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Abstract: Mutations of the leucine-rich repeat kinase 2 (LRRK2) gene are associated with pronounced
sleep disorders or cognitive dysfunction in neurodegenerative diseases. However, the effects of
LRRK2 deficiency on sleep rhythms and sleep deprivation-related cognitive changes, and the relevant
underlying mechanism, remain unrevealed. In this study, Lrrk2-/- and Lrrk2+/+ mice were subjected to
normal sleep (S) or sleep deprivation (SD). Sleep recording, behavioral testing, Golgi-cox staining,
immunofluorescence, and real-time PCR were employed to evaluate the impacts of LRRK2 deficiency
on sleep behaviors and to investigate the underlying mechanisms. The results showed that after SD,
LRRK2-deficient mice displayed lengthened NREM and shortened REM, and reported decreased
dendritic spines, increased microglial activation, and synaptic endocytosis in the prefrontal cortex.
Meanwhile, after SD, LRRK2 deficiency aggravated cognitive impairments, especially in the recall
memory cued by fear conditioning test. Our findings evidence that LRRK2 modulates REM/NREM
sleep and its deficiency may exacerbate sleep deprivation-related cognitive disorders by perturbing
synaptic plasticity and microglial synaptic pruning in mice.

Keywords: LRRK2 deficiency; sleep deprivation; REM/NREM; microglial synaptic pruning

1. Introduction

Sleep disorders and cognitive dysfunction are characteristic symptoms of neurodegen-
erative disorders, such as dementia with Lewy bodies (DLB) and Parkinson’s disease (PD).
Available literature indicates that the primary culprit for monogenic PD is the mutations
in leucine-rich repeat kinase 2 (LRRK2) genes [1–3]. PD carriers of these mutations often
complain of insomnia, which increases their risk for dementia [4,5]. Evidence suggests
that isolated rapid-eye-movement sleep behavior disorder (iRBD) may serve as a hallmark
for prodromal synucleinopathy [6], while a decreased RBD risk is closely connected with
the LRRK2 protective haplotype [7]. Sleep regulation has a strong genetic component [8].
However, it remains blurred with regards to the effects of LRRK2 deficiency on sleep
disorders and cognition loss, and the underlying mechanisms.

Given the electromyogram (EMG) and electroencephalogram (EEG) recordings, sleep
is broadly categorized into two phases: rapid eye movement (REM) and nonrapid eye
movement (NREM) sleep [9]. During NREM sleep, decreased EEG activity, mainly with
lower delta frequency in the frontal lobe region [10], indicates lower physiological function,
which is indicative of mild cognitive impairment in patients with Parkinsonism [11]. More-
over, REM sleep has been documented to consolidate spatial and emotional memory [12].
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As an important component of the default mode network, the prefrontal cortex (PFC) is
a vital structural basis for sleep and cognition. Accumulating evidence suggests that sleep
is essential for the proper functioning of cognition, including learning and memory, and
modulates synaptic plasticity and spine homeostasis. Bidirectionally, sleep deprivation
alters structural plasticity, impairs the removal of neural debris from the affected axons,
and induces age-dependent microglial reactions [13–15]. Heavily enriched in microglia, es-
pecially in those of the PFC, LRRK2 can disrupt synaptic activity within the complex neural
circuitry [16]. However, little is available to elucidate the role of Lrrk2 in REM/NREM sleep.

In the present study, a LRRK2 knockout mouse model was subjected to sleep de-
privation to investigate the effects of LRRK2 deficiency on REM/NREM sleep and
sleep deprivation-induced cognitive dysfunction, and the related underlying mecha-
nism. The findings of this investigation may provide potential therapeutic implications
for LRRK2 as a target for sleep deprivation-mediated cognitive loss in patients with
neurodegenerative disorders.

2. Materials and Methods
2.1. Transgenic Mice and Ethics Approval

Thirteen-month-old Lrrk2 knockout mice (Lrrk2-/-, C57BL/6-Lrrk2tm1.1Mjff/J; N = 64)
(stock No. 012453, Lrrk2-/-) and age-matched wild-type (Lrrk2+/+; N = 67) were raised in
recording boxes during the experiment (with the light on at 8:00 A.M. on a 12 light/dark
cycle and the temperature set at 23 ± 1 ◦C). The animals were allowed access to water and
food ad libitum. Male and female transgenic (Lrrk2-/-) and wild-type (Lrrk2+/+) littermate
mice (1:1 ratio for sex balance) were bred from deficit-free heterozygotes. The animal
experimental procedures followed the guidelines of the Institutional Animal Care and Use
Committee of Fujian Medical University (IACUC number: FJMU IACUC 2021-0314).

2.2. Experimental Design

Sleep deprivation (SD) experiments were conducted on a treadmill (SANS SA101; Sa-
iangsi, Inc., Nanjing, China), with the activity wheel generating a slow rotation (~2.5 m/min).
All SD mice were deprived of sleep for 18 h/day (from 6:00 a.m. to 12:00 p.m.) for 3 days.
Mice undergoing normal sleep (S group) were raised in the same environment and allowed
a normal sleep phase. Food and water were freely available for each group. All behavioral
tests were performed between 9 a.m. and 2 p.m.

2.3. Surgery Implantation

A ketamine (100 mg kg−1)/xylazine (20 mg kg−1) cocktail was administered to anes-
thetize the mice. EEG and EMG electrodes were implanted into the anesthetized Lrrk2+/+

and Lrrk2-/- mice. One electrode was placed 1.0 mm lateral to the central suture and 1.5 mm
anterior to the bregma (on the PFC). Another two electrodes were located at 1.5 mm on
either side of the central suture and 4.0 mm posterior to the bregma. Three stainless steel
screws (M1; Tianjin, China) were implanted into the skull (one EEG screw was placed on
the PFC, one used as a reference, and one as a ground). The EMG activity was monitored
using a silver wire (Cat No. 786000; A-M Systems, Sequim, WA, USA) that was inserted
bilaterally into the nuchal muscle. Mice were allowed to recuperate for at least 10 days
prior to the recordings of their sleep activities.

2.4. EEG/EMG Recordings

Ten days after the surgery, data acquisition was performed for all Lrrk2+/+ and Lrrk2-/-

mice (including the normal sleep (S) and sleep deprivation (SD) groups) with the Lab
Chart Acquisition software (Pinnacle Technologies, Norwood, MA, USA). The recordings
were subsequently amplified (ML4818; AD Instruments, Colorado Springs, CO, USA); EEG
signals were filtered at 0.5 Hz–100 Hz and EMG signals at 10 Hz–1K Hz. Both channels
were collected continuously for 24 h. After data collection, all waveforms were sorted by
an experienced analyst [17,18]. The epochs were classified as NREM sleep, characteristic
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of large, slow EEG waves (<4 Hz) and only a weak or no EMG signal, and as REM sleep,
typical of rapid low-voltage EEG waves (6–10 Hz) and low EMG amplitude. Otherwise,
they were classified as wakefulness (Figure 1A,B).
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Lrrk2-/- groups during the REM sleep, NREM sleep, and wakefulness. (B) Channel assignments cor-
responding to color coding (wakefulness, blue; NREM sleep, yellow; REM sleep, green). Individual 
hypnograms for S-Lrrk2+/+, S-Lrrk2-/-, SD-Lrrk2+/+ and SD-Lrrk2-/- groups under undisturbed 

Figure 1. The inverted effects of LRRK2 deficiency on the NREM sleep before and after SD.
(A) Representative EEG and EMG traces recorded from the S-Lrrk2+/+, S-Lrrk2-/-, SD-Lrrk2+/+, and
SD-Lrrk2-/- groups during the REM sleep, NREM sleep, and wakefulness. (B) Channel assignments
corresponding to color coding (wakefulness, blue; NREM sleep, yellow; REM sleep, green). Indi-
vidual hypnograms for S-Lrrk2+/+, S-Lrrk2-/-, SD-Lrrk2+/+ and SD-Lrrk2-/- groups under undisturbed
conditions. (C–E) The duration of REM sleep and NREM sleep over the 24 h recording period in
S-Lrrk2+/+, S-Lrrk2-/-, SD-Lrrk2+/+, and SD-Lrrk2-/- groups. N = 3–4 mice per group. Data are plotted
as mean ± SEM and were analyzed by two-way ANOVA with Tukey’s multiple comparisons test
(C–E), * p < 0.05, ** p < 0.01.
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2.5. Fear Conditioning

The procedures of the fear conditioning were performed as described previously [19].
The S group followed the circadian rhythm and completed the test during the day, while the
SD group accomplished the test after the 54-h sleep deprivation and an 8 h sleep recovery.

2.6. Open-Field Test

As previously described [19], the anxiety and activity levels of mice were examined
with the Flex-Field activity system (SANS SA215; Saiangsi, Inc., China). The animals were
placed in a square arena (50 × 50 × 50 cm3) of opaque black plexiglass with a central area
of 18 × 18 cm2. The 10 min movement of the mouse in the unit was traced and quantified
with the relevant software.

2.7. Tissue Collection and Processing

Mice were euthanized with a ketamine (100 mg kg −1)/xylazine (20 mg kg −1) cocktail
and transcardially perfused with sterile PBS. Brains were removed, divided, snap frozen,
and stored at −80 ◦C for further analysis. The tissues used for immunohistochemistry,
Golgi staining, and molecular study were obtained from the animals undergoing the
behavior testing.

2.8. RNA Extraction and Real-Time PCR

The procedures of RNA extraction, cDNA production, and SYBR Green-based qPCR
were performed as described previously [20]. Each sample was normalized to the mRNA
levels of house-keeping gene GAPDH. Primers used were as follows:

1. IL-1 (sense 5-ATCAGCAACGTCAAGCAACG-3 and anti-sense 5-GGTTGGATGGTC
TCTTCCAGA-3),

2. IL-6 (sense 5-TAGTCCTTCCTACCCCAATTTCC-3 and anti-sense 5-TTGGTCCTTAGC
CACTCCTTC-3),

3. IL-4 (sense 5-GCAACGAAGAACACCACAGA-3 and anti-sense 5-TGCAGCTCCATG
AGAACACT-3),

4. GAPDH (sense 5-CAGTGGCAAAGTGGAGATTGTTG-3 and anti-sense 5-CTCGCTC
CTGGAAGATGGTGAT-3).

2.9. Immunohistological Analysis

Tissues were postfixed in 4% PFA for 6 h, washed, transferred to 30% sucrose solu-
tion, and subsequently sectioned at 40 µm with a freezing microtome (Leica Biosystems).
Sections (6 sections per animal) were incubated in primary antibodies at 4 ◦C overnight
and subsequently in corresponding secondary antibodies. In case of need, counter-staining
was performed with DAPI. The images were obtained by the confocal microscopy (LSM
780, Zeiss). Scans of Z-stacks of 20~25 slices were attained at intervals (0.8~1.0 µm) and
images of the whole section were processed with maximum-intensity projections. Serial
coronal sections were acquired from bregma 2.8 to 1.54 mm.

The antibody dilutions used were as follows: Iba1 (#019-19741, rabbit, 1:1000; Wako
Chemicals; ab5076, goat, 1:300; Abcam), CD68 (MCA1957T, Rat, 1:500; Bio-raid), Vg-
lut1 (135304, Guinea pigs, 1:2000; Synaptic System), PSD95 (RL238256, rabbit, 1:500;
Thermo Fisher).

As described previously [20,21], the 20–25 images of the Z-stack (0.8 µm thick each) were
analyzed on maximum-intensity projections (Z-project, Maximum Intensity function in FIJI).
The images of Iba1-1+, CD68+, PSD95+, Vglut1+ were captured using a 63 × oil objective and
3D reconstructed and analyzed using the FIJI and Imaris software (7.4.2).

2.10. Dendritic Spine Analysis

Golgi staining was performed following the manufacturer’s instructions (Hito Golgi-
Cox OptimStainTM Kit, Hitobiotec, Kingsport, TN, USA). Golgi-stained sections were
imaged under bright-field illumination (T-PMT) on a Zeiss microscope system (LSM 780)
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with a 100 ×/1.4 oil immersion lens. Each image consisted of a stack of scans taken across
the z-plane of the PFC. The spine density was analyzed with the FIJI software (Fiji, ImageJ
1.46, NIH, Bethesda, MD, USA).

2.11. Statistical Analysis

Prism GraphPad 8.0 (San Diego, CA, USA) was employed for the statistical analyses.
The means of different groups were compared and analyzed by two-way ANOVA and post
hoc analysis. In all figures, data were represented as means ±SEM. A statistical significance
was set at p < 0.05.

3. Results
3.1. LRRK2 Deficiency Produces Inverted Effects on the NREM Sleep before and after SD

We evaluated whether LRRK2 deficiency affects REM/NREM sleep. The changes
in REM and NREM sleep were monitored (Figure 1A,B). Compared with that of the
S-Lrrk2-/- group, REM sleep in the SD-Lrrk2-/- group decreased, though without no sig-
nificance (Figure 1C). The results demonstrated that, compared with the S-Lrrk2+/+ group,
the S-Lrrk2-/- group showed decreased NREM sleep (p = 0.0058) (Figure 1D); compared
with the S-Lrrk2-/- group, the SD-Lrrk2-/- group reported significantly increased NREM
sleep (p = 0.0383) (Figure 1D); and compared with the S-Lrrk2+/+ group, the S-Lrrk2-/-

group displayed apparently increased wakefulness (p = 0.0329) (Figure 1E). These data
suggest that LRRK2 deficiency contributes to a decrease in NREM sleep; however, during
SD-induced stress, LRRK2 deficiency impacts the regulation of NREM sleep.

3.2. LRRK2 Deficiency Deceases Dendritic Spine Density after SD

Considering that sleep is equilibrated by regulating synaptic plasticity and dendritic
spine [22] and SD may affect the dendritic spines [13], we explored whether LRRK2
deficiency coupled by SD affects the dendritic structure formation in the PFC. Golgi stain-
ing was implemented to calculate the number of dendritic spines in the PFC following
SD (Figure 2A). Compared with the S-Lrrk2+/+ mice, the SD-Lrrk2+/+ mice displayed
a noticeable decline in spine density (p = 0.0041) (Figure 2B). Of note, similar differences
were observed in the LRRK2 deficiency groups, with a significantly lower spinal density
in the SD-Lrrk2-/- mice than in the S-Lrrk2-/- mice (p < 0.0001) (Figure 2B). Moreover, the
spinal density significantly increased in the S-Lrrk2-/- mice when compared with that of
the S-Lrrk2+/+ mice (p < 0.0001) (Figure 2B).

3.3. LRRK2 Deficiency Aggravates Microglial Activation after SD

Subsequently, efforts were made to explain the profound synaptic damage observed in
the LRRK2 deficiency mice after SD. As studies have documented microglial involvement in
spinal shrinkage and elimination [23,24], we next explored whether LRRK2 deficiency may
result in the transition of microglial states in both S and SD. We evaluated the expression
of the phagocytic marker CD68 in the microglia (Figure 3A). Compared with that of the
S-Lrrk2+/+ counterparts, CD68 was apparently decreased in the S-Lrrk2-/- mice (p = 0.0473)
(Figure 3B). Surprisingly, compared with both the SD-Lrrk2+/+ group and the S-Lrrk2-/-

mice, the SD-Lrrk2-/- group reported a significant increase in CD68 expression in the
microglia (p = 0.0001 and p < 0.0001, respectively) (Figure 3B). The above results suggest
that after SD, LRRK2 deficiency seems to trigger a greater immune response, which may
be an important driving force in SD-associated pathophysiology. To verify this possibility,
we quantified the mRNA expressions of interleukin 4 (IL-4), interleukin 6 (IL-6), and
interleukin 1β (IL-1β). In the PFC, the expressions of IL-1β (p = 0.0004) (Figure 3C) and
IL-6 (p = 0.0039) (Figure 3D) were significantly higher in the SD-Lrrk2-/- mice than in the
S-Lrrk2-/- counterparts. Compared with that of the S- Lrrk2-/- group, IL-4 decreased in the
SD-Lrrk2-/- mice (p = 0.0048) (Figure 3E). Altogether, these results evidence that after SD,
LRRK2 deficiency may induce and exacerbate malignant neuroinflammation, particularly
in the PFC.
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3.4. LRRK2 Deficiency Increases Synaptic Pruning by Microglia after SD

To verify whether SD interferes with microglia-mediated synaptic pruning, we exam-
ined the expression of immunofluorescence-labeled PSD95+ (post-synaptic density protein
95) and Vglut1+ (vesicular glutamate transporter (1) which were engulfed within Iba-1+

cells in the PFC. We quantified the internalization of PSD95+ and VGLUT1+ puncta within
each of the microglial soma (Figure 4A). The results showed that compared with that in
the S-Lrrk2-/- mice, the volume of PSD95+ puncta within the microglia significantly in-
creased in the SD-Lrrk2-/- mice (p < 0.0001) (Figure 4B) After SD, the engulfment of PSD95+

puncta increased in the SD-Lrrk2-/- group when in comparison with that of the SD-Lrrk2+/+

group (p < 0.001) (Figure 4B). The endocytosis rate of Vglut1 by the microglia significantly
decreased in the S-Lrrk2-/- mice when compared with that of the S-Lrrk2+/+ counterparts
(p = 0.0033) (Figure 4C), but no statistical difference was observed between the SD-Lrrk2+/+

and SD-Lrrk2-/- mice (Figure 4C).

3.5. LRRK2 Deficiency Induces the Abnormalities of Short-Term Memory

To determine whether SD affects the cognition of Lrrk2+/+ and Lrrk2-/- mice, a fear
conditioning test was administered to assess the association between short-term memory
and SD (Figure 5A). In the context test, the freezing time decreased in both the SD-Lrrk2+/+

(p = 0.0025) and S-Lrrk2-/- (p < 0.001) groups when in comparison with that of the S-Lrrk2+/+

mice (Figure 5B). In the cue test, no statistical difference in the cued recall memory was
observed between the S-Lrrk2-/- and the S-Lrrk2+/+ groups (Figure 5C). Interestingly, the
freezing time of the SD-Lrrk2-/- group significantly decreased in the cue test when compared
with that of the S-Lrrk2-/- group (p = 0.0214) (Figure 5C). Notably, in the cue test, the
freezing time of the SD-Lrrk2-/- group significantly decreased when compared with that
of the SD-Lrrk2+/+ mice (p = 0.0336) (Figure 5C). These data evidence that the prefrontal
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cortex-amygdala-dependent learning and memory are impaired following the SD and the
loss-of-function of LRRK2 especially impairs the cued recall memory and mediates distinct
cognitive responses to SD.
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3-dimensional reconstructions indicating CD68+ (green) structures within Iba1+ (red) microglia in
the PFC. (B) The quantified total volume of CD68+ structures per microglia cell. S-Lrrk2+/+ group,
N = 3 mice, n = 88 cells; SD-Lrrk2+/+ group, N = 5 mice, n = 115 cells; S-Lrrk2-/- group, N = 3 mice,
n = 31 cells; SD-Lrrk2-/- group, N = 5 mice, n = 104 cells. Data are presented as mean ± SEM.
* p < 0.05, *** p < 0.001, **** p < 0.0001, by two-way ANOVA with Tukey’s multiple comparisons test.
(C–E) Relative mRNA expressions of IL-4, IL-6, and IL-1β from the PFC of the S-Lrrk2+/+, SD-Lrrk2+/+,
S-Lrrk2-/-, SD-Lrrk2-/- mice, N = 3 to 4 mice per group. Data are presented as mean ± SEM. ** p < 0.01,
*** p < 0.001, by two-way ANOVA with Tukey’s multiple comparisons test.
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Figure 4. The increased microglial synaptic pruning by LRRK2 deficiency after SD. (A) Representative
image of PSD 95 or Vglut1 merged with microglia (Iba1+) in the PFC sections from S-Lrrk2+/+,
S-Lrrk2-/-, SD-Lrrk2+/+, and SD-Lrrk2-/- groups. Original magnification 63 × (Vglut1) and with
zoom = 2 (PSD 95); Scale bar = 20 µm. (B) Quantification of PSD95 volume per microglial soma,
S-Lrrk2+/+ group, N = 4 mice, n = 101 cells; SD-Lrrk2+/+ group, N = 6 mice, n = 246 cells; S-Lrrk2-/-

group, N = 5 mice, n = 145 cells; SD-Lrrk2-/- group, N = 3 mice, n = 36 cells. Data are plotted as
mean ± SEM. ** p < 0.01, **** p < 0.0001, by two-way ANOVA with Tukey’s multiple comparisons test.
(C) Quantification of Vglut1 volume per microglia soma, S-Lrrk2+/+ group, N = 3 mice, n = 57 cells;
SD-Lrrk2+/+ group, N = 5 mice, n = 97 cells; S-Lrrk2-/- group, N = 4 mice, n = 82 cells; SD-Lrrk2-/-

group, N = 3 mice, n = 58 cells. Data are plotted as mean ± SEM. ** p < 0.01, by two-way ANOVA
with Tukey’s multiple comparisons test.
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Figure 5. The abnormalities in short-term memory induced by LRRK2 deficiency. (A) Fear condi-
tioning test, training track diagram; N = 13 and 14, respectively for 13-month-old S-Lrrk2+/+ and
SD-Lrrk2+/+ mice; N = 15 and 12, respectively for 13-month-old S-Lrrk2-/- and SD-Lrrk2-/- mice.
(B,C) Data are presented as mean ± SEM. * p < 0.05, ** p < 0.01, **** p < 0.0001, by Unpaired t test.
(D) Representative traces of the open field test. (E,F) Data are presented as mean ± SEM and were
analyzed by Tukey’s multiple comparisons test.
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To assess the impacts of SD on the activity and anxiety in mice, we examined the
changes in anxiety behaviors (Figure 5D). Anxiety behavior was measured by the number of
center entries and the time spent in the center of arena in the open field test. No significant
difference was found among the groups (p > 0.05) (Figure 5E,F), indicating that the outcome
of the fear conditioning test is not affected by the activity and anxiety level under the
same conditions.

4. Discussion

No previous systematic study has probed into the changes in the sleep rhythm and
cognition when LRRK2 deficiency is coupled with SD. After SD, LRRK2-deficient mice
displayed lengthened NREM and shortened REM and worse cognitive function, partic-
ularly poorer recall memory cued by fear conditioning test. In addition, the increased
microglial phagocytosis of postsynaptic material in the SD-Lrrk2-/- mice was associated
with the altered microglial activity that was involved in synaptic elimination, which is char-
acterized by clear signs of inflammations. In this process, the pro-inflammatory cytokines
(IL-1 and IL-6) were significantly elevated in the PFC of the SD-Lrrk2-/- mice. Further
analysis revealed that LRRK2 deficiency resulted in decreased dendritic spines, probably
through microglial activation and synaptic endocytosis.

Sleep disorders are prevalent among the populace and may precede the onset of PD [5].
Evidence linking REM sleep to memory consolidation suggests that memory loss may be
attributed to insufficient sleep syndrome and various parasomnias [25]. More specifically,
REM sleep duration may be associated with either up-regulation or down-regulation of
associated emotions encoded in the amygdala, which are strongly inhibited and regulated
by the PFC [26,27]. REM sleep has previously been associated with the consolidation of
spatial and emotional memory [12,28]. Sleep promotes the acquisition, integration, and
consolidation of new information, and plays an essential role in modulating the overall
synaptic connectivity, which intensifies during a waking phase [29]. Importantly, our
results further demonstrate that after SD, LRRK2 knockout can alter the dendritic spinal
integrity, synaptic density, and synapse-related signaling, and lead to synaptic dysfunction
and cognitive impairment.

According to the current literature, synaptic loss seems to be a shared early feature of
various neurodegenerative diseases [30]. Impaired glial clearance of damaged neurites has
been found in sleep-deprived animals [31]. Recent studies have revealed that microglia
play a crucial part in synaptic elimination, contributing to neurodegeneration-associated
network dysfunction. Microglia-mediated synaptic loss also affects the excitatory and
inhibitory neuron activity, leading to imbalanced synaptic transmission and subsequent
synaptic dysfunction. In the current study, our results revealed that LRRK2 deficiency
coupled with SD increased the number of microglia-mediated phagocytic events within
the PFC. Previous studies document direct morphological microglial activation during
a switch to an active ameboid state and evidence signs of microglial phagocytosis only
after sleep deprivation, signifying that microglia are fully involved in severe sleep loss [32].
In our study, sleep deprivation in LRRK2-deficient mice altered their microglial activity,
suggesting that LRRK2 may be crucial for sleep homeostasis. Of note, we found that LRRK2
deficiency did not increase the synaptic phagocytosis in the S-Lrrk2-/- mice, which was
greatly promoted in Lrrk2-/- mice after SD.

Previous reports have demonstrated that chronic sleep disorders can trigger
pathogenic processes that resemble the early onset of neurodegeneration, including
dysfunction of endosome-autophagosome-lysosome pathway and microglia-mediated
neuroinflammation [33]. Moreover, sleep loss has been reported to exert pro-inflammatory
effects [32]. Recent studies show that IL-1β in Lrrk2-/- mice decreases after the
S. Typhimurium infection [34]. Our data showed that IL-1β was not statistically different be-
tween the baseline sleep groups, but increased sharply (by about 10-fold) in the SD-Lrrk2-/-

mice after SD. This alteration may be explained by the compensation from its homolog
LRRK1 expressed in the brain or other pro-inflammation system [35]. Previous findings
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indicate that the depletion of microglia may decrease the nighttime wakefulness in mice by
increasing transitions between NREM sleep and wakefulness [36]. Given that LRRK2 is
highly expressed in microglia, it is likely that this gene contributes to the transition between
wakefulness and NREM sleep via altered neuroinflammatory signaling.

Studies have reported that lysosomes can be recruited to the spinal head by the activity
of a single dendritic spine. The blockage of the recruitment can reduce spinal density and
altered lysosomal function may impact the maintenance of excitatory synapses [37]. LRRK2
regulates and controls lysosomal and endomembrane homeostasis [38,39]. LRRK2 and its
substrate Rab GTPases are sequentially targeted onto stressed lysosomes [40]. However, it
remains obscured whether LRRK2 and its substrate Rab GTPases are necessary for sleep
deprivation-mediated microglial phagocytosis. Further studies are awaited to probe into
the link of the LRRK2-related lysosome changes to sleep loss.

However, due to the limitation of experimental conditions, we could not record and
understand the electrophysiological changes of excitatory or inhibitory neurons under the
condition of LRRK2 deficiency coupled with sleep deprivation, which is also the direction
of our follow-up research. More experiments are also needed to uncover the projections of
PFC to other regions with high levels of LRRK2 expression, and their specific interactions
with the temporally precise record of the memory-associated rhythm during REM and
NREM sleep.

5. Conclusions

Our findings provide insights into the physiological role of LRRK2-mediated pathways
in regulating microglial synaptic pruning with respect to modulating SD-related cognitive
disorders. Current evidence is also supportive of the hypothesis that LRRK2 activity is
essential for REM/NREM sleep stability and SD-related cognition, which is mediated by
microglial synaptic refinement in neurodegenerative diseases.
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