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Abstract: Minimal invasive phototherapy utilising near-infrared (NIR) laser to generate local reactive
oxygen species (ROS) and heat has few associated side effects and is a precise treatment in cancer
therapy. However, high-efficiency and safe phototherapeutic tumour agents still need developing.
The application of iron hydroxide/oxide immobilised on reduced graphene oxide (FeOxH–rGO)
nanocomposites as a therapeutic agent in integration photodynamic cancer therapy (PDT) and
photothermal cancer therapy (PTT) was discussed. Under 808 nm NIR irradiation, FeOxH–rGO
offers a high ROS generation and light-to-heat conversion efficiency because of its strong NIR
absorption. These phototherapeutic effects lead to irreversible damage in FeOxH–rGO-treated
T47D cells. Using a tumour-bearing mouse model, NIR ablated the breast tumour effectively in the
presence of FeOxH–rGO. The tumour treatment response was evaluated to be 100%. We integrated
PDT and PTT into a single nanodevice to facilitate effective cancer therapy. Our FeOxH–rGO, which
integrates the merits of FeOxH and rGO, displays an outstanding tumoricidal capacity, suggesting
the utilization of this nanocomposites in future medical applications.

Keywords: photodynamic therapy; photothermal therapy; reduced graphene oxide; near-infrared
laser; iron hydroxide/oxide

1. Introduction

Phototherapy of solid tumours is an attractive method for non-invasive treatment [1–3].
Phototherapy typically involves two unique properties of photosensitisers: generating toxic
ROS (reactive oxygen species), PDT (photodynamic therapy) or heat (photothermal therapy,
PTT) capable of killing cancer cells via photoablation [4]. As photosensitisers are typically
harmless without light, selective illumination allows precise tumour treatment, reducing
side effects to healthy tissues [4]. However, numerous current PDT photosensitisers have
been excited by visible light or ultraviolet (UV), limiting penetration depth and cancer
treatment efficiency [3]. Additionally, PDT has been proven to damage vascular endothelial
cells in the therapeutic process [5]. PTT is a hopeful technique for cancer treatment using
non-poisonous light-responsive materials, which is favourable over traditional treatment,
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such as surgical operation and chemotherapy due to the spatio-temporal control strategy
as well as reduced complications [2,6–8].

Ideal PTT or PDT agents should exhibit a strong absorbance at an NIR (near-infrared)
of 780–1100 nm (in which less light is absorbed by tissues), allowing the efficient conver-
sion of optical energy into thermal energy [9,10]. In recent years, nanomaterials-based
photothermal agents have been extensively researched, such as carbon-based nanoparticles,
gold nanoparticles and inorganic/organic nanocomposites with a strong absorbance in the
NIR window. These photothermal agents effectively convert NIR laser into heat to wipe
out tumour cells under NIR light illumination [8,11–18]. Additionally, some researchers
have employed multi-nanomaterials to achieve a synergetic PDT/PTT effect into a single
platform. This combination results in enhanced cancer-cell killing and decreases the side
effects [13,17,18]. Nevertheless, most of these therapeutic strategies involve multiple steps
and are complex. Moreover, some systems need more than one light source supplying
sufficient energy to stimulate the PDT and PTT agents [19–22]. Multi-laser treatments are
costly and time-consuming, limiting practicability in the clinic.

Graphene oxide (GO)-based materials have been extensively researched for PTT
agents; these materials exhibited an excellent photothermal effect because of their rapid
light-to-heat conversion compared to other allotropes of carbon [23,24]. This GO-based
phototherapeutic platform also utilizes GO or reduces GO (rGO) as a carrier to transport
functional composites to enhance therapy efficacy [23,24]. Previously, we reported that
iron oxide–hydroxide and iron hydroxide were immobilised on rGO to produce FeOxH–
rGO. This FeOxH–rGO nanocomposite exhibited high catalytic activity, decomposing
hydrogen peroxide (H2O2) to reactive hydroxyl and hydroperoxyl radical via Fenton-
based reactions [25]. Thus, we believe that FeOxH–rGO nanocomposites could be an ideal
combination PTT and PDT therapeutic agent for cancer treatment.

Here, we investigated the therapeutic effects of FeOxH–rGO nanocomposites in vitro
and in vivo. FeOxH–rGO nanocomposites exhibited high photothermal conversion and
ROS production efficiency. Furthermore, we demonstrated the therapeutic effects of FeOxH–
rGO nanocomposites for solid tumours in vivo in mice bearing tumours; an apparently
complete resorption of the tumour was achieved with insignificant toxicity. Altogether,
FeOxH–rGO exhibited high biocompatibility and excellent anticancer activity, indicating
great potential for application in the field of tumour phototherapeutic treatment.

2. Materials and Methods
2.1. Chemicals

Hydrochloric acid, phosphoric acid, boric acid, tris(hydroxymethyl)aminomethane
(Tris) and metal salts sulfuric acid were obtained from J.T.Baker (Phillipsburg, NJ, USA).
Graphite (7–11 µm), potassium permanganate and sodium sulphide were purchased from
Alfa Aesar (Tewksbury, MA, USA). H2O2 was obtained from SHOWA (Tokyo, Japan). Phos-
phate buffered saline, RPMI 1640 medium and foetal bovine serum (FBS) were obtained
from Gibco (Waltham, MA, USA). Thiazolyl blue tetrazolium bromide (MTT) and 2′,7′-
dichlorofluorescin diacetate (DCFH-DA) were obtained from Sigma-Aldrich (Saint Louis,
MO, USA). High-quality ultrapure water (Billerica, MA, USA) was utilized in this research.

2.2. Preparation and Characterisation of FeOxH–rGO

GO was synthesised according to Hummers’ method with modification [26]. Graphite
flakes and potassium permanganate were added to a mixture of phosphoric acid and
sulfuric acid. The mixture was heated, stirred, cooled and then poured into H2O2 solution.
The aqueous mixture was then centrifuged and the supernatant was decanted. The pellet
was washed with deionized (DI) water, sonicated and centrifuged. The GO solution was
collected and determined to be ~3.6 g L−1. The rGO was synthesised from irradiation GO
under UV lamp. For preparation of FeOxH–rGO, FeCl2 was mixed with GO in a Tris–borate
solution. The resulting FeO(OH) and Fe(OH)2 were immobilised on rGO. Transmission
electron microscopy (TEM) was performed using an HT-7700 system (Tokyo, Japan). The
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Raman spectra and optical properties of FeOxH–rGO were recorded by Shimadzu UV–VIS
spectrometer (Kyoto, Japan) or LabRAM HR spectrometer (Kyoto, Japan).

2.3. Cell Cultures

Human ductal breast epithelial tumour (T47D) cells and mice breast tumour (4T1)
cells were maintained in RPMI 1640 (10% FBS) in 5% CO2 at 37 ◦C. RPMI 1640 was replaced
every 3 days, and the cells were passaged twice a week by trypsinization.

2.4. Temperature Monitoring and ROS Generation Experiments

FeOxH–rGO suspensions in RPMI 1640 medium were irradiated with NIR laser
(808 nm). The temperature elevations of FeOxH–rGO were determined by thermocouple.
FeOxH–rGO or rGO solutions were added to the T47D cells. T47D cells were irradiated
with NIR laser (1.82 W/cm2) for 5 min, and then the RPMI 1640 medium was changed with
DCFH-DA solution. T47D cells were incubated for 30 min in the dark. ROS generation
were measured by fluorescence spectrophotometer (λex = 488 nm and λem = 535 nm). H2O2
(100 µM) treatment was positive control.

2.5. Combined PTT and PDT Therapy In Vitro and In Vivo

After FeOxH–rGO incubation, the T47D cells (8 × 103) were irradiated with NIR light
(1.82 W/cm2) for 5 min. Cell viability was determined 12 h after NIR irradiation by MTT
assay. The cell viability was determined by a spectrophotometer (Twinsburg, OH, USA) at
490 nm.

To develop the tumour model, 4T1 cells (1 × 106) were subcutaneously injected into
the back of Balb/c female mice. The mice were divided into five groups (n = 5) after the
tumour volume reached ~100 mm3. Each group of mice were intratumorally injected with
PBS or FeOxH–rGO. Then, tumours were irradiated with or without NIR light (1.3 W/cm2)
for 5 min. The length and width of the tumours were monitored by a digital caliper. The
tumour volume was determined according to the following formula: length × width2/2.
Relative tumour volumes were calculated as V/V0 (V0 was the initiated tumour volume).
For IR thermal imaging, mice injected with FeOxH–rGO were anaesthetised and imaged
under an Infrared Cameras. Inc. infrared (IR) thermal camera (Beaumont, TX, USA) with
or without illumination under NIR laser (808 nm, 1.3 W/cm2) for 5 min.

2.6. Histology Examinations

FeOxH–rGO-treated and untreated Balb/c female mice bearing 4T1 tumours were
sacrificed 6 h after NIR irradiation. Tumour tissues of Balb/c female mice were collected,
fixed (4% formalin) and conducted (paraffin embedded sections). The samples were then
stained with haematoxylin and eosin (H&E). Finally, the tumour tissues were examined
under a digital microscope (Munich, Germany).

2.7. Statistical Analysis

All data were presented as mean ± standard deviation. Statistical Analysis was per-
formed using one-way analysis of variance (ANOVA), followed by Dunnett test. p value < 0.05
was considered statistically significant.

3. Results and Discussion
3.1. Synthesis and Characterisation of FeOxH–rGO Nanocomposites

We described the synthesis and characterisation method of FeOxH–rGO [25]. Nano-
FeOxH were distributed on the surface of rGO (Figure S1) (size ~300 nm; prepared from
irradiation of GO with UV light for 5 h), forming FeOxH–rGO (Figure 1A). The UV–VIS
absorption spectra of GO showed a broad absorption band in the UV region (Figure 1B).
The absorption band at 230 nm was attributed to the π→ π* transition of the C=C bond
in the sp2 hybrid region. The absorption band at 300 nm was attributed to the n → π*
electronic transition of the peroxide and/or epoxide functional groups. A significantly
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stronger absorption of rGO indicated that some oxygen-containing carbons were reduced
to C=C (Figure 1B) [6,27]. Furthermore, the absorbance of FeOxH–rGO was enhanced
in the NIR window (Figure 1B), potentially as a result of FeOxH deepening the colour
(Figure 1C) and increasing light absorption, suggesting FeOxH–rGO might possess high
phototherapeutic potential in cancer treatment [18]. The Raman spectra of FeOxH–rGO
showed the disorder band associated with graphene edges (D band) at 1350 cm−1 and
the specific band associated with the in-phase vibration of the graphene lattice (G band)
at 1585 cm−1 (Figure 1D) [28]. Previously, we found that FeOxH–rGO exhibited great
catalytic activity, suggesting the FeOxH–rGO could show bimodality for the dual purposes
of PTT and PDT in vitro and in vivo.
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Figure 1. Physicochemical properties of FeOxH–rGO nanocomposites. (A) TEM images of FeOxH–
rGO. (B) The UV–VIS absorption spectra of GO, rGO and FeOxH–rGO. (C) Photographs of the
(a) GO, (b) rGO and (c) FeOxH–rGO solutions. (D) Raman spectra of FeOxH–rGO nanocomposites.
Absorbance (Abs) is plotted in arbitrary units (a.u.).

3.2. Photothermal and Photodynamic Properties of FeOxH–rGO Nanocomposites

A photothermal conversion via various concentrations of Fe2+ ions to form iron(III) were
investigated. We demonstrated that 100–400 µM of Fe2+ ions react with rGO (300 µg/mL) in
Figure S1. The FeOxH–rGO nanocomposites showed superior photothermal heating to
rGO at all Fe2+ ion concentrations (Figure S2A). At a concentration of 100 µM, Fe2+ ions
immobilised on rGO; NIR irradiation for 5 min caused the highest temperature increase
(~15 ◦C) in the FeOxH–rGO nanocomposite solution (Figure S2A). After NIR irradiation
(5 min), at a concentration of 100 µM, Fe2+ ions immobilised on rGO and showed a great
physiological stability (Figures S2B(g) and S3). A high concentration of Fe2+ ions (300 and
400 µM) showed slight aggregation after NIR irradiation (Figure S2B(i,j)). This aggregation
may have been due to the increased concentration of Fe2+ ions forming an excess of
FeOxH and being fully immobilised on rGO, which may reduce the solubility of rGO
(Figure S2B). According to the above data, we employed the FeOxH–rGO nanocomposites
which were prepared from 100 µM Fe2+ and reacted with rGO (300 µg/mL) to further
experiments. To examine the photothermal effect, different concentrations of FeOxH–rGO
(from 50 to 300 µg/mL) were irradiated under NIR laser (808 nm, 1.82 W/cm2) for 5 min.
The temperatures of these FeOxH–rGO solutions increased with illumination time and the
concentration of FeOxH–rGO (Figure 2A,B). After irradiation for 5 min, the temperature
of the medium solution was increased by 44.0 ◦C, FeOxH–rGO nanocomposites at a
concentration of 300 µg/mL (Figure 2B). In contrast, the temperature of the medium
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increased by only 0.7 ◦C (Figure 2B). The irradiated power-dependent photothermal heating
effect (from 1.82 W/cm2) was also observed, which indicated the temperature increased
with NIR laser (Figure 2C). With the various NIR lasers, the heating curves also showed a
laser power-dependent photothermal effect for FeOxH–rGO nanocomposites (300 µg/mL)
with the highest temperature increment up to 60 ◦C under an NIR laser power density of
2.74 W/cm2 irradiation for 5 min (Figure 2C). The human tumour tissues can be heated
to over 50 ◦C within 5 min under NIR laser irradiation, efficiently killing the cancer
cells after injection of FeOxH–rGO nanocomposites [29]. Additionally, the photothermal
conversion efficiency (η) of FeOxH–rGO was determined using the method in SI1. The
aqueous dispersion of FeOxH–rGO exhibited the highest temperature of 38.2 ◦C when the
surrounding temperature was at 25 ◦C (Figure 2D). The photothermal conversion efficiency
of FeOxH–rGO was estimated to be 64.4% (SI1). The η of FeOxH–rGO was much higher
than other phototherapeutic agents [6,30].
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Figure 2. Photothermal properties of FeOxH–rGO nanocomposites. (A) Photothermal heating of
dd. H2O, GO, rGO and FeOxH–rGO under NIR illumination (880 nm, 2.72 W/cm2). (B) Photother-
mal heating of different concentrations of FeOxH–rGO (0–300 µg/mL) under NIR illumination.
(C) Photothermal heating of FeOxH–rGO (300 µg/mL) under different intensities of NIR illumina-
tion (880 nm, 0–2.72 W/cm2). (D) Photothermal conversion efficiency of FeOxH–rGO under NIR
illumination.

We used DCFH-DA to measure the ROS accumulation in T47D cells after exposure
to FeOxH–rGO (50–300 µg/mL) under 1.82 W/cm2 NIR irradiation. Nonfluorescent-
DCFH-DA can be oxidised to fluorescent dichlorodihydrofluorescein (DCF) by intracel-
lular ROS [31]. In FeOxH–rGO-treated cells, the ROS accumulation was increased by
~2–3 fold (Figure 3). Additionally, FeOxH–rGO caused severe oxidative stress to T47D
cells (~2–16 fold) under NIR irradiation (1.82 W/cm2) (Figure 3). The modification of rGO
using FeOxH increased the potential of FeOxH–rGO for PDT/PTT in cancer treatment
(Figures 2 and 3).

3.3. In Vitro Photothermal and Photodynamic Therapy of FeOxH–rGO Nanocomposites

To confirm the phototherapy efficacy of the FeOxH–rGO nanocomposites in vitro, the
relative T47D cell viability was estimated before and after NIR irradiation (1.82 W/cm2)
using the MTT assay (Figure 4). The T47D cells with only medium were the control.
The FeOxH–rGO nanocomposites without 808 nm NIR laser irradiation had no cytotoxi-
city on T47D cell (50–300 µg/mL); thus, ensuring a large application potential in cancer
phototherapy (Figure 4A). However, the relative viability of the T47D cells treated with a
concentration at 300 µg/mL of FeOxH–rGO in the presence of NIR laser for 5 min decreased
remarkably—72% compared to control—and showed insignificant cytotoxicity before NIR
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irradiation. This result indicated FeOxH–rGO nanocomposites are a safe phototherapy
agent and could increase the mortality of cells upon laser irradiation (Figure 4A). To gain
further insight into the mechanism responsible for the photodynamic therapy of T47D
cells, MTT assay also analysed T-47D cells which were pre-cultured with FeOxH–rGO
nanocomposites and pre-treated with ascorbic acid for 30 min before irradiation (Figure 4B).
Cells incubated with medium only were used as the control and rGO as a comparison.
The relative cell viability of T47D cells pre-cultured with FeOxH–rGO nanocomposites
revealed a significant difference in the ascorbic acid concentration, which showed an in-
crease in the relative cell viability for T47D cells upon NIR irradiation (Figure 4B). This
observation concluded that ROS play an influential role in the phototherapy of cells by
FeOxH–rGO nanocomposites. This nanocomposite might enable attachment onto the cell
membrane and then internalize through endocytosis by tumour cells [6,23,32]. FeOxH–rGO
nanocomposites are safe and effective phototherapy agents in vitro.
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3.4. In Vivo Photothermal and Photodynamic Therapy

We performed in vivo tests to evaluate the efficacies of FeOxH–rGO mediating PDT/
PTT effects on the destruction of 4T1 cells tumours (~100 mm3). As shown in Figure 5A,
each group of mice (n = 5) was intratumorally injected with 20 µL PBS or FeOxH–rGO
(2.4 mg/mL). Then, those tumours were irradiated with 808 nm NIR laser (1.3 W/cm2) for
5 min. Mice with an intratumoral injection of PBS or FeOxH–rGO nanocomposites without
NIR illumination were also used as the control. Temperature changes of mice under NIR
irradiation were monitored by an IR thermal camera (Figure 5B(a)). The temperatures
of the control group were still below or around 40 ◦C (Figure 5B(a)). In contrast, more
significant temperature increases were noticed for tumours injected with FeOxH–rGO
nanocomposites, reaching temperatures of 56.1 ◦C (Figure 5B(a)). After various treatments,
we investigated the phototherapeutic effect of cancer in Balb/c mice bearing 4T1 tumours
in the next 17 days. The results showed that the tumours treated with PBS and FeOxH–rGO
with laser irradiation grew rapidly, suggesting the 4T1 tumour growth was not affected by
NIR laser or FeOxH–rGO alone (Figure 5B(b)). For mice treated with FeOxH–rGO plus NIR
laser irradiation, no tumour recurrence was observed in the tumour site, and the original
tumour sites were restored and hair grew rapidly about 2 weeks later (Figure 5B). The
volume of the 4T1 tumour in mice was not affected when treated with PBS, PBS with laser
or FeOxH–rGO alone (Figure 5B(b) and Figure 6A,B). However, FeOxH–rGO injection
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coupled with NIR illumination significantly removed tumour and no tumour recurrence
was observed. Photographs more clearly demonstrate this effect in Figure 6C.
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Figure 5. In vivo phototherapeutic effect of FeOxH–rGO nanocomposites. (A) Scheme of combi-
nation therapy based on intratumorally injected FeOxH–rGO. (B) (a) IR thermal images of 4T1
tumour-bearing mice recorded by an IR camera, with or without NIR laser irradiation of 5 min, and
(b) representative photos of mice bearing 4T1 tumours 17 days after treatment. Combined treatment
of FeOxH–rGO + NIR laser yielded higher synergistic therapy effect and no tumour recurrence was
noted over a course of 17 days. Group 1: PBS; Group 2: PBS + NIR laser; Group 3: FeOxH–rGO;
Group 4: FeOxH–rGO + NIR laser.
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Figure 6. (A) Photographs of mice bearing 4T1 tumours 17 days after treatments. (B) Photographs
showing the tumours from mice 17 days after intratumor injection of PBS and FeOxH–rGO, with
or without NIR irradiation. (C) Haematoxylin and eosin staining of the tumour-tissue section after
intratumor injection of PBS and FeOxH–rGO, with or without NIR irradiation. Group 1: PBS; Group
2: PBS + NIR laser; Group 3: FeOxH–rGO; Group 4: FeOxH–rGO + NIR laser. The condition of NIR
laser irradiation was the same with Figure 5.

The length and width of the tumours were also monitored by a digital caliper every
2 days over the next 17 days (Figure 7A). The body weights of mice were not significantly
varied, indicating no side effects of our phototherapy (Figure 7B). In addition, the tumour
tissue was examined histologically to evaluate the PDT and PTT obtained by FeOxH–rGO
injection and NIR laser illumination. As shown in Figure 5A, tumour cells treated with
FeOxH–rGO injection and NIR laser illumination were heavily damaged, demonstrating
the superiority of this PDT/PTT combination therapy.
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Figure 7. (A) In vivo tumour growth curves and (B) body weight curves in different groups of mice
after various treatments indicated. The tumour volumes and body weight were normalised to their
initial sizes and weight. Group 1: PBS; Group 2: PBS + NIR laser; Group 3: FeOxH–rGO; Group
4: FeOxH–rGO + NIR laser. Four groups of mice (n = 5 per group) were the same conditions with
Figures 5 and 6.

4. Conclusions

We have developed an amorphous FeOxH–rGO for dual-modality PDT and PTT
via the reaction of GO partially reduced by UV irradiation with an Fe2+ solution. We
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demonstrated that FeOxH–rGO generate ROS via Fenton based-reactions and high light-to-
heat conversion under NIR irradiation. Both in vitro and in vivo experiments demonstrate
feasibility for use as a phototherapeutic agent in cancer therapy. Notably, this study
showed that FeOxH–rGO actively removed tumours with no recurrence or acute side
effects. This study provides a facile method to develop efficacious dual-modality GO-based
nano-platform for cancer thermo-therapeutics.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano11081947/s1, Scheme S1, Figures S1 and S2, which represent the photothermal conversion
efficiency of FeOxH–rGO and the preparation of FeOxH–rGO nanocomposites.
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