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Deep molecular learning of transcriptional
control of a synthetic CRE enhancer and its variants

Chan-Koo Kang1,2 and Ah-Ram Kim1,2,3,4,5,*

SUMMARY

Massively parallel reporter assay measures transcriptional activities of various cis-regulatory modules
(CRMs) in a single experiment. We developed a thermodynamic computational model framework that cal-
culates quantitative levels of gene expression directly from regulatory DNA sequences. Using the frame-
work, we investigated the molecular mechanisms of cis-regulatory mutations of a synthetic enhancer that
cause abnormal gene expression. We found that, in a human cell line, competitive binding between family
transcription factors (TFs) with slightly different binding preferences significantly increases the accuracy
of recapitulating the transcriptional effects of thousands of single- ormulti-mutations.We also discovered
that even if various harmful mutations occurred in an activator binding site, CRM could stably maintain or
even increase gene expression through a certain form of competitive binding between family TFs. These
findings enhance understanding the effect of SNPs and indels on CRMs and would help building robust
custom-designed CRMs for biologics production and gene therapy.

INTRODUCTION

Transcription factors (TFs) bound on cis-regulatory modules (CRMs), such as promoters and enhancers, regulate transcription. Genetic var-

iations on CRMs can interrupt TF binding and therefore alter gene expression levels. The growing body of evidence indicates a strong asso-

ciation between non-coding variants and many genetic diseases,1 such that genetic modifications on CRMs can increase the risk of certain

diseases. Thus, systematic analysis of the molecular-level effect of DNA alteration on gene expression is essential to better understand

the development of various genetic diseases. While traditional reporter assays, measuring gene expression levels driven by a CRM individ-

ually, are time- and labor-intensive, massively parallel reporter assays (MPRAs)measure transcriptional activities of large amounts of CRMs in a

single experiment.2–19 In an MPRA, thousands or tens of thousands of reporter constructs tagged with unique barcode sequences are trans-

fected together into cells, and the transcribed barcode tags and/or reporter protein expression are rapidly quantified by next-generation

sequencing and/or fluorescence-activated cell sorting (FACS). With this advantage, a variety of MPRA-based studies have been conducted

using various model systems, such as in vitro HeLa extract,20 E. coli,21 yeast,5 and mammalian cells.2–4

In order to predict and ultimately better understand various CRM activities, large amounts of gene expression data obtained fromMPRAs

were used to train several classifiers, regression models22–24 and deep learning algorithms such as convolutional neural network or bidirec-

tional long short termmemory.25–28While thesemodels show high performance in predictingmRNAexpression levels, most of themhave not

been able to explain the variant-mediated molecular mechanisms that possibly cause changes in gene expression. There were somemodels

capable of doing this, the ability to decompose and analyze underlying molecular mechanisms was relatively limited.16,28–30 Here, we present

a thermodynamic model framework that predicts the levels of MPRA gene expression data directly from various regulatory DNA sequences,

infers the contribution of each nucleotide to the predicted gene expression and identifies abnormal molecular interactions that may arise

from single nucleotide polymorphisms (SNPs) and insertion-deletion mutations (indels). As a proof of concept, we tested our thermodynamic

model framework using carefully measured, biologically replicated MPRA data of an 87 bp long synthetic enhancer and tens of thousands of

variants of it.3 Based on themodel analysis results, we propose a theory of robustness of regulatory DNAs against SNPs, which includes bind-

ing competition of TFs within the same families.

RESULTS

We developed a thermodynamic model framework that calculates the levels of MPRA gene expression data directly from various regulatory

DNA sequences, such as enhancers and promoters (Figure 1). If the CRM sequences are fed into the model framework that

equips with binding preferences and relative concentrations of TFs, it returns the quantitative levels of gene expression as an output
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(Figure 1: Training). The thermodynamic model at the core of the framework incorporates seven well-documented transcriptional molecular

mechanisms of eukaryotes — TF binding to DNA, cooperative binding,31–34 competitive binding,35,36 co-activation,31,37–39 short-range

quenching,40,41 direct-repression42,43 and transcription synergy.44,45 In the model framework, depending on the purpose of the study,

each TF or molecular mechanism (i.e., cooperative binding) can be easily removed or added to analyze its contribution to the change in

gene expression (Figure 1: Analysis). In addition, parameters in the model have a direct biological meaning, enabling the detailed interpre-

tation of molecular mechanisms that regulate gene expression.
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Figure 1. Computational model framework of this study

A flow diagram for the thermodynamic computational model of a synthetic CRE enhancer and its variants. Our model calculates gene expression rates

considering fractional occupancies of TFBSs and 8�32 parameters. Concentrations of the transcription factor and PWMs were used to calculate fractional

occupancy on the WT and variant enhancers. During the training process (top panels), the model parameters are fitted to minimize sum squared error

between MPRA single-hit experimental data and model estimates. We validated model reliability using three different methods (middle panel). First, 5-fold

cross validation was conducted. Following, 4/5 single-hit sequences were used for training, and 1/5 sequences were used to test prediction power. Second,

we validated models trained with single-hit data to predict and compare against MPRA multi-hit sequences, which were not used in the training process.

Third, we validated whether our models could explain simple biological phenomena, such as reverse and rearrangement of enhancer sequences. During the

analysis process (bottom panels), we found most reliable models by altering some mechanisms in the model and analyzing molecular mechanisms of

synthetic enhancers. We analyzed the change in fractional occupancy and arrangement of TFBSs, and compared the contribution of each TF in WT and

variant enhancer sequences to gene expression.
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TheMPRA dataset that we used in this study is an output of transfected reporter constructs that are a synthetic cAMP responsive elements

(CREs)-containing enhancer and its sequence variants.3 The enhancer, which is called theCRE enhancer here, contains four spatially separated

binding sites for a human TF called CRE-binding protein (CREB): two full-length CRE (50-TGACGTCA-30) and two half-length CRE sequences

(50-CGTCA-30). We call these four binding sites CRE1, 2, 3 and 4, starting from the leftmost one. The two binding sites CRE2 andCRE3, located

in the middle of the enhancer, are the shorter ones and the inter-distances between the four sites are not identical. Upon mutations at each

position of the enhancer (87 bp x 3 = 261 single-hits in total) or selected 27643multi-hit substitutions, the gene expression levelsmeasured in a

human embryonic kidney cell line (HEK293) varied up to 16-fold, serving as a highly informative training and validation dataset for our model

simulation (Figure 1: Training and Validation).

Baseline model of the CRE enhancer

We first started off from a simplemodel that calculates the levels of gene expression driven by the CRE enhancer and its 261 single-hit variants

with only one type of TF — CREB1. CREB1 is one of the best known CRE binding proteins that can be activated by phosphorylation, for

example, through forskolin treatment and is highly expressed in various tissues and cell lines such as cerebral cortex, lung, liver, HeLa,

HEK293.46 Gene expression changes between the CRE enhancer and its single-hit variants (referred as Dactivities) are shown Figure 2B.

This simple CREB1-only model (ignoring other possible TFs) served as a baseline model in our experiment. We used this baseline model

to compare with more complicated models that are described later.
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Figure 2. A CRE enhancer and its mutational activities

(A) Synthetic cAMP response enhancer sequences. Red box indicates CRE sites and blue box represents the cryptic region.

(B andC) X-axis shows enhancer position in which variants were presented. Substitution bases are presented on the top left for each panel. Y-axis showsDactivity.

(B) MPRA experimental result (C) Fitting result of 7 ATF/CREB family model. Fitting results of baseline model (B.M) are represented on the left bottom of each

panel.

(D) Motif logos for PWMs used in 7TF models.
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For accurate modeling, it is the first step to know which TF is bound to which position and to what extent. Therefore, we first tested the

quality of four CREB1 PWMs (position weight matrices) available from three different sources with the baseline model (see STAR

Methods).47,48 The four PWMs computationally found all CRE binding sites (CRE1, 2, 3, and 4 in Figure 2A) of the enhancer. However, the

modeling result indicated that a high-throughput quantitative data-based PWM48 shows the highest accuracy in calculating Dactivities in

CREB1 sites (Figure S1), while somePWMsproducedDactivities that were not relevant at all. This indicates that the quality of PWMs can signif-

icantly affect the accuracy of our computational model. For all subsequent modeling, only high-throughput PBM (protein bindingmicroarray)

or SELEX data-based PWMs were used, which showed overall high performance. Although the baseline model successfully calculated some

Dactivities in three CREB1 sites on the right side of the enhancer — CRE2, 3 and 4, (see the inner panels at the bottom left of each panel in

Figure 2C) they failed to recapitulate Dactivities in CRE1 and overall Dactivities elsewhere due to challenges described below (Figure 2C).

First,Dactivities in the extra few base pairs of some CREB binding sites (i.e., CRE4) were observed (red arrows in Figure 2B). This shows the

possibility that (1) CREB proteins required wider sequences than CRE for proper binding or (2) additional TF(s) that have similar binding pref-

erence shared their binding sites with CRE. Second, CRE1 and CRE4 in the CRE enhancer possessed identical sequences (50-TGACGTCA-30);
however, Dactivities in the CRE sequences were significantly different, meaning that unlike CRE4, CRE1 was insensitive to almost all single-hit

mutations (green arrows in Figure 2B). It indicates two possibilities. Either (1) the CRE-bound TF is distance dependent from transcription start

site (TSS)49 so that CRE1-bound TF contributes significantly less to gene expression than CRE4-bound TF or (2) the different CRE-neighboring

sequencesmake the difference (Figure 2A). Third, noticeableDactivities were observed in an unexpected region (asterisks in Figure 2B) on the

left side of CRE4, indicating unknown TF might bind and regulate gene expression. We referred to the region as the cryptic region here as

Melnikov et al. did.3

Inference of CREB1-mediated regulatory mechanisms

To address the challenge described above, we considered additional molecular mechanisms that are expected to play an important role in

regulating gene expression of the synthetic enhancer. Inclusion of ‘‘weak’’ binding sites for CREB1 and self-competition between CREB1 over

overlapping sites was our first choice. Previous reports indicate that competitive binding of overlapping TFBSs is an essential mechanism for

accurately calculating TF occupancy.35,36 We found multiple weak CREB1 binding sites partially overlapped with CRE1, 3, and 4, suggesting

that these partially overlapped weak binding sites might play a role in the experimentally observed Dactivities near the CREs. We allowed

competitive binding of the same kind of TF (CREB1 in this case) as well as other kinds of TF if their binding sites overlap (Figure S2C). Applying

self-competition mechanism to the baseline model (CREB1 self-competition model) increased the overall accuracy of the model from rmax =

0.58, RMSEbest = 0.35, ravg = 0.33 to rmax = 0.64, RMSEbest = 0.33, ravg = 0.63.

We then tested another known molecular mechanism, distance-dependent CREB1 activity (mentioned in the second challenge), with

the baseline model. Previous literature reported that CREB, a distance-dependent activator, maintains its activity up to 200 bp from the

transcription start site (TSS) of the TH gene, and the activity is lost thereafter.49 In our model, the distance-dependent manner of CREB1

activity was assumed to be mediated through CREB1-TFIID interaction (coactivation). It is known that CREB1 interacts with TFIID

through TAFs proteins.50–52 We set the coactivation strength of CREB1 in the model to gradually decrease to 200 bp, based on the re-

ported information.49 If the distance between CREB1 and TFIID (we used a PWM of TBP (subunit of TFIID) for TFIID positioning)

was larger than 200 bp, the coactivation coefficient was set to zero so that such CREB1 could not contribute to the initiation of transcrip-

tion. However, addition of the distance-dependent CREB1 activity had no significant impact on improving model calculations compared

to the simpler CREB1 self-competition model (rmax increased to 0.68 from 0.58 (RMSE: 0.35 to 0.32), ravg: 0.33 to 0.63; Figure S2D). In

addition, modeling was also performed with other distance ranges between 10 bp and 200 bp, but no significantly improved results

were observed (Figure S3). These results indicate that distance-dependent action of CREB1 may have only a limited role in this CRE

enhancer.

We further tested the distance-dependent CREB1 mechanism by adding it to the CREB1 self-competition model to see if synergistic ef-

fects existed between the two possible mechanisms (Figure S2E). Even though the model showed slightly improvement in calculating some

Dactivities in the CRE2, 3, and 4 and cryptic region (rmax = 0.70 (RMSE = 0.31), ravg = 0.69), this model still failed to accurately recapitulate the

insensitiveDactivities uponmutations in CRE1, the peripheral sequences of CRE4, and the cryptic region. This result indicates that, instead of

the distance-dependent CREB1 mechanism, additional, unknown TF(s) might have a role in regulating gene expression of the CRE enhancer

and its variants.

Inclusion of TFs based on pattern of changes in binding affinity

We sought the unknown TFs for the CRE enhancer according to the following criteria. First, the TFs must be expressed in the HEK293 cell

line, in which levels of gene expression of the CRE enhancer and its variants were measured. Second, the predicted pattern of ‘‘binding

affinity changes upon mutations’’ (Dbinding affinities) would be similar (for activators) or opposite (for repressors) to the pattern of Dactiv-

ities in the CREs or the cryptic region. As a first candidate, CREB3 was assessed. It was co-expressed with CREB1 in HEK293, and its Dbind-

ing affinities highly matched to the pattern of Dactivities near CRE4. When we added CREB3 as another activator to the CREB1 self-compe-

tition model, the accuracy of the ‘‘CREB3-included model’’ calculation dramatically increased (rmax = 0.78, RMSEbest = 0.24, ravg = 0.76,

RMSEavg = 0.27) (Figure S2G). This result indicates that co-binding of CREB3, a family member of CREB1, near CRE4 might play a role

in regulating in vivo gene expression in the CRE enhancer and its variants. We then examined other TFs to determine whether they could

also improve the model calculation. We added TFs predicted to have binding sites near the four CREs to the CREB1 self-competition
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model individually (we refer to them as 2TFs models) and evaluated the results. However, adding the predicted TFs did not significantly

improve accuracy of the model (Figure 3A). We also assessed the role of co-binding of another TF(s) on the cryptic region. We added

CITED2, EOMES, JDP2, TBX2 and ZNF410 individually to the CREB3-included model. However, they also did not noticeably increase

A

D E

CB

Figure 3. Inclusion of family and non-family TFs

(A) Correlation between experimental data and estimation from models with the mentioned TFs added. Dashed line distinguishes CREB1 self-competition

model (CREB1_self model) from 2TFs models including non-ATF/CREB family TFs (non-family TFs) or ATF/CREB family TFs. Red line shows the best

CREB1_self model’s Pearson’s R. 10 models were trained for each group. The boxes show the first and third quartiles, and the horizontal line inside each box

marks the median. The vertical lines extending above and below the boxes cover a range of 1.5 times the interquartile range (IQR). Black dots outside the

box represent outliers.

(B–E) Correlation coefficient according to the number of ATF/CREB family TFs (CREB1, CREB3, CREB5, CREM, ATF1, ATF4, ATF7). Models are grouped by the

number of ATF/CREB family TFs (n), with each group having 7Cn combinations of TFs (i.e., 1TF models: 7C1 = 7, 2TFs models: 7C2 = 21, 3TFs models: 7C3 = 35). 8

models were trained for each TF combination. Black dots on the plot represent the mean for each group, and any outliers are highlighted with colored dots. (B,C)

without self-competitionmechanismmodels (B: without self-competition single-hit fitting andC: without self-competitionmulti-hit prediction) and (D,E) with self-

competition mechanism models (D: with self-competition single-hit fitting and E: with self-competition multi-hit prediction).
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the accuracy of the model (Figure S4). This result indicates that addition of other TFs to our model does not guarantee improvement of the

model calculation, indicating that our model does not artificially compensate for missing mechanisms.

CREB family TFs improves accuracy of model calculation

As encouraged by the CREB3-included model, we tested other ATF/CREB family TFs, although their pattern of Dbinding affinities are not

significantly correlated with the pattern of Dactivities in the CREs or cryptic region. It is well known that many ATF/CREB family TFs bind

to CRE sequences as either homodimer or heterodimer complexes.53,54When co-expressingATF/CREB familymembers in HEK293were indi-

vidually added —CREB5, CREM, ATF1, ATF4, and ATF7, to the CREB1 self-competition model, all except ATF1 significantly improved the

accuracy of the model calculation (Figure 3A). By contrast, none of the non-ATF/CREB3 related TFs improved the model accuracy. This result

indicates that the co-expressing family TFsmight play an important role in regulating gene expression of the CRE enhancer and its variants, in

which similar phenomena have been previously reported.55,56

We then examined the possibility of competitive interaction between family TFs in the CRE enhancer and its variants. When all five TFs

were added to the "CREB3-included model’’ and allowed to bind competitively, it significantly improved the overall accuracy of the model

calculation and successfully recapitulated many of the Dactivities in all four CREs (rmax = 0.88 (p < 2.2e-16), RMSEbest = 0.20, ravg = 0.84,

RMSEavg = 0.23) (Figure 2C). This model is referred to as the "7 CREB family model’’. Surprisingly, this model was also able to restore Dactiv-

ities in the cryptic region (Figure 2).

To determine which TF(s) contributed most to the improved model performance, the minimum sets of TFs sufficient to recapitulate most

Dactivities observed in theMPRA experiment of the CRE enhancer, and themolecular mechanismsmost likely to explain theDactivities of the

CRE enhancer (four challenges), we trained the thermodynamic model for single TF (7 cases) and combinations (2–7 combinations) cases. In

total, 2032 trained models were generated (127 cases; for each case, 16 models with different seed parameters were trained; Figures 3B–3E).

Validation of CREB family-included thermodynamic models

We first validated which thermodynamic models successfully reproduced the changes in gene expression (caused by single substitution mu-

tations) used in the training set. We then verified the models’ ability to predict changes in gene expression that were not used in the training

set (changes caused by unused single substitutions or multi-substitutions). We found that as the number of TF increased, overall performance

of fitting or predicting gene expression changes increased (Figures 3B–3E). Further, increasing the number of family TFs to four greatly

improved model performance; however, in five or more TF models, performance converged to a certain threshold (rthresholdz0.8) and has

not increased any further.

We found that 4 TFmodel with CREB1, CREM, ATF1, and ATF7 was the one of theminimal TFmodels to reproducemajorDactivities in the

four CREs and cryptic region (rmax = 0.869, p < 2.2e-16, RMSE = 0.216, ravg = 0.842). The models also showed strong predictive capability for

gene expression changes caused by mutations that were not used in the training set. In the 5-fold cross-validation tests, rmax = 0.886 (RMSEb-

est = 0.229) and rmed = 0.832 and ravg = 0.806 weremeasured for the 4 TFmodel (Figure 4L). For the untrainedmulti-hit substitution data, which

were measured in Melnikov et al.,3 the 4 TF model shows good predictive performance (rmax = 0.795, RMSEbest = 0.722 and rmed = 0.742 and

ravg = 0.732) (Figure 4M). Because this 4 TF model is the simplest model to best illustrate the four CRE enhancer activities among all models,

we restricted our full-scalemodel analysis to the 4 TFmodel. However, for comparison with the 4 TFmodel, we also analyzed other TFmodels.

We further validated the reliability of this thermodynamic model using the following hypothetical experiment: predicting the activities of

the enhancer when all or part of the enhancer was reversed or rearranged. To date, two types of enhancers are well-documented—billboard-

type or enhanceosome-type.57 A common feature of billboard enhancers is the independent action of its elements. Unlike enhanceosome-

type enhancers, the entire region of a billboard enhancer need not function as a cooperative unit, but rather as an ensemble of separate

elements that can independently affect gene expression.57,58 Because the CRE enhancer and its sequence variants are considered to be bill-

board enhancers,3 they should show similar gene expression patterns even when reversed or rearranged. We conducted this hypothetical

experiment with the 4 TF model. We assumed that the pattern of Dactivities in the CRE enhancer does not change when the entire enhancer

sequence is reversed (Case 1), divided in half and its position is switched (Case 2), or the two previous cases are combined (Case 3)

(Figures 4A–4C). We fed the three modified DNA sequences and their sequence variants to one of the best 4 TF models that was trained

only with unmodified CRE enhancer and its variants. We compared the Dactivities predicted by the model to the ones measured from the

intact CRE enhancer and its variants (Figure 4). The thermodynamic model reproduced similar Dactivities when the CRE enhancer was

reversed or relocated (rcase1 = 0.817, RMSEcase1 = 0.272, rcase2 = 0.868, RMSEcase2 = 0.216 and rcase3 = 0.823, RMSEcase3 = 0.268). This result

shows that this thermodynamic model has high extensibility that accurately predicts the effects of small and large-scale mutations in the CRE

enhancer and its variants.

We then repeated the hypothetical experiment with a different computational model trained with the sameMPRA data as a control — the

quantitative sequence-activity model (QSAM).3,21,59 The QSAM uses mutual dependence between each position of DNA and enhancer ac-

tivities to predict activities of novel sequence variants. From complex gene expression data, QSAM can be used to quickly determine the

impact of each variant. This capabilitymakesQSAM ideal for applying enhancer engineering. The trained linearQSAM reproducedDactivities

of the CRE enhancer and its variable with notably high accuracy (rz 1, p < 2.2e-16). However, becausemutual dependence was inferred from

the nucleotide positions, not from the TF binding to DNA or TF-TF or TF-Transcriptionmachinery interactions, QSAM could not predict gene

expression properly when the relative position of TFBS in the pre-learned enhancer was altered. The output of the QSAM model with the

altered enhancers exhibited almost 0% correlation with Dactivities measured in the intact CRE enhancer and its sequence variants
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(Figures 4G–4I). Despite its successful application to model transcriptional activities of enhancer variants, this result shows that the QSAM

approach may not be feasible as a general method for predicting gene expression changes caused by potentially more severe mutations

such as indels, inversions, and translocations.

Proposed regulatory mechanisms of the CRE enhancer

We conducted a full-scale analysis of the 4 TFmodels that have been validated in the previous section.We analyzed each of the best trained 4

TF models to grasp which molecular mechanisms could account for significant changes in gene expression induced by all possible substitu-

tionmutations. In particular, the differentialDactivities betweenCRE1 and CRE4 and the positiveDactivities (gene expression increased upon

A D

E

F

G

I

J K

L M

H

C

B

Figure 4. A comparison between our model and QSAM model using a hypothetical experiment involving the billboard enhancer’s feature

(A–C) Sequence scheme. (A) Case 1: reversed sequence. (B) Case 2: rearranged sequence. (C) Case 3 reversed and rearranged sequence.

(D–I) Comparison between normal synthetic enhancer activity (X axis) and each model prediction expression rates (Y axis). Model estimates about intent

sequences are represented on the left top of each panel. (D–F) Thermodynamic model. Expression rates of (D) Case 1, (E) Case 2, and (F) Case 3 calculated

with the best 4 TF model. (G-I) QSAM model. (G) Case 1, (H) Case 2, and (I) Case 3 sequences calculated with linear QSAM.

(J) Multi-hit prediction with the 4 TF model.

(K) Multi-hit prediction with linear QSAM.

(L and M) 5-fold cross validation result of best 5 models for each number of TFs. X axis represents the number of TFs, and the Y axis shows the mean of Pearson’s

correlation of (L) training set, and (M) validation set. Data are represented as mean +/� standard error.
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substitutions) in the cryptic region were the key focus of this study (Figures 5, S5, and S6). Interestingly, when point mutations occurred in two

identical TFBS sequences (CRE1 and CRE4), CRE4 was very sensitive to the mutations while CRE1 was highly resistant to the same mutations

(see Figures 2B, 5A, and 5G). We have shown in the previous in silico analysis that the functional differences between CRE1 and CRE4 do not

depend on distance from TSS. If this is true in vivo, the functional difference between the two identical sites must be influenced by the sur-

rounding sequences (underlined): . GACAGTGACGTCAGCTGC . and . CCCATTGACGTCAATGGG ., respectively. The thermody-

namic computationalmodel revealed that different forms of competitive interaction between family TFs that bind fully or partially overlapping

sites with CRE1 and CRE4 can cause the different Dactivities.

In the intact CRE enhancer (withoutmutations), CREB1 competedwith ATF7 andCREMat theCRE1 site, whileCREB1 competedwith ATF1

and CREM at the CRE4 site (Figure 5B). In the best trained models, all four TFs were activators, although the activation efficiency of transcrip-

tion varied from TF to TF (Figure 5E): ATF1 and ATF7 were predicted to be weaker activators than CREM and CREB1. When substitution mu-

tations occurred at CRE1 and CRE4 (also at CRE2 and CRE3), binding affinities of the CREB1 sites and other overlapping sites (CREM, ATF7

and ATF1) generally decreased, meaning that the degrees of TF binding to the sites (referred to as fractional occupancies) also generally

decreased. This is why Dactivities at all CRE regions, except CRE1, are generally negative (meaning that gene expression is decreased

when the mutations occurred). Especially, two substitution mutations in CRE4, C72A and G73T, in which C is substituted with A at 72 nt po-

sition from TSS or G is substituted with T at 73 nt position, lead to the significant reduction in gene expression (about 4-fold). The explanation

based on the trained computer models is as follows. When the mutations occurred in CRE4, binding sites of two strong activators CREM and

CREB1were all weakened (the two overlappingCREMsites disappeared and the two overlappingCREB1 sites remained, but becameweaker)

(Figures 5D and 5J). Interestingly, the absence of CREM (and also the weakened CREB1 sites) increased the fractional occupancy of its

competitor ATF1 (compare Figure 5B with 5D and 5H with 5J), however, the ATF1 with the increased occupancy was not sufficient to replace

the role of the strong activators CREMandCREB1 in CRE4 (Figure 5F). It is because, in the trainedmodels, ATF1 is a relatively weaker activator

than CREMandCREB1 (Figure 5E). In other words, ATF1makes less contribution to initiate transcription than CREMor CREB1when bound to

DNA with the same fractional occupancy. To our knowledge, no experiments have been published comparing the activities of these activa-

tors, however, multiple sequence alignments show that activation domains of ATF1, ATF7, and CREB1 diverge from that of CREM in descend-

ing order (Figure S7), suggesting the different activation efficiencies.

However, in CRE1, the same type of substitution mutations (C14A and G15T) produced completely different results. For example, C14A

had almost no effect on gene expression, while the same type of mutation C72A in CRE4 caused 4-fold reduction in gene expression (Fig-

ure 5A). Like C72A, C14A removed CREM binding sites and weakened the binding affinities of CREB1 sites in CRE1. However, C14A also

removed a site for ATF7 that fully overlaps with CRE1 (Figures 5C and 5D), while its counterpart C72A could not remove the ATF1 site because

the ATF1 site only partially overlappedwith CRE4 and the C72Amutation was located outside of the ATF1 site. Note that ATF7 was one of the

most strongly binding TF on the intact CRE1. Since ATF7 is a relatively weak activator, similar to ATF1, the absence of ATF7 in CRE1 itself has

little impact on gene expression. However, the co-absence of ATF7 with CREM increased the fractional occupancy of its competitor CREB1

(Figure 5F) in CRE1, despite the reduced affinity of the binding site. Even though the strong activator CREMwas lost and the binding affinities

of CREB1 sites are weakened in both CRE4 and CRE1, the increased fractional occupancy of a CREB1 site in CRE1 was able to maintain gene

expression similar to that of the intact CRE enhancer (although slightly reduced). In contrast, fractional occupancy of a CREB1 site in CRE4 was

not increased upon the same type of mutation because, unlike ATF7, partially overlapped ATF1 was still bound.

More dramatic effect of the increased fractional occupancy of CREB1 (by the absence of ATF7) was observed upon other mutations, T11A

and A18T, in CRE1. These mutations also removed binding sites for CREM and ATF7 in CRE1. Yet, the gene expression levels driven by the

mutated CRE enhancer were almost unchanged, while its equivalent T69A and A76T caused approximately 2-fold reduction in gene expres-

sion. The C14A mutation, mentioned earlier, weakened two overlapping CREB1 sites, but C11A and A18T weakened only one of the CREB1

sites in CRE1 (because the other site was slightly off the mutation position). In the absence of the competitor ATF7 and CREM (with the weak-

ened overlapping CREB1 site), the fractional occupancy of the unaffected CREB1 site was significantly increased (6 and 2 times, respectively),

replacing all previous roles of the intact CREM and CREB1 sites before the mutations (Figure 5). This result suggests that under specific con-

ditions, the summed contribution of multiple overlapping sites to transcription initiation can be stably maintained even if the majority of the

overlapping sites are seriously damaged by substitution mutations (if one or a few sites remain).

In the cryptic region (. CCCC., 63–66 nt positions from TSS), gene expression levels were noticeably increased when substitution mu-

tations occurred (Figure S6). It is because the mutations altered key nucleotides of an ATF1 site across the cryptic region and CRE1. For

example, with one exceptionC65T, all 11 substitutionmutations removed or weakened the ATF1 site. The absence of ATF1 binding increased

the fractional occupancy of its competitors (strong activators) CREB1 and CREM in CRE4, and the increased fractional occupancies increased

the levels of gene expression. Interestingly, in C65A mutations, a novel binding site for CREB1 was created. The presence of an extra CREB1

binding site can further increase gene expression. For the exceptional C65Tmutation in the cryptic region,Dactivities were near zero because

the ATF1 binding site was not damaged after the mutations (the mutations were slightly off the key consensus binding sequence of ATF1).

DISCUSSION

In this study, we developed an MPRA-based thermodynamic model framework that serves as a powerful tool for analyzing the effects of

various cis-regulatory mutations on gene expression (Figure 1). Theoretically, this computational model can analyze the effects of mutations

of all types and sizes that can occur within a single gene, but here, we conducted an in-depth analysis of single base pair mutations that is most

frequently found in the human genome. Using this model framework, we successfully reproduced the transcriptional outputs of single-hit
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Figure 5. Functional binding site analysis of A/T substitutions

(A and G) Dactivity after A (A) or T (G) substitution. MPRA experimental result (top) and model calculation (bottom).

(B and H) TFBSs in WT sequence. Each box represents TFBS, and transparency indicates fractional occupancy of the TFBS. The bottom red box represents the

CRE sequences and the blue box represents the cryptic region.

(C, D, I, and J) TFBSs in CRE1 region (C, I) and CRE4 region (D, J) after variant introduction. The wild type base and position, as well as the substituted base, are

shown in the upper right corner of each figure. For example, T11A indicates that the T at the 11th position was substitutedwith anA. The bottom yellow box shows

the position where variants were introduced.

(E) Activation coefficient of TFs.

(F and K) Cumulative bar plot representing DDA of CRE1/CRE4 binding TFs after variant introduction. DDA can be interpreted as a contribution to initiate

transcription. Contributions from the same TFBSs are connected by two lines.
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mutations that occurred in the synthetic CRE enhancer (Figure 2), and also predicted various multi-hits-driven abnormal gene expression (un-

trained data) with a high level of accuracy (Figure 4). The predictive power of this model may be further improved if this model framework

considers the three-dimensional DNA shape around TF binding sites, which is known to influence the binding affinity of TFs.60

In addition, the computational model was able to analyze the possible changes in the interaction between TF-TF and TF-Transcription

machinery and their results, triggered by various substitutions (Figure 5). Through the in-silico analysis, the model suggested experimentally

testable hypotheses that whichmutations have a significant or negligible effect on gene expression, and if so, by whatmolecularmechanisms.

These results showed that this model framework can provide a theoretical basis for elucidating the detailed molecular mechanisms of key

mutations that cause abnormal gene expression and ultimately various monogenic diseases.

The analytical power of this mechanistic model is a great advantage. Currently, many sequence-based computational models predicting

gene expression use statistical regression, ensemble methods, or deep-learning algorithms.25–27 These models have the advantage of being

simple in structure and showing high predictive power, but they do not explain what molecular interactions are likely to cause the changes of

gene expression. The thermodynamic mechanistic model presented here is a good complement to the shortcomings of those correlative,

prediction-oriented models. Further, this model framework would be useful to find novel therapies because it provides molecular interpre-

tation of how cis-regulatory mutations are linked to specific genetic diseases in terms of their interactions with TFs and other regulatory pro-

teins (i.e., kinases). The unexpected result of steroid treatment for Hemophilia B Leyden patients is an example. It is now known that the

androgen receptor binds to the F9 promoter and acts as an activator,61,62 but in the past, it was not known why steroid administration raises

coagulation factor IX (FIX; F9) to levels sufficient to prevent most bleeding in some hemophilia B patients.63 Regulatory TFs, their roles, and

interactions with other proteins predicted by this MPRA-driven thermodynamic model can be potential targets for new therapeutic agents.

One of the most remarkable features of biological systems is the persistence of a certain function or trait against various perturbations.64

Such robustness is well seen in gene expression patterns that remain constant despite the occurrence of variousmutations. This phenomenon

is calledmutational robustness andmany studies have been conducted to elucidate the cause of themutational robustness.65–68 For example,

mechanisms such as robustness of individual TFBSs, homotypic clusters of sites, redundant TFs, cooperative TF-TF interactions, redundant

enhancers, and wiring of transcriptional regulatory circuits have been proposed as the cause of such robustness.69 Here, in addition to these

mechanisms, we suggest another mutational robustness of transcriptional ‘activation’ — binding competition between ‘activators’.

In this synthetic CRE enhancer, two regions (CRE1 and 4) with exactly the same DNA sequence, exhibit completely different mutational

robustness (Dactivities) when the same substitution and insertionmutations occur in the two regions (Figures 2 and S8). In the original analysis

of this synthetic enhancer, this difference inDactivities was thought to be due to the distance between the TFBSs and the TATAbox near TSS.3

Davis et al. also reported that the degree of gene expression induced by CREs gradually decreases in the form of a damped oscillation with a

period of about 10 bp and a length of about 190 bp in the presence of high concentration of forskilin.70 However, in this study, we showed by

computer simulations that functional differences between CRE1 and CRE4 cannot be fully explained by the distance-dependent activity of

CREs alone (Figure S3). Rather, the thermodynamic model demonstrated that all major Dactivities in the four CREs and the cryptic region

can be reproduced with high accuracy through competitive binding of just four family TFs – CREB1, CREM, ATF1, and ATF7 without any dis-

tance dependentmechanism. The reason thatmutations on CRE1 have little effect on gene expression is not because the activity of CRE1 was

almost absent due to the effect of distance. According to the computer simulation, CRE1 is functionally active but resistant to mutations due

to the specific arrangement of the site with other nearby TF binding sites. And this proposal was also confirmed by experimental results (see

the supplement Figures 4 and 5 inMelnikov et al.3). The experiments introducing 5 or 10 base insertion or 8 base translocation/transversion to

CRE1 site show significantly decreased activity, demonstrating CRE1 is functionally active. These results gave us a new perspective on the

different Dactivities in CRE1 and CRE4: The two identical sites show significantly different robustness to the same mutations, and their origin

comes from differences in DNA sequences around the two sites, which create different forms of the overlapping family TFBSs.

This type of mutational robustness can be explained in great detail by comparing themost sensitivemutation C72A occurring in CRE4 and

the equivalent mutation C14A, occurring at the same position in CRE1 (Figure 5A). As we analyzed earlier, in the intact CRE enhancer, CREB1

competed with ATF7 and CREM at the CRE1 site while CREB1 competed with ATF1 and CREM at the CRE4 site (Figure 5B). When the mu-

tations occurred, they damaged the binding sites of two or three TFs out of the four. If ATF7 andATF1 are calledC1, C4 (C stands for ‘‘compet-

itor’’) respectively, we can say that upon the mutations the C1 binding site that overlaps with the CRE1 site disappeared while the C4 binding

site that overlaps with CRE4 remained (it is slightly out of mutation). The explanation of CREM is omitted here to highlight the difference be-

tween CRE1 and CRE2 (see the results section for details). Note that the C14Amutation not only damaged the competitor (C1)’s site but also

the site of CREB1. But the binding site of the C1 was more sensitive to the C14A mutation and could no longer compete with CREB1 in the

mutated CRE1 (Figure 5C). If the CREB1 site alone was in the CRE1 region, the mutation in CRE1 would noticeably reduce the fractional oc-

cupancy of CREB1. However, because the competitor C1 disappeared, some of the fractional occupancy of CREB1 that had been suppressed

(or lost) by C1 was recovered. As a result, the total fractional occupancy of CREB1 and its contribution to initiate transcription (DDA) remains

almost the same (see the yellow part of the C14A bar graph in Figure 5F). In addition, since C1 is a relatively weaker activator than CREB1

(Figure 5E) in the model, the absence of C1 in CRE1 itself has little impact on gene expression (the purple part of the bar graph of the WT

CRE1 in Figure 5F). In this specific situation, the competitor C1 acts like a ‘‘capacitor’’ that stores some of the binding energy for CREB1

(instead of electrical energy) because if C1 disappears due to C14A, CREB1 regains the fractional occupancy lost to C1, which has the

same effect as increasing the binding energy between CREB1 and the mutated CRE1.

On the other hand, CRE4 does not show resistance to the samemutation (C72A). CRE4 overlaps a C2 site instead of the C1 site due to the

different surrounding sequences. Unlike the C14A mutation in CRE1, C72A in CRE4 does not damage the binding site of the competitor C2
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(the sites of CREB1 were weakened though). In other words, two redundant TFs - CREB1 and C2 are still bound to the mutated CRE4. The

consequences are more severe (4 times less expression). In the computational model, the C1 site covers CRE1 entirely, while the C2 site over-

laps only the edges of CRE4. When C72A mutation occurred, the C2 site survived intact (it occurs outside the C2 site site) and the partially

overlapping C2 site drastically reduced themutational robustness against themutation. This is because C2, which has little influence on gene

expression, has won the competition with the more influential CREB1 in the mutated CRE4, resulting in the decreased gene expression. This

mechanism is different from the TF redundancy mechanism mentioned elsewhere.67–69 That is, if one gene has a problem (for example, a

mutation in the coding sequence), redundant genes with the same or similar functions act as a substitute for the broken gene. However,

what we found in this study is that this mutational robustness arises from the specific combination of overlapping sites of multiple activator

TFs, not from redundant coding sequences.

Well-designed deep learning and statistical models will have high competitiveness in the field of predicting abnormal gene expression

due to mutations as quantitative experimental data such as MPRA data are accumulated. However, mechanistic models are also necessary

because, unlike deep learning and statistical models, a molecular level explanation of the effects of mutations on gene expression is

possible. This model goes beyond simulating the function of individual promoters and enhancers, and can model the entire gene,

including a promoter and several enhancers. This opens the possibility of detailed molecular analysis of the aberrant transcriptional regu-

lation of disease-associated genes at single nucleotide resolution. In addition, the robustness generation principle based on the compet-

itive binding of family TFs can be used in medical and pharmaceutical fields, such as improving the mutational robustness of protein

expression vectors.

Limitations of the study

This transcriptional model framework is designed to comprehensively analyze the effect of every single-hit and various multiple-hit mutations

in the regulatory DNA on gene expression. Thus, this model framework may not be applicable to MPRA datasets that do not contain the re-

sults of fully saturated single-hit mutagenesis. In addition, the selection of functional TFs relies on available PWMs and RNA-seq dataset.

Therefore, the computational analysis of enhancers regulated by TFs for which these data do not exist is inevitably limited.
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Code:

This paper does not report original code, but the code of the thermodynamic model used for this work is available at github.com/

kennethabarr.
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PWMs used for ATF/CREB family TFs are in Table S2.

All the sequences and corresponding expression levels are in Table S3.

Protein sequences of pKID domains or GCN4_cent domains for multiple sequence alignment can be obtained from NCBI RefSeq (81) by

following accession number: CREB1 (NP_004370.1), CREM (NP_877572.1), ATF1 (NP_005162.1), and ATF7 (NP_006847.1).

METHOD DETAILS

Molecular interaction thermodynamic model

The thermodynamic model described in this study is based on a published model, primarily used to study Drosophila melanogaster even-

skipped gene expression patterns.44,45,71 Briefly, this model uses mathematical equations to describe the rate-limiting step of transcription

— the transcription initiation process. Its inputs are CRM sequences, expression levels of the CRMs, concentrations of regulatory TFs, and

their position weight matrices (PWMs). Using these inputs, the model derives the TF binding strength, binding positions, and TF-TF interac-

tion to ultimately calculate mRNA expression levels. The following types of TF-TF interactions were implemented in this thermodynamic

model: Competitive binding between TFs,35,36 enhancer competition,72–75 coactivation,31,37–39 short-range quenching,40,41 direct repres-

sion,42,43 and cooperative binding.31–34 However, in this study, we limited the molecular mechanisms of this model to coactivation between

TFs and GTFs(general transcription factors such as TFIID) and competitive binding between TFs.

Themodel calculates the binding sites and binding affinities of TFs on given CRM sequences using PWMs. The PWM scores are calculated

for each window of 1bp shift, and then converted to free energy to be compatible with PWMs from various source experiments and algo-

rithms. The PWM score S of TF a to the binding site i (binding to the mth to nth bp) is given as,

Si½m;n;a� =
Xn
k = m

ln

 
paðk � m; jÞ

pbgðjÞ

!
(Equation 1)

where Pa is the TF binding frequency of base j (A, C, G, or T) at the kth position of binding site i. Pbg is the frequency of base j found in the host

cell’s genome.Weak binding sites below a threshold are discarded. The remaining binding sites’ score S are converted to free energy K, using

the maximum possible score of PWM (Smax) and the proportionality constant to free energy l.

Ki½m;n;a� = exp

�
Si � Smax

a

la

�
(Equation 2)

Before calculating the binding probability of TF a on a givenCRMcontext, themodel divides TFBSs intomultiple subgroups based on their

competitive binding and cooperative binding relationships. For each subgroup(s), numerous binding scenarios (case; c) can exist, and each

scenario has its own weight, as represented by Equation 3 where TF b concentration vb is Abvb
fl, Ab is the TF concentrationmeasured through

fluorescence in situ hybridization, and vb
fl is an adjusting factor of fluorescent signal to actual TF concentration. Kcoop is the cooperative

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Transcpp Barr and Reinitz45 github.com/kennethabarr

Clustal Omega Sievers et al., 2011 https://www.ebi.ac.uk/Tools/msa/clustalo/
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coefficient of two binding sites of k and h. W0 is a weight of a scenario where no TF binds to the given DNA of the subgroup (in most cases

W0=1). In this study, we fixed the TF concentration Ab to 100, because the actual TF concentration in the active form was not available. How-

ever, themodel was able to optimize the parameters l andKmax (Vb
fl) to find the optimal fractional occupancy.We expect to be able to analyze

more detailed mechanisms if we can obtain the concentration of TFs in their activated form.

WðcÞ = W0

Y
k˛ c

Kk½m;n;a�vb

 Y
h˛ c;h> k

Kcoopðk;hÞ; vb = Abv
fl
b

!
(Equation 3)

Theweights of overlapping TFBSs for a single TF in self-competition can be treated as independent TFBSs.When self-competition was not

considered, only the strongest of the overlapping TFBSs for a single TF was considered.

fi½m;n;a� =
X

c ˛CðiÞ
wðcÞ

,
Zs; Zs =

X
c ˛ SðiÞ

wðcÞ (Equation 4)

Theprobability of TF binding on site i(fractional occupancy; f) is calculated by dividing the total weight of the scenarios where TF binds site i

by the total weight of all the scenarios. Zs is the total weight of all the possible scenarios in the subgroup.

As transcription initiation is affected by nearby occupying activators, the contribution of a TF to transcription can be expressed as the prod-

uct of its fractional occupancy and activation coefficient. However, the function of a TF can change depending on the presence of nearby TFs.

In this study, we applied this mechanism to interaction between CRE and TATA box. The ATF/CREB family TFs were set as repressors with a

repression coefficient of 0 (or weak activator with activation coefficient of about 0), but they turn into strong activators as they get closer to the

TATA box. Fractional occupancy can be divided into fractional occupancy as an activator and as a repressor, as shown in Equations 5 and 6.

(Eb
C: coactivation coefficient of TF b, cb: distance function between TF a and b, dik: distance between site i and k.)

f Qi½m;n;a� = fi½m;n;a�
Y
k

�
1 � cbðdikÞEC

b fk½m;n;b�
�

(Equation 5)

f Ai½m;n;a� = fi½m;n;a� � f Qi½m;n;a� (Equation 6)

The corrected fractional occupancy (F) is calculated by considering a short-range quenching mechanism in which a repressor interferes

with the binding of neighboring activators. However, in this study, there are no repressors except for those with a repression coefficient of

0. Therefore, all fractional occupancies (fA) and corrected fractional occupancies (FA) are the same. Equations for mechanisms not covered

in this study, such as short-range quenching and direct repression, are omitted here.

DDA =
X
a

EA
a

X
k

FA
k½m;n;a� (Equation 7)

½mRNA� = Rmax

�
expðDDA � DAÞ

1+expðDDA � DAÞ
�

(Equation 8)

By lowering the activation barrier, RNA polymerase can bind to the promoter and initiate transcription. This amount of decrease(DDA) can

be calculated as the sum of the production of activation coefficient and the corrected fractional occupancy. Using diffusion-limited Arrhenius

rate laws, we can describe the effect of lowering this activation energy. As long as M is within a certain range, this rate law can represent syn-

ergy that is greater than multiplicative. The transcription rate R ([mRNA]) approaches Rmax when the activation energy barrier drops to 0,

because new polymerase molecules can diffuse to the basal complex at the same rate as the diffusion of new polymerase molecules.

Sequences and expression level for modeling

Previously published CRM sequences (synthetic cAMP-regulated enhancer) andmRNA expression data were used for themodel training and

validation.3 In brief, 87bp CRM sequences were cloned into pGL4.10M. Cloned pGL4.10M with 87bp CRM were transfected into the

HEK293T/17 cell line that was treated by 100 mM forskolin. Relative activity of variant enhancers (Dactivity) were obtained by comparing variant

enhancers’ tag count ratio (mRNA/plasmid) to mRNA/plasmid ratio of WT.

For the CRM sequences and expression levels asmodel inputs, upstream 20bp, and downstream 90bp frompGL4.10M are added. In total,

197 bp enhancer sequences were used. Relative levels being multiplied by 100.

We also selectedmulti-hit synthetic enhancer sequences with distances between variants in the enhancer as greater than 9, because adja-

cent variants can generate additional unknown TF binding sites.

For hypothetical analysis about the billboard enhancer’s feature, entire 87bp CRE enhancers are flipped for reversed CRM sequences. In

rearranged sequences, the 43bp from 30 and 44bp from 50 of the synthetic enhancer’s locations are switched (Figures 4A–4C). Upstream and

downstream sequences were also added without any modification.
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Selection of PWMs and their thresholds

In this study, position weight matrices (PWMs) from the following three different sources are used: JASPAR,47 previously published HT-SELEX

data,76 and PBM data-derived PWMs.48,77,78 Only TFs that are expressed in the HEK293 cell line using RNA-seq data from the Human Protein

Atlas46 were used. We assumed that if the transcript per million (TPM) was greater than 0, then the TF is expressed in the HEK293 cell line. In

the model, although some basic-leucine zipper family TFs can form heterodimer, only homodimer PWMs are considered because they are

more readily available. The binding threshold for discarding negative TF binding sites was estimated as a free parameter between a mini-

mum-maximum normalization score of 0.6 to 1. The normalized binding score (Sij) of a TF binding site i, based on a PWM j, is calculated

by the following equation.

Si
j =

sij � smin
j

smax
j � smin

j

Parameter estimation

Lam-Delosme Simulated Annealing in serial was used to optimize the model parameters by minimizing the sum of squared differences be-

tween the model and data. At least 8 models are trained for each configuration. The parameters for the trained 4TF_self model, 7TF and

7TF_self model could be found in Table S1.

QSAM

A linear QSAMmodel is a model that predicts the expression rate of a gene based on its enhancer sequence. Themodel consists of a param-

eter matrix that represents the contribution of each base at a specific position to expression. The input enhancer sequences were one-hot

encoded and multiplied with the parameter matrix to obtain the Dactivity.

Multiple sequence alignments

Transactivation domains sequences (pKID domains or GCN4_cent domain) of 4 ATF/CREB families (CREB1 (NP_004370.1), CREM

(NP_877572.1), ATF1 (NP_005162.1), and ATF7 (NP_006847.1)) from NCBI RefSeq79 are compared using Clustal Omega80 with following op-

tions. Output guide tree: true, Output distancematrix: false, Dealign input sequences: false, mBed-like clustering guide tree: true, mBed-like

clustering iteration: true, Number of iterations: 0, Maximum guide tree iterations: -1, MaximumHMM iterations: -1, Output alignment format:

clusta_num, Output order: aligned, Sequence Type: protein.

QUANTIFICATION AND STATISTICAL ANALYSIS

Pearson’s correlation coefficient (R) between log2(model) and log2(data) was calculated in R(version 4.2.0). The effect of TF combinations on

model performance was compared by the highest (rmax), average (ravg), or median (rmed) of the R values for each combination.
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