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Abstract

The head direction (HD) system functions as a compass with member neurons robustly increasing 

their firing rates when the animal’s head points in a specific direction. HD neurons may be driven 

by peripheral sensors or, as computational models postulate, internally-generated (‘attractor’) 

mechanisms. We addressed the contributions of stimulus-driven and internally-generated activity 

by recording ensembles of HD neurons in the antero-dorsal thalamic nucleus and the 

postsubiculum of mice by comparing their activity in various brain states. The temporal 

correlation structure of HD neurons is preserved during sleep, characterized by a 60°-wide 

correlated neuronal firing (‘activity packet’), both within as well as across these two brain 

structures. During REM, the spontaneous drift of the activity packet was similar to that observed 

during waking and accelerated tenfold during slow wave sleep. These findings demonstrate that 

peripheral inputs impinge upon an internally-organized network, which provides amplification and 

enhanced precision of the head-direction signal.

Introduction

The relationship between stimulus-driven and internally generated activity is a recurring 

topic in neuroscience. Yet, how feed-forward sensory signals in subcortical, thalamic and 

cortical networks interact with internally organized (self-generated or ‘spontaneous’) 

activity is not well-understood, due largely to the high dimensionality of sensory signal 

attributes1–4. In contrast, the one-dimensional head-direction (HD) sense offers an 

opportunity to explore such interactions experimentally. HD neurons fire robustly when the 

animal’s head points in a specific direction5–8. The HD system encompasses multiple, 

serially-connected brain networks, including the brainstem, mammillary bodies, anterodorsal 

thalamic nucleus (ADn), post-subiculum (PoS) and entorhinal cortex6–13. Neurons in the 

PoS provide feedback projections to neurons in the ADn and mammillary bodies7.

Similar to other sensory systems that pass through the thalamus, the HD sense has been 

tacitly assumed to be largely controlled by peripheral inputs, mainly the vestibular and 
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ancillary afferents7,8, since firing rates of HD cells are affected both by head direction and 

the angular velocity of head rotation in the exploring rodent9,14. Visual inputs can also 

influence the HD signal6,9,10 via reciprocal connections of the PoS with visual areas7,8 but 

visual inputs are not sufficient to drive HD cells in the PoS after lesioning the ADn14. The 

HD network is a key part of the brain’s navigational system and HD information is believed 

to be critical for the emergence of grid cells in the entorhinal cortex12,13,15–17.

Computational models have assumed that HD cells with similar preferred directions fire 

together and the temporally correlated group of HD neurons (called ‘activity packet’) moves 

on a virtual ring as the animal turns its head (Movie 1). While members of the activity 

packet rotate on the ring, neighboring neurons are suppressed by lateral inhibition18–23. 

Experimental demonstration of the existence of internally organized neuronal populations 

endowed with such properties, often referred to as ‘attractor networks’ 22,24–26, requires 

monitoring populations of HD neurons simultaneously and demonstrating that the activity 

packet remains temporally organized even in the absence of vestibular and other peripheral 

signals. We therefore reasoned that the postulated attractor dynamic can be revealed by 

comparing the population activity of HD cells during sleep and in the waking brain27,28.

Results

Ensembles of HD neurons from ADn (8.4 ± 5.1 s.d. units per session) and PoS (5 ± 2.8 s.d.) 

were recorded by multi-site silicon probes (Fig. 1a, Supplementary Fig. 1) in 7 mice 

foraging for food in an open environment (42 sessions) and in their home cages during sleep 

(Supplementary Table 1). In 3 mice (21 sessions) ADn and PoS recordings were performed 

simultaneously. HD cell ensembles covered the full span of head-directions (Fig. 1b–d). 

ADn and HD cells were characterized by a uniform bell-shaped tuning curve (Fig. 1b; 

Supplementary Fig. 2a). ADn neurons exhibited peak rates almost three times higher than 

PoS cells (Supplementary Fig. 2b; p < 10–10, Mann-Whitney U-test, n = 242 ADn and n = 

111 PoS HD cells) and conveyed 30% more head-direction information than PoS cells (1.44 

bit per spike vs. 1.11 bit per spike; see Methods; Supplementary Fig. 2c; p < 10–6, Mann-

Whitney U-test), firing more consistently with the head-direction.

Under the hypothesis of an internally-organized HD system, one expects that the temporal 

relationship of HD cells should persist in different brain states. To this end, neuronal 

ensembles were monitored during sleep sessions (5 hours ±1 s.d.), before and/or after active 

exploration in the open field. Sleep stages were classified as Slow-Wave Sleep (SWS) or 

Rapid Eye Movement Sleep (REM) based on the animal’s movement and time-resolved 

spectra of the local field potential recorded from the hippocampus or the PoS (Fig. 1c, see 

Methods). During sleep, individual neurons formed robustly similar sequential patterns as in 

the waking state. Using a Bayesian-based decoding of the HD signal from the population of 

HD cells (see Methods) and the animal’s actual head orientation (Fig. 1c), we could infer a 

‘virtual gaze’ — i.e., which direction the mouse was ‘looking’ — during sleep (Fig. 1c,d; 

Supplementary Fig. 3; Supplementary Movie 1). Quantitative brain state comparisons of 

firing patterns revealed three important features of the ongoing network dynamics. First, the 

firing rates of HD neurons remained strongly correlated across brain states (Fig. 2a). 

Second, the pairwise correlations between HD neuron pairs both within and across structures 
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were robustly similar across states (Fig. 2b), indicating the preservation of a coherent 

representation. Third, the rate of change of the virtual gaze differed between brain states. 

The angular velocity of the internal HD signal, either estimated by a Bayesian decoder or 

from the temporal profile of pairwise cross-correlograms (Fig. 2c–e, see Methods and 

Supplementary Fig. 4), was approximately tenfold faster during SWS than during waking 

(Fig. 2e,f), similar to the temporal “compression” of unit correlations observed in the 

hippocampus29–31 and neocortex32,33. Angular velocity of the internal HD signal was 

similar during waking and REM (Fig. 2e,f).

Models of attractor networks suggest that only a subset of cells fire at any given time, 

referred to as the activity packet and the subset shifts at a predictable 

velocity8,12,18,19,23,25,26. The distribution of the magnitude of temporal correlations between 

discharge activities of HD cell pairs at time zero revealed a bell-shaped packet. Pairs of 

neurons with <60° offset showed positive correlations, pairs with >60° offset showed 

negative correlations, and pairs with approximately 60° offset were uncorrelated (Fig. 3a). 

The relationship between the 0-lag correlation and the preferred angular direction was 

preserved across brain states for cell pairs recorded within a structure (ADn-ADn; PoS-PoS) 

and between structures (ADn-PoS) (Fig. 3a; p < 10–6 for all brain states and conditions, 

Pearson’s test, n = 907 ADn-ADn pairs, n = 512 ADn-PoS pairs, n = 92 PoS-PoS pairs). HD 

signal was more strongly preserved in the ADn than in the PoS as shown by the stronger 

pairwise correlations in any brain state (p < 10–5, Mann-Whitney U-test for all pairs closer 

than 60° in all brain states, n = 345 ADn-ADn pairs; n = 55 PoS-PoS pairs), and this 

difference was independent of firing rate differences between the two structures 

(Supplementary Fig. 5). The actual activity packets, both in the ADn and the PoS, and across 

brain states, were highly similar to the predictions given by the signal decoded from a 

Bayesian estimator (Fig. 3b) in waking, REM and SWS, thus demonstrating the self-

consistency of HD representations34. Hence, at any time, the activity packet corresponded to 

a bounded probabilistic representation of the head direction (Supplementary Movie 1).

In the waking animal, HD cell dynamic can be explained by inputs arriving from the 

peripheral sensors7,8. Under this hypothesis, HD neurons in ADn and PoS ‘inherit’ their 

directional information from upstream neurons and respond independently of each other. 

However, correlations expected from independent rate-coded neurons could not fully 

account for the observed pairwise correlations of HD cells (Fig. 4a). ‘Noise’ correlations35 

were observed for neuron pairs with overlapping fields (0±15°), with a marked negative 

signal correlation at 60±15° offset (Fig. 4b,c) and the expected correlations became similar 

to the observed ones only for pairs with larger angular differences. These signal correlations 

were stronger for ADn than PoS neurons (p < 10–9, Kruskal-Wallis one-way analysis of 

variance; ADn-ADn pairs: n = 96 and 200, for 0° and 60° signal correlation values 

respectively; ADn-PoS pairs: n = 77 and 157; PoS-PoS pairs: n = 29 and 57). Importantly, 

noise correlations could further improve the decoding of the HD signal. Optimal linear 

estimates (OLE, see Methods) of the head-direction were enhanced when using spike train 

covariances (i.e., including noise correlation) instead of the tuning curve covariances (i.e., 

signal correlation only). Estimate of HD based solely on the actual covariance of the spike 

trains almost reached the performance of a non-linear Bayesian decoder (Fig. 4d). In the 
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ADn, where noise correlations were highest for overlapping HD cells, the covariance-based 

OLE was approximately 50% better than the signal-based OLE (Fig. 4d,e), and significantly 

stronger than in the PoS (Fig. 4e; p < 0.05; Mann-Whitney’s U-test; n = 20 ADn and 8 PoS 

cell ensembles, respectively).

To gain insight into the direction of the interactions between the ADn and PoS components 

of this thalamo-cortical loop, we examined whether HD cells preserved their tuning curves 

during sleep based on the internal HD signal of the reciprocal area. To this end, we used the 

decoded HD signals during sleep from either the ADn or PoS assemblies to compute the HD 

tuning curves in their target PoS or ADn neurons, respectively. In agreement with the 

preservation of the activity packet across brain states (Fig. 3a,b), tuning curves were 

remarkably similar during sleep to that of waking (Fig. 5a,b; Supplementary Movie 1). 

However, the HD signal extracted from ADn assemblies resulted in tuning curves more 

similar to actual HD fields than the HD signal decoded from PoS assemblies, in all brain 

states (Fig. 5b; Mann-Whitney U test; wake: p < 10–10; SWS: p = 0.018; REM: p = 3×10−6; 

n = 86, 92 PoS and ADn HD cells respectively). Finally, to quantify how well ADn or PoS 

assemblies could predict the firing probability and timing of target cells in the PoS or ADn, 

respectively, we estimated the predictability of spike trains based on a Generalized Linear 

Model of cell ensemble activity36 (see Methods), at different time-scales (Fig. 5c–e). ADn 

assemblies predicted PoS spike trains reliably in all brain states (Fig. 5d,e; p < 10–10 in all 

brain states, Wilcoxon’s signed rank test, n = 86). Optimal readout windows were similar 

between waking and REM (median: 123 ms and 133 ms respectively) and shorter during 

SWS (median: 79 ms). In the reverse direction, PoS cell assemblies predicted spike trains of 

ADn neurons more weakly, especially during SWS (Fig. 5d,e; wake: p = 3×10−5, SWS: p < 

10–10; REM: p = 1.1×10−6; Mann-Whitney U test; n = 86 and 62 PoS and ADn neurons 

respectively).

Finally, we examined the fine timescale dynamics of HD neurons within and across 

structures. Spectral analysis of cross-correlation functions between pairs of HD cells in the 

ADn revealed strong oscillatory spiking dynamics activity in windows of approximately 1–5 

ms (Fig. 6a). The degree of synchrony decreased with the magnitude of difference between 

the preferred head directions of the neurons (Fig. 6b; p < 10–10; Kruskal-Wallis test, n = 970 

ADn HD cell pairs) in all brain states (Fig. 6c and Supplementary Fig. 7a). The high degree 

of synchrony displayed by ADn neurons can contribute to the effective discharge of their 

target neurons in PoS. In support of this hypothesis, cross-correlation analyses between pairs 

of ADn-PoS neurons revealed putative synaptic connections in a fraction of the pairs (4.45% 

of 6960 pairs from ADn to PoS, 0.35% from PoS to ADn; see Methods, Fig. 7a,b, 

Supplementary Fig. 7b), which included both putative PoS pyramidal cells and interneurons 

(Fig. 7a, Supplementary Fig. 6). When only ADn and PoS pyramidal cell pairs were 

considered (3394 pairs), we found putative synaptic connections in both directions 

(Supplementary Fig. 7b) but the probability of feed-forward connections from the ADn to 

the PoS was twice as high as the PoS to ADn feedback direction (0.41% ADn-PoS pairs 

versus 0.18% PoS-ADn pairs; p = 0.014, binomial test). ADn cell spiking was associated 

with high frequency LFP oscillations in the PoS (Fig. 7c), indicating that the fast 

synchronous oscillation of ADn assemblies was also transmitted to PoS. Furthermore, PoS 
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HD cells that were post-synaptic to ADn HD cells shared the same preferred direction as 

their presynaptic neuron (Fig. 7d, p = 0.68, Rayleigh test followed by Wilcoxon’s signed 

rank test, n = 12), suggesting direct forwarding of a ‘copy’ of the thalamic HD signal. 

Pyramidal neurons in PoS that were synaptically driven by ADn HD cells conveyed more 

HD information than PoS neurons for which a presynaptic cell could not be identified (Fig. 

7e; p = 0.011, Mann-Whitney U-test). No such difference in HD information was observed 

between ADn neurons and putative interneurons in PoS (Fig. 7e; p = 0.38). These findings 

demonstrate that ADn and PoS cell assemblies are strongly synchronized and establish 

effective reciprocal communication.

Discussion

We report that correlated activity of thalamic ADn and PoS HD neurons are preserved 

across different brain states. These empirical observations demonstrate similarities to HD 

models of one-dimensional attractors where the activity packet moves on a ring8,18,19,22,25. 

We hypothesize that in the exploring animal, the exact tuning curves of HD neurons result 

from a combination of internal and external processes19,20,25,26,37 and can quickly rotate in 

response to environmental manipulations9,10 conveyed by vestibular and other peripheral 

inputs7,8.

Our findings provide experimental support for the postulated ring-attractor hypothesis of HD 

system organization18–20,24,26, although it remains to be clarified whether the HD attractor 

mechanism resides in the thalamus or is ‘inherited’ from more upstream structures. We 

found that during sleep the drift of the attractor can be independent of sensory inputs38 and 

the speed of the activity packet is determined by brain state dynamics. An expected 

advantage of the internally-organized HD attractor is that in the exploring animal sensory 

inputs7,8 can be combined with the prediction of the internally generated HD sense25,26 and 

rapidly adapt to reconfigured environments9,10. In case of ambiguous signals, the internally 

organized HD attractor mechanisms may substitute or improve the precision of HD 

information by interpolating across input signals and help resolve conflicts during 

navigation19,20,26. Overall, our observations demonstrate that coordinated neuronal activity 

in the HD system is shaped not only by the nature of incoming sensory HD signals but also 

strongly influenced by internal self-organized mechanisms. Importantly, the HD system may 

have analogous counterparts in other thalamus-mediated sensory systems as well.

The internally-organized HD system is ‘embedded’ in the internal global brain dynamics 

during sleep, including an ~10-fold time acceleration during SWS29–33 compared with 

waking and REM, reminiscent of the temporally ‘compressed’ replay of waking 

hippocampal and neocortical activity29–33,39. However, the magnitude of the persistent 

representation in the HD system is an order of magnitude higher than those previously 

reported in hippocampus and neocortex. A possible explanation for this robust effect is that 

the HD system processes a simple one-dimensional signal (i.e., the head angle), whereas 

neurons in cortical systems likely represent intersections of multiple representations (e.g., 

place, context, goals, speed and other idiothetic information). It should also be mentioned 

that, strictly speaking, replay refers to the increased correlations of neuronal coactivation 

after waking experience compared with the pre-experience control sleep31–33. In contrast to 
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the robust wake-sleep correlations of firing rates, co-activation of neuron pairs and neuronal 

sequences during both SWS and REM sleep reported here, a previous report failed to find 

‘replay’ in the PoS28. Potential explanations for such discrepancy include the rather large 

time window for Bayesian reconstruction (500ms) in that previous study28, which may have 

‘filtered out’ the replay effect and/or the limited number of neuronal pairs that were 

available for statistical comparisons.

Similar to previous findings in visual40 and somatosensory41 systems, we observed highly 

reliable spike transmission between thalamic ADn and its cortical PoS target. Both putative 

interneurons and pyramidal cells of PoS were driven reliably at short latency by the ADn 

neurons, most of which were HD cells. The effectiveness of the ADn-PoS transmission was 

enhanced by a fast (130—160 Hz) oscillation synchrony of coherent HD cell assemblies in 

ADn in all brain states, which was also reflected in the ADn spike-triggered LFP in the PoS. 

Similar prominent oscillations have been described in the optic tectum of birds which have 

been shown to reflect synchronous co-firing of neighboring neurons to flashing or visual 

motion stimulation42. Importantly, firing patterns of PoS neurons could be reliably predicted 

from the population activity of ADn neurons. In the reversed direction, the prediction was 

poorer. Furthermore, HD prediction could be more reliably reconstructed from ADn than 

from PoS populations, especially during SWS28. These findings are compatible with a feed-

forward labeled line transmission of sensory information from the periphery to cortex43. 

Yet, unexpectedly, the magnitude and reliability of internal prediction was higher in ADn 

than in PoS, at least when the same total number of neurons was used for HD reconstruction. 

One possible explanation for such difference is that neurons of ADn are dedicated 

specifically to HD information, whereas PoS neurons respond to a variety of other inputs as 

well, making them appear ‘noisier’. It is possible, however, that if a much larger fraction of 

PoS were to be recorded, PoS activity could be equally predictive.

Although the exact anatomical substrate of the hypothetical self-organized attractor remains 

to be identified, three findings are in favor of the involvement of the thalamocortical 

circuits. First, the ‘noise’ correlations between ADn neuron pairs are in support of locally-

organized mechanisms. Second, the speed of rotation of the HD neurons varied with the 

thalamocortical state, indicating direct cortical influence on the substrate of the 

attractor29–33. Third, processing of the HD signal was embedded within fast oscillations that 

coordinated HD cell assemblies within and across ADn and PoS. Thus, the ADn-PoS-ADn 

excitatory loop may also contribute to the postulated attractor. Finally, although ADn 

neurons do not excite each other or other thalamic nuclei44 they can communicate with each 

other via the inhibitory neurons of the reticular nucleus45,46. Recent work has demonstrated 

that such recurrent inhibitory connectivity can also give rise to internally-organized 

activity47,48. We note that several models assume that HD information is critical for the 

integrity of entorhinal grid cells12,49, which tessellate the explored space with equilateral 

triangles50. Notably, the structural requirements of a prominent grid model is identical to the 

recurrent inhibitory loops of the ADn-reticular nucleus circuit47,48. How the internally-

organized HD system is related to the formation of grid cells remains to be determined.
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Methods

Electrodes, surgery and data acquisition

All experiments were approved by the institutional Animal Care and Use Committee of New 

York University Medical Center. Five adult male and two female mice (27 – 50 g) were 

implanted with recording electrodes under isoflurane anesthesia, as described earlier51. 

Silicon probes (Neuronexus Inc. Ann Arbor, MI) were mounted on movable drives for 

recording of neuronal activity and local field potentials (LFP) in the anterior thalamus (n = 7 

mice) and, in addition in the post-subiculum (n = 3 out of 7 mice). In the four animals 

implanted only in the anterior thalamus, electrodes were also implanted in the hippocampal 

CA1 pyramidal layer for accurate sleep scoring: three to six 50 μm tungsten wires (Tungsten 

99.95%, California Wire Company) were inserted in silicate tubes and attached to a 

micromanipulator. Thalamic probes were implanted in the left hemisphere, perpendicularly 

to the midline, (AP: –0.6 mm; ML:–0.5 to –1.9 mm; DV: 2.2 mm), with a 10 – 15° angle, 

the shanks pointing toward midline (see Supplementary Fig. 1a–f). Post-subicular probes 

were inserted at the following coordinates: AP: –4.25 mm: ML: –1 to –2 mm; DV: 0.75 mm 

(Supplementary Fig. 1g,h). Hippocampal wire bundles were implanted above CA1 (AP: –2.2 

mm; –1 to –1.6 mm ML; 1 mm DV). The probes consisted of 4, 6 or 8 shanks (200-μm 

shank separation) and each shank had 8 (4 or 8 shank probes; Buz32 or Buz64 Neuronexus) 

or 10 recording (6-shank probes; Buz64s) sites (160 μm2 each site; 1–3 M impedance), 

staggered to provide a two-dimensional arrangement (20 μm vertical separation). In all 

experiments ground and reference screws or 100-μm diameter tungsten wires were 

implanted in the bone above the cerebellum.

During the recording session, neurophysiological signals were acquired continuously at 20 

kHz on a 256-channel Amplipex system (Szeged, Hungary; 16-bit resolution; analog 

multiplexing)52. The wide-band signal was downsampled to 1.25 kHz and used as the LFP 

signal. For tracking the position of the animals on the open maze and in its home cage 

during rest epochs, two small light-emitting diodes (5 cm separation), mounted above the 

headstage, were recorded by a digital video camera at 30 frames per second. The LED 

locations were detected online and resampled at 39 Hz by the acquisition system (note that 

the absolute time of the first video frame was randomly misaligned by 0–60ms but the 

sampling rate was accurate thereafter). Spike sorting was performed semi-automatically, 

using KlustaKwik53 (available at: http://klustakwik.sourceforge.net). This was followed by 

manual adjustment of the waveform clusters using the software Klusters54. Examples of 

simultaneously recorded neurons and quantification of isolation quality are shown in 

Supplementary Fig. 8.

After 4–7 days of recovery, the thalamic probes were lowered until the first thalamic units 

could be detected on at least 2–3 shanks. At the same time, hippocampal wires were slowly 

lowered until reaching the CA1 pyramidal layer, characterized by high amplitude ripple 

oscillations. The probe was then lowered by 70–140 μm at the end of each session.

In the animals implanted in both the thalamus and in the PoS, the subicular probe was 

moved everyday once large HD cell ensembles were recorded from the thalamus. 

Thereafter, the thalamic probes were left at the same position as long as the quality of the 
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recordings remained. They were subsequently adjusted to optimize the yield of HD cells. To 

prevent statistical bias of neuron sampling, we discarded from analysis sessions separated by 

less than three days during which the thalamic probe was not moved.

Three animals had channelrhodopsin conditionally expressed in parvalbumin (one animal) 

or CamKII (two animals) positive neurons but these aspects of the experiments are not part 

of the present study.

Recording sessions and behavioral paradigm

Recording sessions were composed of exploration of an open environment (‘wake’ phase) 

during which the animals were foraging for food for 30 to 45 minutes. The environment was 

a 53 × 46 cm rectangular arena surrounded by 21-cm high, black-painted walls on which 

were displayed two salient visual cues. The exploration phase was (in 41 out of 42 sessions) 

preceded and followed by sleep sessions of about 2 hours duration. In one session, the 

exploration of a radial maze following the second sleep phase was considered as the ‘wake’ 

period and no sleep was recorded subsequently. All experiments were carried out during 

daylight in normal light-dark cycle.

Data analysis and statistics

Head direction cells—The animal’s head direction was calculated by the relative 

orientation of a blue and red LEDs located on top of the head (see above). The head 

direction fields were computed as the ratio between histograms of spike count and total time 

spent in each direction in bins of 1 degree and smoothed with a Gaussian kernel of 6° s.d.. 

Times when one of the LEDs was not detected were excluded from the analysis. The 

distributions of angular values making the HD fields were fitted with von Mises 

distributions defined by their circular mean (preferred HD), concentration (equivalent to the 

inverse of the variance for angular value variables) and peak firing rates. The probability of 

the null hypothesis of uniformly distributed firing in all directions was evaluated with a 

Rayleigh test. Neurons were classified as HD cells for concentration parameter exceeding 1, 

peak firing rates greater than 1Hz and probability of non-uniform distribution smaller than 

0.001. In all cross-correlation analyses, only cells firing at least at 0.5 Hz in any of the three 

brain states were included.

242 out of 720 recorded cells (41% on average) in the anterior thalamus, and 111 out of 357 

(31%) cells in the PoS were classified as HD cells. In the thalamus, when considering only 

cell ensembles recorded on silicon probe shanks where at least one HD cell was detected, 

the average proportion of HD cells was 71%, a number close to the previous estimation of 

HD cell density in this structure.

Sleep scoring—Sleep stage scoring was assessed on the basis of time-resolved 

spectrograms of the CA1 pyramidal layer or PoS LFPs, and of the movement of the animal. 

Behavioral stages were first detected by automatic software based on a Bayesian 

hierarchical clustering method, whose relative weights were learned from hand-scored data. 

Stages were then visually inspected and manually adjusted55.
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Bayesian reconstruction of Head-Direction—Following Zhang et al.56, the ‘internal’ 

head-direction (as displayed in Fig. 1 and Supplementary Fig. 2) was reconstructed using a 

Bayesian framework. In short, at each time bin (10ms, smoothed in 300 ms s.d. Gaussian 

windows for wake and REM, 50 ms windows for SWS), based on cells’ tuning curves from 

waking spike data, the population vectors were converted into a probabilistic map under the 

hypothesis that HD cells fire as a Poisson process. The instantaneous ‘internal’ head-

directions were taken as the maxima of these probabilistic maps. Bayesian reconstruction 

was used only when at least 6 HD cells were recorded in one given structure (ADn or PoS). 

These estimates faithfully tracked the head position in the waking mouse.

Estimation of angular velocity—Under the hypothesis of independent rate-coded cells, 

temporal cross-correlograms between two HD neurons depend primarily on two parameters: 

the tuning curves of the neurons and timecourse of the angular velocity of the animal’s head. 

Specifically, the cross-correlogram depends on the angular correlation ρ(θ) between the two 

tuning curves, determined as the correlation of firing rates as a function of angular offset.

One way to interpret a temporal cross-correlogram is the following: at angular velocity υ, it 

takes a time τ to cover a angular distance θ=υτ; thus, at time lag τ, the temporal correlation 

can be approximated by the average angular correlation: 〈ρ(θ)〉v = 〈ρ(vτ)〉v (〈.〉v denotes 

average over all possible angular velocities). Therefore, we hypothesized that the temporal 

cross-correlation estimates the average angular speed, assuming a model of angular velocity 

distribution and knowing the angular correlation between the two tuning curves. To this end, 

we searched for the average velocity which best predicted the observed cross-correlograms. 

First, the angular speed distribution is assumed to be a Chi-squared distribution with 3 

degrees of freedom, but the final results held for other non-normal (i.e. skewed) and positive 

random variables. Next, an expected temporal cross-correlogram is built and compared to 

the observed correlation. An unconstrained, derivative-free optimization algorithm searches 

for the average velocity υ minimizing the sum of squared difference between the estimated 

and observed cross-correlograms (the cost function). A first coarse-grained estimation of the 

cost function on a broad range of possible velocities gives a first approximation of υ. It is 

used as an initial condition for the fine search of the optimal value to improve the accuracy 

and computation speed of the algorithm. See Supplementary Fig. 4 for an illustration of this 

algorithm.

Cross-correlation under the hypothesis of independent firing rate coding 
scheme—To further understand if an animal’s behavior could fully account for the 

observed correlations during waking, (i.e. if the correlation was simply the result of first 

order interactions), we computed the expected correlations under the hypothesis of 

independent firing rates. To this end, we constructed for each neuron an ‘intensity’ function 

f(t) based on the animal’s instantaneous head direction and the cell’s tuning curve. 

Therefore, for neuron i, fi(t) = hi(θ(t)), where θ(t) is the orientation of the animal at time t 

and hi the head-direction field of cell i.

The cross-correlations Cij(t) (red lines in Fig. 3b) of the discretized intensity functions fi(t) 

and fj(t) were computed as follows:
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where N is the length of the vectors fi and fj.

Head-direction and neuronal data were binned in 10 ms windows. To ensure a valid 

comparison, correlations of the binned spike trains were computed the same way as the 

intensity functions. The difference between the intensity function and binned spike train 

correlations averaged between –50 and +50 ms was referred to as ‘noise’ correlations35 (see 

Fig. 3c,d).

Information measures—These methods aim to quantify the predictability of a spike train 

relatively to a given behavioral or physiological observable36. In short, as described in the 

previous section, a spike train can be predicted by an intensity function f. It can be shown57 

that the log-likelihood Lf of a spike train {ts}, given a given intensity function, is:

This log-likelihood, measuring the predictability of the spike train, was compared with the 

log-likelihood L0 of a homogeneously firing neuron, at the average firing rate observed 

during the training epoch. Thus, the predictability of the spike train was defined as the 

difference (or log-likelihood ratio) L=Lf − L0.

This predictability can be interpreted as an information rate about the variable used to 

generate the intensity function. It is thus expressed in bit per second. Throughout the paper, 

these rates were normalized by the cell’s firing rate during the epochs of interest and were 

thus given in bit per spike.

To quantify the predictability of a spike train, we used a cross-validation procedure. The 

log-likelihood ratio was thus computed on a different epoch, the test set, than the one used to 

train the intensity function, the training set. Each epoch of interest was divided in 10 

segments: spike train from one segment was tested against the intensity function estimated 

from the training set made from the remaining 9 other segments.

The simplest case is the estimation of the head-direction information content as shown in 

Fig. 1e. The head direction field Htraining(θ) of a cell is generated on the training set, that is 

90% of the wake epoch. Knowing the behavior of the animal (i.e. its head direction θ(t)) 

during the test epoch (the remaining 10% of the waking period), the spike trains were tested 

against the intensity function f(t) = Htraining (θ(t)).

To quantify the extent to which a cell ensemble can predict the spiking of a given neuron (as 

in Fig. 4f), the intensity function was derived from a Generalized Linear Model (GLM) of 

the ensemble spiking activity. More specifically, a rate r(t) was defined, for each time, as a 

linear combination of the activity of the cells belonging to the ensemble:
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where ωi is the weights associated with the neuron i in the predictive ensemble, and qi(t) its 

activity at time t.

The associated intensity function was then defined as:

where the link function g is a modified exponential function (linear for positive arguments), 

a necessary modification to avoid excessively high predicted intensities36.

The spiking activity of the cells was binned in 10 ms windows. It was then convolved with 

Gaussian kernels of variable width, referred to as “readout windows” in Fig. 4.

The weights were determined by minimizing for each training set the log-likelihood ratio 

using a multivariate, unconstrained and derivative-free search algorithm. To improve 

computation speed, the weights of the first training set were used as initial conditions for the 

nine others.

Only the neurons that were positively predicted for at least one readout time window were 

included in the final analysis in Fig. 4f,g (ADn from PoS assemblies: n = 62; PoS from ADn 

assemblies: n = 86).

Ensemble coherence—To examine the coherence of the activity packet we applied the 

measure as described in ref34: the actual activity packet (the sum of the normalized tuning 

curves weighted by the instantaneous firing rates) was compared to the expected activity 

packet given the estimated HD by a Bayesian decoding of the population. To build proper 

statistics (and normalize between 0 and 1 the coherence measure), for each degree of the 

HD, 5,000 population vectors were randomly chosen from the wake recordings and 

compared to the expected packet at the decoded angle. Next, the actual packets during each 

brain state were tested under the null hypothesis that they are similar to the expected packets 

at the decoded HD. A coherence measure close to 1 (and, statistically speaking whenever it 

is greater than 0.05) indicates significant similarity.

Detection of mono-synaptic connections—The spike train cross-correlogram of two 

neurons can reveal synaptic contacts between each other58,59. This takes the form in the 

cross-correlogram of short time-lag (1 – 10 ms) positive or negative deviations from 

baseline indicating putative excitatory or inhibitory connections, respectively. Such 

detection is based on statistics testing the null hypothesis of a homogeneous baseline at short 

time-scale58. To this end, cross-correlograms binned in 0.5 ms windows were convolved 

with a 10 ms s.d. Gaussian window resulting in a predictor of the baseline rate. At each time 

bin, the 99.9th percentile of the cumulative Poisson distribution (at the predicted rate) was 

used at the statistical threshold for significant detection of outliers from baseline. In this 
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study, we focused on excitatory connections for two reasons: (i) all thalamo-cortical and 

cortico-thalamic connections are expected to be excitatory and (ii) all candidates for 

inhibitory connections resulted from short timescale oscillatory processes associated with a 

excitatory connection in the other direction. A putative connection was considered 

significant when at least two consecutive bins in the cross-correlograms passed the statistical 

test.

Classification of PoS neurons as putative interneurons or pyramidal cells—
Cortical pyramidal cells and the majority of cortical GABAergic interneurons were 

classified on the basis of their waveform features60,61. Putative pyramidal were 

characterized by broad waveforms whereas putative interneurons had narrow spikes. To 

separate between the two classes of cells, we used two waveform features: (i) total duration 

of the spike, defined as the inverse of the maximum power associated frequency in its power 

spectrum (obtained from a wavelet transform) and (ii) the trough-to-peak duration 

(Supplementary Fig. 6). Putative interneurons were defined as cells with narrow waveform 

(duration <0.9ms) and short trough to peak (< 0.42 ms). Conversely, cells with broad 

waveforms (duration >0.95 ms) and long trough-to-peak (> 0.42 ms) were classified as 

putative pyramidal cells.

Statistical Analysis

All statistical analyses were performed in Matlab (MathWorks). Number of animals and 

number of recorded cells were similar to those generally employed in the field6,10,11,28. All 

tests were two-tailed. For all tests, non-parametric Mann-Whitney U-test, Wilkinson’s 

signed rank test and Kruskal-Wallis one-way analysis of variance were used. Correlations 

were computed using Pearson’s correlation coefficient.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Persistence of information content during wake and sleep in the thalamo-cortical HD 
circuit
a: Dual site recording of cell ensembles in the Antero-Dorsal nucleus of the thalamus (ADn) 

and the post-subiculum (PoS). 4′,6-Diamidino-2-Phenylindole (DAPI) staining of a coronal 

section through the PoS (top; arrowheads indicate tracks) and ADn (bottom; DAPI 

combined with parvalbumin yellow fluorescent protein, PV-YFP). RT, reticular nucleus. b: 

Tuning curves of simultaneously recorded HD cells in the ADn and the PoS. Polar plots 

indicate average firing rates as a function of the animals’ HD. Colors code for peak firing 

rate. Middle panel displays average tuning curves (± s.d.) in Cartesian coordinates. c: 

Activity of HD cell ensembles during wake, SWS and REM sleep. Top: PoS LFP 

spectrograms; middle: actual (dashed line) and reconstructed HD signal using Bayesian 

decoding of ADn (red) or PoS (blue) cells; bottom: raster plots of PoS (blue) and ADn (red) 

cell spike times. Cells were ordered according to their preferred HD during waking. d: 

Magnified samples from c. Raster plots of neurons are colored according to their preferred 

HD during waking. Curves show the reconstructed HD signal from ADn HD cells. Circular 

y-values are shifted for the sake of visibility but color indicates true decoded HD 

information.
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Figure 2. Brain-state dependent dynamics of the HD signal
a: Firing rates during SWS (left) and REM (right) plotted against waking firing rates for 

ADn cells (red, n = 215) and PoS cells (blue, n = 62). Insets: Pearson correlation r values. b: 

Same as a for pairwise correlations (ADn pairs, n = 970; PoS pairs, n = 92). c: Examples of 

cross-correlations for three HD cell pairs during waking, SWS and REM. Normalized 

histograms with 1 representing chance. Polar plots display HD fields of the pairs. d: Same as 

a for all ADn HD cell pairs, sorted by the magnitude of difference between waking preferred 

directions (shown in right most panel). Each cross-correlogram was normalized between 

their minimum (dark blue) and maximum (dark red) values. Cell identity order is the same 

in each panel. e: Left: histogram of average angular velocity estimated from individual 

cross-correlograms during wake (black) and REM (yellow). Higher angular speed results in 

more “compressed” cross-correlograms. Their temporal profiles were thus used to quantify 

the average drifting speed (see Methods). Top: distribution of actual or Bayesian estimates 

of HD angular speed. Right: same for SWS. f: Distribution of ratios between sleep and 

wake-estimated angular velocities for ADN-ADN and PoS-PoS HD cell pairs. Boxplot in e 
and f show median and quartiles.
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Figure 3. Width and coherence of the correlated population activity packet
a: Pearson’s correlation coefficients of binned spike trains as a function of HD preferred 

direction offset for ADn-ADn (red), ADn-PoS (gray) and PoS-PoS (blue) cell pairs (300 ms 

bins during wake and REM, 50 ms bins during SWS). Note 0 correlation at ±60° (dashed 

lines). b: Ensemble coherence of the activity packet (see Methods) in the ADn (left) and the 

PoS (right) as a function of the smoothing time window. Activity packets were computed as 

the sum of tuning curves weighted by instantaneous firing rates and were compared to the 

expected activity packets at the HD reconstructed with a Bayesian decoder. The coherence 

was defined as the probability that the two packets were similar (as compared to a bootstrap 

distribution).
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Figure 4. Noise correlation of HD cells improves linear decoding
a: Further analysis of the waking cross-correlograms shown in Fig. 2c. Superimposed purple 

curves display expected cross-correlation for independent, rate coding cells. b: Difference 

between actual and expected pairwise cross-correlations (noise correlation35) at 0-timelag as 

a function of difference between preferred head directions. Note excess at 0° (purple area) 

and dip at 60° (gray areas). c: Signal correlation (± s.e.m.) for ADn-ADn pairs, ADn-PoS 

pairs and PoS-PoS pairs for angular difference at 0°±15° (purple) and at 60°±15° (gray). d: 

Cross-validated median absolute error (± s.e.m.) of HD reconstruction from signal 
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correlations in the ADn (left) and the PoS (right) using three different decoders. Optimal 

Linear Estimator (OLE) is based on tuning curve signal correlations (signal, green) or actual 

pairwise correlations (covariance, cov, yellow) and compared with a non-linear Bayesian 

Decoder (black) as a function of smoothing time window. e: Ratio of OLE absolute median 

error based on covariance (εOLEcov) or on tuning curves correlations (εOLEsig) taken at their 

minimal values (across temporal windows) in the ADn and the PoS (p = 0.009).
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Figure 5. Transmission of HD information from the thalamus to the cortex
a: Left: Tuning curve of an example PoS HD cell. Right, Tuning curves of the same PoS HD 

cell obtained from the Bayesian decoded HD signal from the ADn cell assembly during 

waking (black), REM (yellow) and SWS (green). b: Cumulative histogram of the correlation 

values between measured tuning curves and ADn decoded HD signal across brain states. c–
d: Cross-validated prediction of cell spiking from population activity, independent of HD 

tuning curves across brain states. c: Examples of predicted firing rate of one PoS cell from 

ADn population activity learned during SWS (left) and REM (right) show high fidelity to 

actual spike train. Weights indicate the relative contribution of each ADn cell to the 

prediction. d: Left: Average PoS spike trains (n = 86) prediction (± s.e.m.) by cell assembly 

activity in the ADn for different readout time windows during waking, REM and SWS. 

Right: ADn spike trains (n = 62) predicted by PoS HD cell assembly. e: Maximal prediction 

average (at optimal readout windows) of PoS cells relative to ADn HD cell assemblies 

during waking, SWS and REM (red bars) and information content of ADn HD cells 

extracted from PoS HD cell assemblies (blue bars). Note that ADn to PoS predictions are 

higher than PoS to ADn predictions in all brain states (p < 10–5). Error bars display s.e.m.
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Figure 6. Fast synchronous oscillations in ADn HD cells
a: Bottom, HD fields of the reference cell (dashed curve) and three other HD cells recorded 

on a different shank. Top: Examples of spike cross-correlogram between the three ADn cell 

pairs and their normalized (equal to 1 when independent) and z-scored cross-correlograms 

(number of s.d. from baseline obtained from 100 correlograms of spike trains jittered 

uniformly in ±10ms windows). Middle, wavelet transforms of z-scored cross-correlograms, 

all normalized to the same scale. b: Amplitude of pairwise synchrony (in z-values from 

baseline ± s.e.m., as in panel a) as a function of preferred direction difference (p < 10–10). c: 

Average power (± s.e.m.) of wavelet-transformed z-scored cross-correlograms across brain 

states.
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Figure 7. ADn to PoS transmission of the HD signal
a: Top, example cross-correlogram (black) between spikes of an ADn neuron (time 0) and a 

putative pyramidal PoS HD cell shows a sharp peak at positive time-lag, indicating a 

putative mono-synaptic connection. Solid gray line indicates expected firing rate after 

jittering the spikes by ±10ms. Dashed lines show the 99.9% interval of confidence. Inset: 

HD fields of the ADn (red) and PoS (blue) neurons. Bottom, same as top panel for an ADn 

neuron-PoS putative interneuron pair. b: Top, average cross-correlogram (± s.e.m.) of ADn 

HD cells mono-synaptically connected to putative pyramidal cells (blue) and interneurons 

(red). Bottom, average cross-correlograms between ADn HD cells. c: High frequency 

neuronal oscillations in the PoS. Bottom, average wideband (0 – 1250 Hz, ± s.e.m.) LFP 

trace triggered by ADn HD cell spikes (white trace) and color-coded average spectrum (in 

dB) of the LFP (based on all spikes of ADn HD cells in each session). Top: zoomed trace of 

the band-pass filtered LFP (80 – 250Hz). d: Distribution of the difference between preferred 

HD of individual ADn HD cells and their putative post-synaptic target neuron in PoS (p > 

0.5). e: Left, distribution of HD information content of PoS pyramidal cells synaptically 

connected to recorded ADn HD cells (left) or not (right). * p = 0.011. Right, putative 

interneuron HD information content (p = 0.38).
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