distinct cell types>*10, which
leads to two main challenges in the analysis of EWAS data. On
the one hand, the cell type compositions differ among samples
and can be associated with phenotypes>!0. Both binary pheno-
types, such as the diseased or normal status®, and continuous
phenotypes, such as age!?, have been found to affect the cell type
compositions. As a result, ignoring the cellular heterogeneity in
EWAS can lead to many spurious associations!?-13. On the other
hand, the phenotype may change the methylation level of a CpG
site in some but not all of the cell types. Identification of the exact
cell types that carry the risk-CpG sites can deepen our under-
standings of disease mechanisms. However, such identification is
challenging because only the aggregated-level signals can be
observed.

To the best of our knowledge, no existing statistical method for
EWAS can detect cell-type-specific associations despite active
research to account for cell-type heterogeneity. The existing
approaches can be categorized into two schools!4: reference-based
and reference-free methods. The reference-based methods®!>
require the reference methylation profiles for each cell type to be
known a priori, and they regress the aggregated methylation
levels observed from each sample on the same set of references to
learn the sample’s cellular compositions. However, because
samples have different attributes, such as age and gender, the
methylation levels of a given cell type can vary among samples. It
is thus problematic to assume that all of the samples have the
same set of reference profiles!®!4. Furthermore, high-quality
references are difficult to obtain for most EWAS due to the
existence of unknown cell types, the high cost of cell sorting, and
confounding effects!4. Consequently, a large amount of recent
EWAS literature was devoted to identification of risk-CpG sites
without the need for the reference methylation profiles.

The reference-free methods can generally be further divided
into two classes according to whether they estimate the cell-type
mixing proportions directly. The direct-decomposition-based
procedures consist of two stages. In the first stage, they simulta-
neously estimate the cellular compositions of each sample and the
cell-type-specific reference methylomes via quadratic program-
ming!® and in the second stage, they treat the estimated cell-type
proportions as covariates with additive effects in the linear
models to conduct association tests. However, when estimating
cellular compositions during the first stage, the direct-
decomposition-based methods also do not consider samples’
phenotype information, thus suffering from the same problem of
biasing the cellular composition estimates as the reference-based
approaches®. Moreover, similar to tumor purity!”, we argue that
the estimated cellular composition has a multiplicative rather
than an additive effect on the observed methylation level
(Methods). The second class of methods, which is exemplified by
SVA!8, RefFreeEWAS!?, and ReFACTor!?, does not carry out
cell-type decompositions. They resort to singular value decom-
position, which includes the principal component analysis, to
construct surrogates for the underlying cell-type composition.
EWASher, a linear mixed model, also belongs to this class because
it is equivalent to the use of principal components as fixed-effect
covariates'!. However, the use of principal components as the
covariates in the regression undergoes the same issue of additive
effects as the direct-decomposition-based methods. Therefore, the
existing reference-free methods have low power in detecting risk-
CpG sites!2.

Although the existing methods aim to address the cellular
heterogeneity problem in EWAS and claim whether a CpG site is
associated with phenotypes at the aggregate level, none of them
can identify the risk-CpG sites for each individual cell type, thus
missing the opportunity to obtain finer-grained results in EWAS.

Here, we propose a method, HIRE, to identify the association
in EWAS at a HIgh REsolution: detecting whether a CpG site has
any associations with the phenotypes in each cell type (Methods).
The keys to HIRE’s success are twofold. First, HIRE links the
underlying cell-type-specific methylation profiles for each sample
to the sample’s phenotypes, thus avoiding the bias in estimating
the cellular composition by the reference-based and direct-
decomposition-based methods. Second, HIRE correctly char-
acterizes the cellular compositions as the multiplicative effects,
whereas the existing methods inappropriately treat the cell pro-
portions as additive effects (Methods). HIRE is applicable to
EWAS with binary phenotypes, continuous phenotypes, or both.
By helping researchers understand in which cell types the CpG
sites are affected by a disease, HIRE can ultimately facilitate the
development of epigenetic therapies by targeting the specifically
affected cell types.

Results

Method overview. HIRE is a hierarchical model that closely
follows the data generation process. Its elaborate modeling
depicts how phenotypes affect the methylation levels of each
sample. Here, we briefly introduce the method. The technical
details are provided in the Methods section and the Supplemen-
tary Methods.

Let us first review the cornerstone in most EWAS approaches.
These methods model the observed methylation levels of the m
CpG sites for sample i, O; = (Oy;, Oz ..., O,,;) %, as the weighted
average of the methylation profiles of K cell types, u; = (u;;, u;,
...» wig). The weights are the cellular compositions p; = (p1;» p2s
. pKi)T of sample i (see the top panel of Fig. la). However,
regardless of whether the reference is known a priori or not, the
existing methods assume that the cell-type-specific methylation
profiles u;s remain the same for all samples: u;=M, fori=1, ...,
n. Unfortunately, because the methylation levels can actually
change with covariates such as age and disease status, ignoring
the covariates’ effects and enforcing static reference methylomes
can bias the estimation of p; and thus affect all downstream
analyses!4. More importantly, the assumption that cell-type-
specific methylation profiles are the same for each sample
prevents the detection of cell-type-specific risk-CpG sites.

For association detection at the aggregate level, after estimation
of p; using the deconvolution-based approach or its surrogates
from principal component-based methods, the existing methods

examine a linear model in which the phenotypes x; =

T
(Kigs oee s Xigy oo 1 Xig)
additive effects on the methylation level O;:

and the cellular proportions p; exert

A CpGe-site j is then associated with phenotype £ if we reject the
null hypothesis that the covariate coefficient T, equals zero.

In contrast, HIRE further models the effect of each phenotype
on each cell type as shown in the bottom panel of Fig. 1a. In cell
type k, sample ’s cell-type-specific methylation profile, uy, is the
summation of the corresponding baseline cell-type-specific
methylation levels, p;, and the phenotype effects B;,x;, on sample
i from all the =1, ..., q phenotypes: uy = p, + > L, Byyxy»
where x; is the phenotype ¢ of sample i and
By = (B - 7ﬁmkz)T—the kth column of B,—reflects the
association of phenotype ¢ with each of the m CpG sites in cell
type k. Thus, by collecting the baseline cell-type-specific
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Fig. 1 A simple cartoon illustration of the HIRE model with three cell types (K= 3) and two phenotypes (disease status and age; g = 2). a Data generation
procedure for the observed methylation vector O; for sample i (i=1, ..., n). In the top panel, O; is the convolution of cell-type-specific methylation profiles
u; with cellular compositions p;. Both u; and p; depend on the attributes of sample i. The bottom panel describes how sample i's phenotypes affect u; via two
phenotype-effect matrices By and B,. In B; and B,, the white square represents zero, which indicates that the phenotype exerts no influence on the
corresponding methylation level in u;. b Inputs and outputs of HIRE. We input the observed methylation matrix O, the phenotype data matrix X, and a
predetermined cell type number K into HIRE, and HIRE outputs the estimates for the cellular compositions p, the baseline methylation profiles g, the
phenotype effects ﬁl, and the penalized BIC value. In addition, HIRE tests whether there is any association between CpG site j and phenotype ¢ in cell type k

—Ho : By = O vs H, : B, # O—and provides the p-values

methylation profiles to g = (4, ..., #x) and denoting the m by K
phenotype coefficient matrix (B, : 1 <j < m,1 <k < K) by B,,
we now have:

q
O; =wp; = ZBM‘MP«' +pp; = (Bip;, . ..

=1

y Bepi)xi + ppi (2)

A comparison of x; in Eq. (1) and x,p,, £ =1, ...,q in Eq. (2)
reveals that via the two-layer hierarchical model HIRE correctly
captures the multiplicative effects of the cellular compositions on
the phenotype effects (see also Methods and the Supplementary
Methods). As a result, HIRE achieves greater statistical power for
association detection at the aggregate level and enables the fine-
scale resolutions that were previously infeasible. We mathema-
tically prove that the HIRE model is identifiable under mild
conditions that are easily met in reality (see Theorem 1 and its
proof in Methods).

Figure 1b summarizes the inputs and outputs of HIRE. Given
the methylation measurements at the aggregate level of n samples,
HIRE can estimate all parameters of interests —p; (i =1, ..., n), g,
and B, (/=1,...,q). HIRE then determines whether any
association exists between CpG site j and phenotype ¢ in each
individual cell type by testing the hypotheses H, : f;, = 0 versus

Hy : By, # 0. When the null hypothesis Hy : B, = 0 is rejected,

HIRE calls CpG site j as a risk-CpG site for phenotype ¢ in cell
type k. The detection of cell-type-specific risk-CpG sites cannot
be performed with any of the existing state-of-the-art methods.

Moreover, HIRE allows users to prespecify the number of cell
types K. When K is unknown, HIRE selects the number of cell
types according to the penalized Bayesian information criterion
(pBIC)? (Supplementary Methods).

Simulation. As the definition of the gold standard for real data is
debatable?!22, we designed extensive simulation studies to eval-
uate the performance of HIRE and compared it with commonly
used methods—unadjusted analysis, SVA, RefFreeEWAS,
EWASHer, and ReFACTor (Methods). We generated datasets in
which the observed methylation was a mixture of several cell
types and each sample was accompanied with a diseased or
normal status and a continuous age attribute. We deliberately
designed some cell types to have similar baseline methylation
profiles to mimic cell types from the same cell lineage. We set the
sample size n to 180, 300, and 600 and let the underlying cell type
number K be 3, 5, and 7. For each pair of (n, K), we investigated
two scenarios in which (1) all phenotype effects ;s are zero—

the true null case—to compare the ability of each method to
control false positives; and (2) a small portion of ;s are non-

zero—the true alternative case—to study each method’s power to
detect risk-CpG sites. Under the true alternative, both the binary
and the continuous phenotypes were assumed to have cell-type-
specific risk-CpG sites and to affect the cell-type proportions
among the samples!'?. We further simulated phenotype effects
with various directions and magnitudes.

Under the true null, HIRE, EWASHer, and ReFACTor control
the false positive rates (FPRs) very well: none are greater than
0.05% (Table 1 and Supplementary Figs. 1-9). In comparison,
RefFreeEWAS often has FPRs greater than 0.1% and thus does
not perform as well as HIRE, and the unadjusted analysis and
SVA further suffer from the dramatic inflation of false positives.
For the true alternative settings, given that the FPRs are well-
controlled, with FPRs below 0.05%, HIRE achieves the highest
true positive rates (TPR) of all methods in every simulation
setting (see also Fig. 2a and Supplementary Figs. 10-17). As
expected, as the sample size increases, HIRE’s power increases.
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Table 1 Performance of HIRE and other competing methods in simulation studies

Cell type number Sample size HIRE SVA Unadjusted RefFreeEWAS EWASHer ReFACTor
True null K=3 n=180 FPR 0 0.35% 21.72% 0.12% 0 0
True null K=3 n=300 FPR 0.00% 3.13% 53.40% 0.12% 0.00% 0
True null K=3 n=600 FPR 0 22.06% 77.2% 0.1% 0.00% 0
True null K=5 n=180 FPR 0.05% 0.3% 18.5% 0.13% 0 0
True null K=5 n=300 FPR 0.01% 1.54% 36.89% 0.08% 0 0
True null K=5 n=600 FPR 0 8.09% 55.66% 0.12% 0 0
True null K=7 n=180 FPR 0.00% 0.04% 5.13% 0.11% 0 0
True null K=7 n=300 FPR 0.00% 0.22% 22.84% 0.12% 0 0
True null K=7 n=600 FPR 0 6.80% 48.12% 0.11% 0 0
True alternative K=3 n=180 FPR 0.01% 1.24% 32.20% 0.11% 0 0
True alternative K=3 n=180 TPR 98.67% 87.33% 60.67% 79.33% 21.33% 60.67%
True alternative K=3 n=300 FPR 0.00% 7.60% 65.03% 0.09% 0 2.21%
True alternative K=3 n=300 TPR 96.67% 86% 79.33% 63.33% 24.67% 56.67%
True alternative K=3 n=600 FPR 0.03% 16.91% 73.55% 0.11% 0.00% 1.34%
True alternative K=3 n=600 TPR 100% 84% 88.67% 90% 35.33% 45.33%
True alternative K=5 n=180 FPR 0.00% 2.70% 20.06% 0.14% 0 0
True alternative K=5 n=180 TPR 66% 80.8% 35.2% 71.2% 6.4% 41.6%
True alternative K=5 n=300 FPR 0.01% 1.76% 36.11% 0.17% 0 0.01%
True alternative K=5 n=300 TPR 89.6% 86.4% 69.2% 76.4% 1.2% 53.6%
True alternative K=5 n=600 FPR 0.01% 15.31% 56.25% 0.09% 0 0.11%
True alternative K=5 n=600 TPR 98.4% 82.8% 62% 84.4% 18% 62.8%
True alternative K=7 n=180 FPR 0 0.37% 9.30% 0.11% 0 0
True alternative K=7 n=180 TPR 43% 58.67% 35% 54.67% 5% 26%
True alternative K=7 n=300 FPR 0.00% 1.08% 26.67% 0.11% 0 0
True alternative K=7 n=300 TPR 63.33% 73% 45% 76.33% 5% 35.67%
True alternative K=7 n=600 FPR 0.04% 25.80% 56.76% 0.10% 0 0.00%
True alternative K=7 n=600 TPR 82.67% 83% 66% 74.33% 5% 51.67%
Performance of HIRE and other competing methods in simulation studies in detecting risk-CpG sites at the aggregate level. For the true null cases in which no CpG site is at risk, the average of the false
positive rates (FPRs) based on five replicates is reported. For the true alternative cases, the averages of the FPRs and the true positive rates (TPRs) based on five replicates are reported. The number of
CpG sites at risk is 30, 50, and 60 for the cell type number K =3, 5, and 7, respectively. HIRE calls a CpG site as significant at the aggregate level if it is at risk in at least one cell type. We used Bonferroni
correction for each method to control the family-wise error rate (FWER) below a = 0.01. Because HIRE can provide the p-values of CpG sites for all cell types and phenotypes, the p-value threshold for
significance is a/(mKq), where m=10,000 is the number of CpG sites and q = 2 is the phenotype number. For the other five methods, the p-value threshold is set to a/m. Notice that “0" represents
exact zero, and “0.00%" indicates a very small positive number that is rounded down to zero using four decimal places

For example, when the data include five cell types, HIRE can
identify 89.6% of the risk-CpG sites with 300 samples, and HIRE
can detect almost all risk-CpG sites when the sample size reaches
600, which is a typical sample size for EWAS. Although
EWASHer and ReFACTor have low FPRs, they miss a large
proportion of risk-CpG sites. EWASHer’s maximum TPR is only
35.33%, and ReFACTor’s maximum TPR is slightly over 60%.
However, in those cases, HIRE’s power is greater than 95%.
Consistent with the true null scenario, in the true alternative,
RefFreeEWAS has inflated FPRs compared to HIRE, and the
unadjusted analysis and SVA always have huge false positives.
Therefore, HIRE substantially improves the power of association
detection at the aggregate level compared with existing methods.

In the multiple hypothesis testing, the p-values from the
truly null features should follow a uniform distribution on (0, 1),
whereas those for the truly alternative features are
concentrated near zero?3. Both the histograms (Fig. 2d-i) and
the Q-Q plots (Fig. 2j-0) show that the p-value distribution of
HIRE is the best fit to the underlying truth—there are only a
small proportion of signals, followed by RefFreeEWAS and
ReFACTor. EWASHer easily overcorrects signals with its p-value
density having a dip near zero (Fig. 2h), thus failing to detect the
true associations. In contrast, the unadjusted analysis and SVA
generate very small p-values clustered near zero, resulting in
inflated type I errors.

In addition to the traditional association detection at the
aggregate level, HIRE can identify the association for each CpG
site with the phenotypes under each cell type. Table 2 shows the
FPR and TPR of HIRE for each cell type in various simulation
settings. Such fine analysis is not possible with the other methods.
Consistent with association detection at the aggregate level, HIRE
always controls the FPR well. When K=3 and n =180, HIRE
accurately detects the risk-CpG sites associated with disease status
a TPR of greater than 83% and an FPR of 0.01% or less in all three

cell types. Similarly, most of the CpG sites affected by age are also
correctly identified in each cell type. HIRE’s learned cell-type-
specific association patterns closely matches the underlying true
associations (see Fig. 2b, ¢ and Supplementary Figs. 18-26). Once
again, HIRE’s power decreases with the number of cell types and
increases with the sample size. When the samples consist of seven
cell types and the proportion of the least abundant cell type is as
low as 4.2%, given a typical current EWAS with around
600 samples, HIRE can detect most cell-type-specific risk-CpG
sites reasonably well. Moreover, HIRE’s estimates for the baseline
methylation profiles, cellular compositions, and phenotype effects
have little bias (Supplementary Figs. 27-62); therefore, HIRE can
provide accurate estimates and is powerful in detecting cell-type-
specific risk-CpG sites.

In the HIRE model, we assume that different CpG sites are
independent, and we investigate the performance of HIRE when
such a model assumption is violated and dependences exist
among nearby CpG sites. Specifically, we assume that every 50
consecutive CpG sites belongs to a block. For CpG sites within
the same block, their random noises € follow a multivariate
normal distribution with mean zero and 50 x50 covariance
matrix ¥, and X’s corresponding correlation matrix has its (i, j)
entry equal to pli=Jl. We vary p to 0.8, 0.6, and 0.4. A comparison
of Supplementary Tables 1-3 with Supplementary Table 4 shows
that even when strong correlations exit among nearby CpG sites,
HIRE still provides good performances in controlling the FPR
and detecting the risk-CpG sites under the model misspecification
setting.

To further evaluate HIRE’s performance on experimentally
mixed samples, we conducted another semi-simulated dataset
that includes six samples mixed with six purified cell types in
predetermined proportions?*4. Once again, HIRE successfully
recovers the six underlying reference cell types and estimates the
cellular compositions well (see Methods).
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Real data analysis. HIRE also provides greater insight into real
data than previous studies. The rheumatoid arthritis (RA) data-
set3 contains methylation profiles collected from the whole blood
of 354 patients with RA and 335 normal participants. In addition
to the RA status, other attributes such as gender, smoking history,

age, and batch information are available. We first corrected the
batch effects and then applied HIRE to the dataset (Methods).
Figure 3a displays the p-values regarding the association with the
RA status for each CpG site in each cell type, in which HIRE
selected six cell types (Supplementary Fig. 63a), consistent with
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Fig. 2 Association detection performance of HIRE and commonly used methods in the true alternative setting with K=3 and n=180. Source data are
provided as a Source Data file. In all figures, red corresponds to HIRE; yellow indicates the unadjusted analysis; brown represents SVA; purple refers to
RefFreeEWAS; dark blue indicates EWASher; and light blue corresponds to ReFACTor. a ROC curves of HIRE and commonly used methods. HIRE has the
largest area under the curve among all of the methods. b True cell-type-specific association pattern with disease status for 10,000 simulated CpG sites;
columns correspond to cell types, and the rows represent the CpG sites. Dark cells correspond to risk-CpG sites, and grey cells are CpG sites not
associated with the disease status. ¢ Detected cell-type-specific association pattern with disease status by HIRE. Darkness represents —log;, (p — value) d-i
The p-value density plots for association with disease status in the simulation dataset for d HIRE, e unadjusted analysis, f SVA, g RefFreeEWAS,

h EWASHer, and i ReFACTor. j-o The Q-Q plots for association with disease status for j HIRE, k unadjusted analysis, | SVA, m RefFreeEWAS, n EWASHer,

and o ReFACTor

Table 2 Performance of HIRE in detecting cell-type-specific risk-CpG sites

Phenotype Cell type number Sample size Cell type 1 Cell type 2 Cell type 3 Cell type 4 Cell type 5 Cell type 6 Cell type 7
Disease status K=3 n=180 FPR 0.01% 0.00% 0.01%

Disease status K=3 n=180 TPR 83% 85% 92%

Disease status K=3 n=300 FPR 0.02% 0.02% 0.04%

Disease status K=3 n=300 TPR 74% 85% 95%

Disease status K=3 n=600 FPR 0.03% 0.03% 0.05%

Disease status K=3 n=600 TPR 99% 98% 100%

Disease status K=5 n=180 FPR 0.01% 0 0.00% 0.01% 0.02%

Disease status K=5 n=180 TPR 35% 46% 44% 39% 75%

Disease status K=5 n=300 FPR 0.02% 0.02% 0.02% 0.06% 0.10%

Disease status K=5 n=300 TPR 66% 73% 67% 43% 43%

Disease status K=5 n=600 FPR 0.02% 0.02% 0.01% 0.10% 0.12%

Disease status K=5 n=600 TPR 81% 77% 92% 52% 56%

Disease status K=7 n=180 FPR 0 0 0.01% 0 0.00% 0 0.00%
Disease status K=7 n=180 TPR 13% 28% 32% 20% 21% 15% 69%
Disease status K=7 n=300 FPR 0.01% 0.01% 0.01% 0.00% 0.01% 0.01% 0.02%
Disease status K=7 n=300 TPR 20% 48% 60% 52% 40% 23% 78%
Disease status K=7 n=600 FPR 0.02% 0.02% 0.01% 0.02% 0.01% 0.01% 0.07%
Disease status K=7 n=600 TPR 37% 79% 90% 52% 7% 66% 98%
Age K=3 n=180 FPR 0.01% 0.01% 0.06%

Age K=3 n=180 TPR 68% 76% 96%

Age K=3 n=300 FPR 0.05% 0.03% 0.08%

Age K=3 n=300 TPR 95% 95% 90%

Age K=3 n=600 FPR 0.06% 0.06% 0.08%

Age K=3 n=600 TPR 94% 99% 95%

Age K=5 n=180 FPR 0.05% 0.05% 0.01% 0.04% 0.06%

Age K=5 n=180 TPR 67% 61% 82% 69% 97%

Age K=5 n=300 FPR 0.09% 0.03% 0.04% 0.04% 0.08%

Age K=5 n=300 TPR 78% 85% 97% 85% 91%

Age K=5 n=600 FPR 0.07% 0.06% 0.07% 0.08% 0.08%

Age K=5 n=600 TPR 88% 84% 94% 83% 94%

Age K=7 n=180 FPR 0.02% 0.01% 0.01% 0 0.02% 0.01% 0

Age K=7 n=180 TPR 39% 62% 58% 68% 38% 54% 85%
Age K=7 n=300 FPR 0.08% 0.01% 0.04% 0.01% 0.03% 0.03% 0.02%
Age K=7 n=300 TPR 46% 62% 79% 84% 79% 73% 93%
Age K=7 n=600 FPR 0.09% 0.08% 0.04% 0.10% 0.03% 0.05% 0.07%
Age K=7 n=600 TPR 52% 77% 85% 84% 77% 79% 84%
Performance of HIRE in detecting cell-type-specific risk-CpG sites in the true alternative cases. The results are based on five replicates for each setting. A CpG site is claimed to be significant in a given cell|
type if its p-value is less than a/(mKq)

the number of cell types in the previous study!3. Despite potential
batch effects and biological variability, three of the six cell types
can be matched to known blood cell references—cell type 1 was
matched to CD4+ T cells, cell types 2 and 4 were matched to
neutrophils, and the remaining three cell types cannot be aligned
to the references (Methods and Supplementary Fig. 64). HIRE
detected 63 risk-CpG sites in cell type 3—the largest number of
associations across all cell types—but no risk-CpG sites in cell
type 1 (Supplementary Table 5). Therefore, the disease status
affected some but not necessarily all cell types. Note that the
significant CpG site cg06373940 called by HIRE is located on
gene ERCC3. The level of ERCC3’s corresponding protein has
been reported to increase in RA synovium?°. Moreover, we found
that five CpG sites had a significant association with smoking
history (Supplementary Fig. 65 and Supplementary Table 6). One
of them is ¢g05575921, which was recently linked to smoking in
two other independent studies of blood samples20-27. However,
these findings were missed by the association detection at the
aggregate level in previous analyses of the same dataset! 113, The
p-value density plots and Q-Q plots for the commonly used
methods are also displayed in Fig. 3c-n; they present patterns

similar to those observed in the simulation study except for an
obvious overcorrection by ReFACTor.

The high resolution provided by HIRE makes it a powerful tool
for EWAS studies. Rahmani et al. used ReFACTor!? to analyze
the GALA 1I blood methylation dataset?®, which consists of
573 samples collected from a pediatric Latino population. Each
sample includes the gender information and belongs to one of the
following four populations: Mexican, Mixed Latino, Puerto Rican,
and Other Latino. We applied HIRE to the dataset to investigate
whether any cell-type-specific CpG sites were associated with
gender and ethnicity. We created three dummy variables to
represent the four ethnic groups. By taking the indicators of
ethnicity as phenotypes in the model, HIRE automatically and
simultaneously accounts for the population differences in cell
composition and cell-type-specific methylation levels. HIRE
correctly selected the number of cell types as six as reported in
the previous study!3 (Supplementary Fig. 63b). According to cell-
type alignment, cell types 1 and 5 can be annotated as CD4+
T cells; cell types 2, 3, and 4 belong to neutrophils; and cell type 6
was annotated as CD56+ natural killer cell (CD56+ NK) using
the references (Supplementary Fig. 66). HIRE found that 1936
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CpG sites were associated with ethnicity across all cell types
(Supplementary Fig. 67) and identified 14, 52, 155, 15, 18, and 14
risk-CpG sites for gender in cell types 1-6, respectively (Fig. 3b).
Gene set enrichment analysis showed that the genes that
harbored risk-CpG sites for gender were significantly enriched
in seven canonical pathways (Supplementary Table 7), of which
the PID_CMYB_PATHWAY was ranked the highest. The
transcription factor ¢ — MYB in the PID_CMYB_PATHWAY
enhances the progression of breast cancer??; therefore, the
different occurrence rates of breast cancers in men and women
may be linked to the differences at the epigenome level. In
comparison, only one pathway was found to be enriched with the
genes that host the risk-CpG sites claimed by ReFACTor at
the aggregate level (Supplementary Table 8). All of these
observations highlight the importance of the finer-scale resolu-
tions of HIRE.

Discussion

In reality, the phenotype may affect a risk-CpG site in some but
not all of the cell types. HIRE can detect the cell-type-specific
association pattern with each phenotype for EWAS. The identi-
fication of cell-type-specific risk-CpG sites will help epigenetic
therapies to target the affected cell types in a more effective
manner.

Statistically, instead of assuming fixed reference methylomes
for all samples as the existing methods do®!1316, HIRE allows
each sample’s cell-type-specific methylation profiles to depend on
its phenotypes. As a result, HIRE correctly models the multi-
plicative effects of the cellular compositions on the observed
methylation levels, whereas the existing approaches all misspecify
the cellular compositions as additive effects (Methods). As a
result, HIRE enables the detection of cell-type-specific risk-CpG
sites that cannot be feasibly detected with existing state-of-the-art
methods. As a byproduct, HIRE also improves the statistical
power of association detection at the aggregate level relative to
existing state-of-the-art methods. Computationally, the time
complexity of one iteration by HIRE is O(nmKp + nK3), which
thus provides fast convergence when K is moderate. The statis-
tical and computational advantages equip HIRE to be scaled up
for large-cohort EWAS.

So far, in the EWAS community, no gold-standard exists for
the comparison of various methods. Ideally, we would like to have
epigenetic spike-in experiments in which purified cell types are
isolated, CpG-sites are epigenetically edited on a per-cell-type
basis, and cell types are finally mixed in predetermined propor-
tions. Given such experiments, the underlying knowledge of
which CpGs are differentially methylated in each cell type and the
cell mixing proportions for each sample are known. However,
biotechnologies for epigenetic editing, such as CRISPR-Cas, are
still not mature at this stage, with many off-target modifica-
tions30. Therefore, most computational EWAS studies refer to
numerical simulation studies rather than to experimental studies
when evaluating the performance of their algorithms!?!3. Here,
we follow the example of previous comparative studies and design
our simulation studies to serve as the computational counterpart
of experimental spike-in studies. With the rapid advances in
epigenetic editing, we hope the community can devote greater
effort in the near future to the creation of a gold-standard dataset,
such as those generated in the early years for gene expression
microarray studies3!.

The beta-values that represent methylation levels always lie
between zero and one. As previous approaches to EWAS often
assume normal distribution for the beta-values and show good
performances in real applications®!3, in HIRE, we also assume
that the beta-values follow a normal distribution. Consequently,

the fitted methylation level may lie outside the range of [0, 1].
Nevertheless, we do in fact constrain the baseline methylation
profiles ujys to the closed interval [0, 1] and force the cellular
compositions py;s to be non-negative and to add up to one:
2115:1 Pri = 1. As a result, because the phenotypes have no effect
on most CpG sites, most observations, Oj;s, have their means
ZIk{:l UiPris in [0, 1]. In fact, for both the RA dataset and the
GALA 1I dataset, more than 99.99% of the fitted methylation
values O;s based on HIRE estimates lie between zero and one.
Therefore, the normal assumption fits the data reasonably well
and does not have a large effect on the performance of HIRE.

One major issue for all of the cell-type deconvolution methods
is that deconvolution cannot be achieved if the cellular compo-
sitions do not vary among samples. For example, assuming that
the samples are mixtures of two cell types and p; = p for all of the
samples, then the observed methylation profile O; equals u;;p; +
uppy = (w4 pOpy + (wy — pO)pa =, p; +u,p, for any
constant C. As a result, u;; and u;, are not estimable. In our paper,
we show mathematically that HIRE is identifiable under mild
conditions in Theorem 1 and that condition (b) of Theorem 1
formulates the requirement for the variability of the cellular
compositions (Methods). HIRE can accurately estimate cellular
compositions of tissues with great cellular heterogeneity, such as
blood. Although the mild conditions in Theorem 1 are easily met
for real DNA methylation data, identification of both sufficient
and necessary conditions for model identifiability is a theoreti-
cally interesting and challenging statistical problem that we will
investigate in a future study.

HIRE requires a moderate sample size to obtain precise esti-
mates because HIRE needs to learn (1 + 2K+ gK)m + (K— 1)n
parameters with a total of mn observed values. Our simulation
studies show that HIRE performs very well at the aggregate level
with 180 samples (Table 1). If the sample size drops below 150,
say to 120, HIRE can still control the FPR well but begins to lose
power (Supplementary Table 9). For small sample sizes, we have
also developed a special case of HIRE by reparameterizing all aéks
as one single parameter 02, and we found that such a variance-
stabilized approach can achieve even better inflation control (see
Supplementary Figs. 71-76) and power comparable to HIRE (see
Supplementary Table 10). Like the two datasets analyzed in the
real application, a typical sample size for a current EWAS exceeds
500, thus guaranteeing a high TPR for HIRE. Given the
decreasing cost of EWAS, we recommend that researchers collect
at least 200 samples for their studies for association detection at
the aggregate level and 600 samples for identification of cell-type-
specific risk-CpG sites. A larger sample size can further boost
the power.

With the popularity of EWAS, we believe that HIRE will be
widely applied, and we hope that HIRE can motivate more
researchers to mine out finer-scale results from EWAS.

Methods

Multiplicative effects of cellular composition on methylation. In this section,
we illustrate that the effects of the cell-type composition are actually multiplicative.
Let us assume that the beta-values that represent the methylation levels are
observed across m CpG sites for n samples. As the measured sample comprises cells
of various types, the observed beta-value is a weighted average of the mean
methylation levels of distinct cell types, and the weights correspond to the pro-
portions of each cell type. Let O;; denote the measurement at CpG site j for sample
i. If we assume that there exist K cell types in all samples and that the mean
methylation level for CpG site j in cell type k is pj, then

K
0; = Z.“jkpki + €
=1

where py; is the proportion of cell type k in sample i with a natural constraint
Zle pri =1, and ¢;; is a random error.
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Let us consider a case-control EWAS. Without loss of generality, we assume
that CpG site j is differentially methylated between cases and controls in cell type 1
with a mean shift §j; and that it is not differentially methylated in the remaining
cell types. As a result, for case samples,

K
Oj = (4 + )pu + Zl‘;k?k: + € = Oupy; + Z#jkpki + €
k=1
If we then use Z; to indicate the case-control status of sample i, the observed
methylation level becomes

K
Oy = 8,piZi + Z#jk?ki +€ji- (3)
k=1

Therefore, the proportions of cell type 1—py;, i =1, ..., n—have multiplicative
effects rather than additive effects on the mean difference between the case and
control samples.

The existing methods, which either estimate the cell type proportions explicitly
or approximate them implicitly with surrogate variables, add the estimated
proportions and the case-control indicator Z; as the covariates to the regression as
follows:

O —DC+TZ,+Z kpkare]z (4)

where bjs are the regression coefficients. As a result, CpG site j is called
differentially methylated on the basis of hypothesis testing for 7;= 0. In general, 7;
in Eq. (4) is not equal to §;; in Eq. (3). Please see the Supplementary Notes for a
numerical example. Moreover, testing for 7; =0 loses the information regarding
cell type in which CpG site j may be at risk. To account for the multiplicative
effects, we propose the HIRE model that conserves the individual cell-type level
information, which is introduced in the next section.

The HIRE model. HIRE uses a hierarchical model to closely follow the data gen-
eration process for the EWAS data. To begin, we assume that the baseline
methylation level for CpG site j in cell type k is pj. For sample i with phenotypes
X; = (X1, ..., Xiq), the mean methylation value for CpG site j in cell type k is
assumed to be 1 + YiB Bjiexi- In other words, the phenotypes have linear effects
where 8, characterizes the influence of phenotype £ on CpG site j in cell type k.
Let u; represent the signal from CpG site j in cell type k for sample i with x;. We
assume that u; follows a normal distribution with mean p; + i Bjeie and
standard deviation oy,

q
Uy ~ N <ij + Zﬁjklxi[a Ufk> . (5)
=

After ujjs are generated for all of the K cell types, the observed methylation value
O;; is sampled as follows:

K
0; ~N (Z WiicPri» 0?;) - (6)

Collectively, O ={0;; : 1 <j<m, 1 <i<n} denote the observed data; u = {(u;1, ...,
u,JK)T 1<i<n, 1 <] < m} are the missing data; and ;4] Hj1> - i)
BV = (ﬁjk[)qu, O'E], the diagonal matrix X; = diag(o?, e ,G']-ZK) forj=1, ..., m,
and pi= (P1i> - pK,)T fori=1, ..., n are the parameters. With

{p,,‘uJ,B(] %, O' 1< S m,1 < i< n}, the complete data log-likelihood
functlon, I, can be expressed as follows:

I & (0;—ulp)’
= ZZ{—%logagj —7202

i=1j=1

K
1.(®]0,u) %Z: loga,

—5 (wy —p; — BU)xi)TZj’l(u,-j - - O)X,-)} + Constant.
Accordingly, we develop a generalized expectation-maximization algorithm3? to
estimate the parameters. In the expectation-maximization algorithm, a good
initialization can lead to faster convergence than random starts. We adopt the
cellular composition estimations from the methylation matrix decomposition
algorithm!® with slight modifications as the initializations. The initial values for the
baseline methylation profiles yj; are accordingly estimated by simple linear
regressions. As the number of risk-CpG sites is often small, all of the phenotype
effects B, are set to zero at the beginning. For the standard deviations, the initial
values are randomly sampled from inverse gamma distributions with small means.
We choose the number of cell types K by using a variant of the penalized Bayesian
information criterion (pBIC)?? (see details in Supplementary Methods).

For each phenotype ¢, we can conduct the hypothesis test H, : B;, = 0 versus
H : By, # 0 for any cell type k and any CpG site j. Combining Egs. (5) and (6), we

obtain the following equations:

K 4
E[ij] - /4]1 + Z ﬂ)k A“jl pkx + Zzﬁjkéxifpkhi =L..,n (7)

k=1 (=1

We can then take (Ojy, ..., Oj,) as the response vector and concatenate 1, (px1, ...,
Pin) (k=2, ..., K) and (X;)Ppys -+ s XPin) =1, ... ,q;k=1,... ,K)toanx(p
+ 1) - K design matrix in the linear regression. We plug in the estimated cellular
compositions py;, and conduct the hypothesis test for Bjre = 0 using the two-sided
t-tests in the linear models. We claim that CpG site j has an association with
phenotype ¢ at the aggregate level if phenotype ¢ affects CpG site j in at least one of
the K cell types. Note that in the regression we incorporate the estimated cellular
compositions into the linear model as multiplicative effects rather than additive
effects.

More technical details of the method and the algorithm are available in
the Supplementary Methods.

Data simulation. We compared the performance of HIRE with five previous
methods—unadjusted analysis, SVA, RefFreeEWAS, EWASHer, and ReFACTor—
in 18 simulation settings. We set the sample size n to 180, 300, and 600 and let the
underlying cell type number K be 3, 5, and 7. For each pair of (1, K), we inves-
tigated the true null case and the true alternative case. As a result, we have in total 3
(the number of sample sizes) x 3 (the number of cell types) x 2 (the true null case
and the true alternative case) = 18 simulation settings. For each setting, we con-
sidered 10,000 CpG sites and simultaneously accounted for the following factors.

Cell lineage. We first constructed the baseline methylation matrix g = (i) mxxo
in which each column corresponds to the baseline methylation levels of a cell type.
To mimic the phenomenon in which cell types from the same lineage have similar
methylation profiles, we assumed that K, of the total K cell types were similar.
Specifically, without loss of generality, we assumed that the first K, cell types
came from the same cell lineage and that the remaining K — Kj;,,, cell types are
irrelevant to one another. We set K;,, to 2, 2, and 3 for K= 3, 5, and 7, respectively.
We generated pj for cell types k= 1, Ky + 1, ..., K from the beta distribution
betu(S 6) on each CpG site j independently. For each of the remaining cell types k

=2, ..., K, we randomly selected 20% of the CpG sites and drew their pes
independently from beta(3, 6); and for the remaining 80% of CpG sites, we let their
i be wji plus a very small randomness, thus inducing the similarities among cell
types 1 to K.

Discrete and continuous phenotypes. We further generated a discrete and a
continuous phenotype x = (xy, x,)T for each individual i (i=1, ..., n). We let the
first n/3 individuals be the control samples with x;; =0 for i =1, ..., n/3 and the
remaining 2n/3 individuals serve as cases with x;; =1 for i=n/3+1, ..., n. The
continuous phenotypes X, = (X12, ..., Xz +..s X2) T were independently drawn from
a Unif(20, 50) to act as age.

Phenotype effects with different magnitudes and directions. We then simulated
the phenotype effect B, of each phenotype £ on CpG site j in cell type k. For the
true null cases, all of the ,Bjkks are zero. For a true alternative setting, we set nonzero
phenotype effects as follows.

For phenotype 1—the case/control status, we let it affect the first 10 CpG sites in
all of the cell types: Bz # 0 for j=1, ..., 10 and k=1, ..., K. We then assumed that
the next 10 CpG sites were influenced by the disease status in the first K, cell types
which come from the same lineage but not the other cell types: B, #0 (k=1, ...,
Kgim) and Bz =0 (k=K + 1, ..., K) for any j=11, ..., 20. Furthermore, for cell
type k € {Ksim + 1, ..., K}, we let the disease status affect CpG sites j = 20 + 10(k —
Kgm — 1)+ 1, ..., 20 + 10(k — K§;,,) only in cell type k. We generated the cell-type-
specific effects of age in a similar fashion for CpG site loci 21 to 40 + 10(K — Kip,)-

For each nonzero B, we let Bjx = rji - wi, where wj ~ Unif(0.07, 0.15) and rj
takes values of 1 and —1 with equal probabilities. Thus, Bjx;s can have both positive
and negative effects. In the same spirit, we generated nonzero fijx,s with rjfks and
wjs where wy ~ Unif(0.007,0.015).

Association between phenotypes and cellular compositions. Notice that the
phenotypes may be associated with the cellular composition. Therefore, when
K =3, we drew p;= (p1, ..., px;) from a Dirichlet distribution Dir(4, 4, 2 + 0.1x;,)
if sample i is a control and p; ~ Dir(4, 4, 5 + 0.1x;,) if it is a case; when K = 5, we let

~ Dir(3, 3, 3, 3, 2 + 0.1x;,) for a control sample and p; ~ Dir(3, 3, 3, 3, 5 + 0.1x;5)
for a case sample; and when K =7, we sampled p; ~ Dir(1, 3, 3, 3, 2, 2, 2 + 0.1x;5)
for controls and p; ~ Dir(1, 3, 3, 3, 2, 2, 5+ 0.1x;,) for cases.

Finally, we generated the observed value O;; for CpG site j of sample i as follows:
sample u;j from N(gj + Bjerxin + BiroXios 0.012) for k=1, ..., K; and sample O,
from N(Zle Ui Pris 0.012). In case Oj; lies outside the interval (0, 1), we truncate
it to zero if Oj; is lower than zero and to one if Oj; is greater than one.

Semi-simulated dataset including samples with known cell mix proportions.
The GEO dataset GSE110554%4 contains purified cell-type-specific methylation
profiles for six cell types: neutrophils, monocytes, B cells, CD4+ T, CD8+ T, and
NK. Moreover, GSE110554 includes mixed samples whose methylation signals
were aggregated from the six cell types with predetermined cell mix proportions.
Therefore, because of the known cell type and cellular proportion information,
GSE110554 is an ideal dataset with which to test HIRE’s performance.

In GSE110554, the number of mixed samples is much smaller than the typical
size of an EWAS and, as discussed in the manuscript, HIRE usually requires
hundreds of samples to obtain accurate and stable results. Therefore, to increase
the sample size, we first generated a simulated methylation dataset with
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600 samples using the purified methylation profiles. We focused on 10k CpG sites,
including the 450 IDOL CpaG sites, which were previously identified as the optimal
library of CpG sites for estimation of leukocyte subtype proportions?4, and another
9550 CpG sites whose methylation values across the purified cell types fell within
the range of [0.2, 0.8] and had large standard deviations!'!. We then combined the
600 samples and six mixed samples (generated by method A)?* available in
GSE110554 to compose a semi-simulated dataset.

After applying HIRE to the semi-simulated data, we annotated the estimated
cell types based on the methylation profiles from GSE110554. Supplementary
Figure 69 shows the heatmap for the Pearson correlation matrix between inferred
cell types and the underlying truth. The correlation signals on the diagonal are the
strongest in each row. HIRE successfully recovers the six underlying cell types. We
also compared the estimated cellular compositions with the underlying true
proportions for the six mixed samples. Each panel in Supplementary Fig. 70
displays a scatter plot between the cellular proportion estimates and the true mix
proportions for a given cell type; they all indicate that HIRE obtains good estimates
for cellular compositions.

Cell type matching protocol. Assume that we have the reference methylation
profiles for the H annotated cell types. We first denote the methylation profile for
cell type h as ¢, = (¢1p» ..., Pun). We aim to annotate py using the references.
Following the previous study?3, first, we calculate the cosine similarity, the Pearson
correlation, and the Spearman correlation between g and ¢y, for each cell type h €
{1, ..., H}. Notice that the three similarity measures lie between —1 and 1, and a
high positive value indicates great similarity between two vectors. Second, for each
similarity measure ¢ (¢ = 1,2, 3), we identify the cell type h, that has the maximal
degree of similarity with p. If at least two out of the three similarity measures
identify the same reference cell type h and their corresponding similarity values are
greater than 0.5, then we annotate g with the reference cell type h. Otherwise, p is
believed to belong to a new cell type that is not included in the references. We
repeat the above process for each methylation profile gy estimated from HIRE.

Blood cell references. The two real data sets analyzed in our applications were

obtained from whole blood. Therefore, we prepared the references from a whole
blood methylation study®* with GEO accession code GSE35069. The study inclu-
ded seven isolated blood cell subpopulations—CD4+ T cells, CD8+ T cells, CD14
+ monocytes, CD19+ B cells, CD56+ NK cells, neutrophils, and eosinophils—for
six individuals. Accordingly, we define the reference profile ¢y, for cell type h as the

average methylation profile of these individuals, i.e., ¢, := éZf:l -

Data preprocessing. The RA dataset is publicly available in GEO with accession
number GSE42861. The dataset measures the methylation levels of the whole
blood. The methylation data have been normalized by Illumina’s control probe
scaling procedure (see Liu et al.> “Illumina 450K microarray data preprocessing”
section for details). The dataset includes 689 samples, and the RA status, age,
gender, smoking history, and batch information are available for each sample. We
removed two samples GSM1051535 and GSM1051691 because their smoking
information is missing. CpG sites with a high methylation mean (>0.8) and a low
methylation mean (<0.2) were discarded!!»13. We adjusted the data for batch effects
using COMBAT?>, The correction process was justified because we did not observe
a high degree of co-linearity between the RA status and the batches (Supplemen-
tary Fig. 68). The 10,000 most variable CpG sites were kept. For the RA status, we
denoted RA patients with 1 and the normal control subjects with 0; we represented
men with 1 and women with 0; for the smoking history, we used (0, 0, 0) to refer to
“never,” (1, 0, 0) to “ex,” (0, 1, 0) to “current,” and (0, 0, 1) to “occasional” smokers.

We downloaded the GALA II dataset from Gene Expression Omnibus (GEO)
with accession number GSE77716. The dataset contains the whole-blood DNA
methylation beta-values from 573 samples. The beta-values have been normalized
by SWAN?3® and corrected for batch effects by COMBAT??. There are two types of
covariates: gender and ethnicity. Ethnicity includes Mexican, Mixed Latino, Puerto
Rican, and Other Latino. Out of the 573 samples, one sample “GSM2057284” has
no gender information, so we removed it. As suggested by previous studies! 13,
CpG sites with a mean methylation value of less than 0.2 or higher than 0.8 were
filtered out. We selected the 10,000 most variable of the remaining CpG sites. For
gender, we denoted men with 1 and women with 0. For the ethnicity variables, we
used three dummy variables to represent the four ethnicity categories. In particular,
(0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1) corresponded to Mexican, Mixed Latino,
Puerto Rican, and Other Latino, respectively.

For ReFACTor and EWASHer, according to their rules, we first filtered out
CpG sites that were consistently hypomethylated or consistently hypermethylated
and then regressed out the known covariates. We finally used the residuals to
perform their analysis. Note that in their software these steps are processed
automatically. For RefFreeEWAS, SVA, and the unadjusted analysis, the
phenotypes and the covariates were regarded as the fixed effects in the regression
model. In detail, for ReFACTor, in both GALA II and RA datasets, the cell type
number “K” was specified to be six, which was the same as in their paper!3. For
RefFreeEWAS, we fixed the dimensionality of latent space “d” at six in the real
data. For SVA, we also fixed the number of surrogate variables to six.

Gene enrichment analysis was carried out on the Broad Institute website http://
software.broadinstitute.org/gsea/msigdb/annotate.jsp. The canonical pathways
were selected as the basis gene sets, and only pathways with a false discovery rate of
less than 0.05 were reported.

Identifiability of HIRE. Although the non-negative matrix factorization (NNMF)
O = P has been widely applied in cell type deconvolution!®, where O is the
observed methylation matrix, ¢ is the unknown methylation profile, and P is the
unknown cellular compositions, model identifiability is rarely discussed. During
the review period of our paper, Rahmani et al.3” provided a setting under which the
NMMEF model is not identifiable.

Why then does NNMF always provide satisfactory cell type deconvolution
results in real practice, and why can HIRE estimate all those parameters well? Here,
we show mathematically that the HIRE model is identifiable under mild conditions
that are easily met in reality.

Let us first introduce some notations and definitions. In the HIRE model, the
whole parameter set is denoted by
© :={P,u.B) 03,05 1<j<m1<i<n1<k<K1<l< g}, wherep,
is the cellular composition vector of sample i, y; is the baseline methylation vector
of CpG site j, BE’) is the phenotype £ effect vector on CpG site j, afk is the cell-type-k
noise variance on CpG site j, and Uﬁj is the overall noise variance on CpG site j.

The observed data in our study are the methylation matrix O = {0;:1<i<n, 1<
j<m} and the covariate matrix X = (Xy, ... , X, ... ,X,), where x; is the column
vector that indicates phenotype-¢ for the n samples. The observed likelihood function
(©]0) =TT TT N(O; : PTwy + o0, x,PTBY, Y 03 P + 0% (see Eq.
(S7) in the Supplementary Methods), where N(O : 7, 72) indicates the normal density
with mean 7 and variance 72 at value O.

We further define 1x=(1, 1, ..., 1)T as a K-dimension column vector with all
entries being one, an n by K matrix J; as 1,17, and an n by K matrix ], as x,1%, for
each 1 < ¢ < g. We use O to represent the entry-wise matrix product for two
matrices M and N with the same dimension, ie., (M ® N)i]. = M;N;.

Theorem 1. If (a) for each cell type k, there exists a CpG site ry such that
By") = 0 for any phenotype £ and y, ;, =1 while y, ;. =0 for k' =k, and (b) the
cellular compositions P satisfies that rank((J, ® PT, I, © PT ... Ty, ©
PT .. Ji, © PT)) = (¢ + 1)K and rank((1,,PT) ® (1,,PT)) = K + 1, then the

HIRE model is identifiable. In other words, L(®|0) = L(®|0) for any O implies
0=0.

Proof: First, by integrating out all O elements except Oj;, L(®|0) = L(®|0)
implies N(O; : Plp; + 350, xi[PiTBg)’ Sk o3P + %)
=N(0; ﬁfﬁ} +>0, xiﬁfﬁy), S, @%{f’ﬁi +62). Because the univariate
normal distribution is identifiable, we have

q I .
Py + ZWP?B? =P/ + in[PxTBy)? (8)
=1 =1
K K
Zgj‘zkplzi +0§j = Z&ﬁcpii +6czj' )
k=1 k=1

Taking j=ry in Eq. (8), we have LHS = P;"yrk +31, x,-iP;rByk) = P;"[J,A =
0+ Py - 1+0 = Py; and similarly RHS = Py, so P;; = P;;, which holds for any i

and k. Hence, we obtain P = P. Next, we rewrite Eq. (8) into a matrix form.

B H;
T T T ng) T T T Eij)
(Pisxilpiﬁ-'-vxiqPi) . :(Pivxilpis”vvxiqpi) . , =1, sn
. =0)
BY) By
By combining these #n equations, it follows that
b
BY
L oPl ) 0P, ], 0P ] 0P|
BV
7 (10)
b
BY
=0, 0P, P ], 0P, . ], 0PT)|
BV
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Because the rank of A := (J, © PT,J, ©PT,...,J, ©P", .. ., © PT) is (q
+ 1)K (full column rank), A has a left inverse A~1. Multiplying Eq. (10) by A~!
from the left on both sides, we (lbtain = ﬁj and BE,’) = ﬁy) for1</¢<gq.
Therefore, we have y =y, B = B.

In addition, because Eq. (9) holds for any i, we can also rewrite it into a matrix
form.

2 =2

2 2 o-. 2 2. o

1 Pll PKI € 1 Pll PKI €l
2 2 2 2 2 e

L Py P, % L P P, 1
2 2 2 2 2 52

1 Pln PKn UjK 1 Pln PKn O}K

The left matrix is equal to (1,,PT) ® (1,, PT) which has a full column rank;
therefore, it has a left inverse. Consequently, o7; = 6, and 0}, = Gj. As a result,

© = 0, and we have proven the identifiability of HIRE. ]
Conditions (a) and (b) are easily met for DNA methylation data. Condition (a)
requires that for each cell type k, there exists a CpG site that is not associated with
any phenotype and is only methylated in cell type k but not methylated in any
other cell type. Given the 450K CpG sites assayed by the microarray, we can expect
that such CpG sites are not absent at all. Moreover, condition (a) can also be
relaxed to the condition that for each cell type k, there exists a CpG site ry such that

Biy‘) = 0 for any phenotype { and y, , = 1 while y, ;. = 0 for k" # k or there exists

a CpG site ry such that B;rk) = 0 for any phenotype £ and y, , = 0 while p, ;. =1
for k" # k. The proof follows in a similar manner.

For condition (b), intuitively, the rank requirement of (1,,PT) ® (1, PT) asks
the cellular compositions to vary across subjects, which guards against the case in
which all the subjects have the same cellular compositions and hence no cell type
deconvolution is possible; the rank requirement on (J; ® PT, ]xl ®PT, ... ’]xl ®

PT ... )], ®PT) is the same requirement as those in a standard linear regression,
q

which requires that no collinearity exists among the covariates. Because the sample
size n is much larger than the underlying cell type number K and the phenotype
number g, the two rank requirements can commonly be satisfied in reality.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The RA whole blood methylation dataset is available in the Gene Expression Omnibus
(GEO) with the accession number GSE42861. The GALA II whole blood methylation
dataset can be downloaded from GEO with the accession number GSE77716. The
accession number for the blood cell references is GSE35069. The purified methylation
data and mixed samples used to generate the semisimulated dataset are taken from
GSE110554.

Code availability

The software and detailed documentations are available on Bioconductor with the
software HIREewas page [http://www.bioconductor.org/packages/release/bioc/html/
HIREewas.html].
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