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Humans initially learn about objects through the sense of touch, in a process called

“haptic exploration.” In this paper, we present a neural network model of this learning

process. The model implements two key assumptions. The first is that haptic exploration

can be thought of as a type of navigation, where the exploring hand plays the role

of an autonomous agent, and the explored object is this agent’s “local environment.”

In this scheme, the agent’s movements are registered in the coordinate system of

the hand, through slip sensors on the palm and fingers. Our second assumption

is that the learning process rests heavily on a simple model of sequence learning,

where frequently-encountered sequences of handmovements are encoded declaratively,

as “chunks.” The geometry of the object being explored places constraints on

possible movement sequences: our proposal is that representations of possible, or

frequently-attested sequences implicitly encode the shape of the explored object, along

with its haptic affordances. We evaluate our model in two ways. We assess how much

information about the hand’s actual location is conveyed by its internal representations of

movement sequences. We also assess how effective the model’s representations are in

a reinforcement learning task, where the agent must learn how to reach a given location

on an explored object. Both metrics validate the basic claims of the model. We also show

that the model learns better if objects are asymmetrical, or contain tactile landmarks, or

if the navigating hand is articulated, which further constrains the movement sequences

supported by the explored object.

Keywords: haptic exploration, articulated agent, constrained sequences, path integration, 3D object

representations

1. INTRODUCTION

How do we acquire knowledge about the objects we encounter in the world? While vision is
probably the dominant source of information for most mature adults, our primary source of
information about objects comes from the sense of touch. Touch allows an infant to learn the
key constitutive property of external objects: they are solid. The concept of solidity is cashed
out in the terminology of the motor system: a solid surface is something that our hands (and
other motor effectors) cannot penetrate. As John Locke noted in his Essay concerning human
understanding: “If any one ask me, what this solidity is? I send him to his senses to inform him:
let him put a flint or a foot-ball between his hands, and then endeavor to join them, and he will
know.” Locke argued that representations of objects derived from touch and the motor system are
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primary, while those derived from vision are only “secondary”:
visual representations of objects only acquire their meaning
through associations with touch-based representations. This
argument is still largely unchallenged, but there are relatively
few models of how infants acquire touch-based representations
of objects. We know this process involves active exploration of
objects, because touch only delivers information about an object
serially, at the points of contact (Dahiya et al., 2009, 2013). We
have a good deal of empirical information about the exploratory
procedures through which unsighted agents find out about
objects (see Lederman and Klatzky, 1987, and much subsequent
work). But the brain mechanisms that control these procedures
and learn object representations are still not well-understood.

In this paper, we introduce a new model of haptic exploration,
that combines two central ideas. The first idea is that haptic
exploration can be usefully understood as a form of navigation.
The second is that the mechanism controlling haptic exploration
can be reduced in large part to a domain-general circuit for
learning regularities in sequences. We will introduce these ideas
in turn.

1.1. Haptic Exploration and Whole-Body
Navigation
We know a lot about the brain mechanisms that allow an
autonomous agent to navigate in a constrained two-dimensional
environment, like a room or a maze (O’Keefe and Nadel, 1978;
Jeffery, 2018). The hippocampal and parahippocampal circuits
involved in this process are among the best understood of
all brain mechanisms (Moser et al., 2015; Danjo et al., 2018;
Wood et al., 2018). We hypothesize that the brain circuit
that controls haptic exploration of objects has computational
similarities with the hippocampal circuit that controls whole-
body navigation. In the haptic circuit, the navigating “agent” is
the hand, and the “local environment” being explored is a three-
dimensional object. In whole-body navigation, the agent receives
a stream of sensory information about location and movement
in an “agent-centered” coordinate system, and must use this to
derive an “environment-centered” representation of places in
the environment, stable over the agent’s movements. In haptic
exploration, the relevant sensory modalities are touch sensations:
in particular, “slip” sensations that provide information about the
hand’s movement, picked up by mechanoreceptors in the hand
(see e.g., Johansson andWestling, 1984; Westling and Johansson,
1984; Johansson and Flanagan, 2009), and proprioceptive signals
that provide information about the hand’s current shape (see e.g.,
Prendergast et al., 2019). These representations are delivered in
the “agent-centered” coordinate system of the navigating hand;
the task is again to derive representations of place that are stable
over hand movements, in a coordinate system centered on the
object being explored. Note that both whole-body navigation and
haptic exploration allow an important role for “dead reckoning,”
where representations of place are updated from movement
signals alone.

Conceiving of the hand as a navigating autonomous agent,
receiving movement signals in its own coordinate system, also
addresses significant problems with existing models of haptic

exploration. In most of these models, the hand’s movements are
represented in a Cartesian coordinate system centered on a point
in the world. [For instance, Jamali et al. (2016) and Martinez-
Hernandez et al. (2013) use haptic exploration to create point
clouds in a world-centered Cartesian reference frame]. But a
biological agent doesn’t have access to this Cartesian frame: all
its information arrives in an agent-centered frame of reference.
Moreover, the agent’s ultimate goal is to learn a geometric
representation of the object in a frame of reference centered
on that object, which is invariant over changes in the object’s
environment-centered pose. Our proposed model uses realistic
hand-centered movement information, which is defined in direct
relation to the navigated object, so it’s invariant to the pose of
the object. So it uses biologically realistic inputs, and produces
pose-invariant object representations.

Obviously, the brain circuits controlling haptic exploration are
separate from the hippocampal circuits controlling whole-body
navigation (Johansson and Flanagan, 2009). Haptic exploration
involves a circuit linking the somatosensory cortex areas
registering proprioceptive and touch signals from the hand
to the motor cortex areas generating hand movements, via
areas in parietal and premotor cortex (Stoeckel et al., 2003;
Johansson and Flanagan, 2009). Roland et al. (1998) reported
that the lateral parietal opercular involves in discriminating the
roughness of objects, and the anterior part of the intraparietal
sulcus significantly activates in discriminating the shape and
length of objects. Visuomotor neurons in the area F5 of the
premotor cortex are found that they do not only discharge
when objects are grasped but also when the presentation of
particular objects (Murata et al., 1997). But the fact that there
are computational similarities between the tasks to be solved
suggests that similar brain mechanisms may be involved in the
two circuits. This idea is also supported by certain facts about
language—in particular, the fact that spatial prepositions can be
applied equally well to 3D objects and to 2D environments. For
instance, an object can be “in” a room, but also “in” a cup and
“in” a box; a moving object can go “across” or “around” a room,
but also “across” or “around” a plate; and an object can be “on”
the first floor, but also “on” a desk. The similar phenomenon is
not only observed in English but also in other languages, such as
Mandarin: yi tiao yu “zai” he li (a fish is “in” a river) and yi tiao
yu “zai” yu gang li (a fish is “in” a fishbowl). This suggests that
the coordinate systems associated with objects and navigation
environments have something in common.

1.2. Haptic Exploration and Sequence
Learning
The second key idea in our model is that haptic exploration
exploits a general-purpose circuit that learns regularities in
sequences. Haptic exploration is extended in time, as already
noted: as exploration proceeds, the agent receives a sequence of
tactile sensations and proprioceptive signals. It is useful to note
that this sequence is quite tightly constrained by the geometry
of the object being explored. (We will assume that in haptic
exploration, the hand must stay in contact with the explored
object). For instance, consider a hand exploring a cup. There are
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several tactile states that can only be obtained when the hand
is touching the outer surface of the cup and also the handle. If
the hand then moves away from the handle, maintaining contact
with the cup surface, the original tactile state followed by the
slip sensations associated with the movement uniquely identify a
unique point on the cup’s surface, in the coordinate system of the
cup. In cases like this, a sequence of haptic signals carries implicit
information about the object-centered location of the hand. As a
result, a circuit that learns to represent sequences of haptic signals
while an object is explored implicitly learns something about the
geometry of the object, in the coordinate system of the object.

The idea just outlined is also applicable in 2D navigation:
if the 2D environment places constraints on movement
sequences, then particular sequences can also implicitly convey
information about allocentric location. Note that the idea
provides an alternative way of stating the principle of dead
reckoning in 2D environments. But in our model, we state this
principle in declarative terms: “a sequence of agent-centered
perceptual signals encountered during navigation carries (some)
information about the agent’s allocentric location.” We choose
this declarative format because the concept of “allocentric
location” is a more complex one for haptic exploration than for
whole-body navigation. For whole-body navigation, the agent’s
“allocentric location” amounts roughly to a point in a 2D map.
But a hand is an articulated object, withmany degrees of freedom,
and it can contact an object in many places: the “allocentric
state” of the hand in relation to an object is a point in a fairly
high-dimensional space.

In our model, we don’t attempt to produce an explicit
representation of the hand’s actual state in relation to the object.
We simply rely on the principle that sequences of sensory
signals provide information about this actual state. The central
component of our model is a network that learns declarative
representations of frequently-encountered sequences of sensory
signals. Networks that do this kind of learning are commonplace
in the cognitive system: they basically implement a mechanism
called “chunking,” which is also implicated in the learning
of motor programmes (Averbeck et al., 2002), of idiomatic
phrases in language (Tomasello, 2003), and possibly also of event
representations (Kurby and Zacks, 2007), so a model of haptic
exploration that relies on chunking is a parsimonious one.

To demonstrate the role that a sequence learner can play in
a model of navigation, we use a very simple model of sequence
encoding, using a self-organizing map (SOM—see section 2.2
for details). There are many far more sophisticated models of
sequence processing—for instance, Hierarchical Hidden Markov
Models (Patel et al., 2014), long-short term memory models
(Hochreiter and Schmidhuber, 1997; Fleer et al., 2020), or more
recent transformer models (Devlin et al., 2018; Liu et al., 2019).
All of these perform far better at sequence learning than our SOM
model, and could readily be used in place of it. But our point in
the current paper is just to demonstrate in principle how sequence
modeling can contribute to a haptic navigation model. For this
purpose, a SOM provides a sufficient proof of concept.

A similar point applies to our model of an articulated hand.
Accurate hand modeling is a challenging problem, because the
hand consists of many connected parts leading to complex

FIGURE 1 | Illustration of the hand used in our model. (A) Our hand model, in

“straight” position (left) and “bent” position (right). The “palm” is shown in blue;

the articulated “finger” in red. (B) The objects navigated by the hand in our

experiments: a 2 × 2 × 2 cube (left), and a 3 × 2 × 1 cuboid (right). The hand

is shown in its “straight” position on the cube, and in its “bent” position on the

cuboid.

kinematics (Gustus et al., 2012; Chamoret et al., 2013). There
are very detailed models of the human hand. Some of these
focus on anatomical detail: for instance, Chamoret et al. (2013)
builds a model derived from medical image scans. Others focus
on realistic deformation: for instance, Joo et al. (2018) models a
human hand as a rigged mesh, which behaves realistically when
animated by moving the finger joints. Stillfried and van der
Smagt (2010) build a model using imaging inputs that also
supports realistic movements. But full realism of the hand is
not the goal in the current paper: we simply want to show
that an articulated hand contributes useful information to the
sequence-based model of haptic exploration system we are
proposing. The extra information comes from the fact that
an articulated hand introduces additional constraints to the
navigation actions that can be performed, which our model can
learn from. (For instance, if the finger and thumb of a human
hand are touching two orthogonal surfaces of a cube, each digit
independently constrains the movement of the whole hand,
and thereby constrains the hand-centered navigation actions
that are currently possible). To demonstrate how articulation
can improve our model of haptic exploration, we compare an
unarticulated hand to the simplest possible articulated hand, with
a single degree of freedom.

2. HAPTIC LEARNING MODEL

2.1. Hand and Object Modeling
Our prototype hand has a single degree of freedom, as just
noted. It consists of a “palm” and a single “finger” that can be
in two positions: “straight” or “bent” at 90 degrees, as shown in
Figure 1A. Our hand explores two simple cuboid objects: a 2× 2
× 2 cube, and a 3× 2× 1 cuboid, shown in Figure 1B.

The hand moves in discrete steps on these objects. It has
a repertoire of 10 actions, defined in the coordinate system of
the hand: translation forward, left, right, or back on the current
surface, rotation 90 degrees clockwise or anticlockwise on the
current surface, and “bending” and “unbending” movements.
Each of these actions has a unique sensory consequence,
registered by “slip” sensors on the hand. The physical variable
that “slip” sensors measure is the movement of a given surface
of the hand in relation to the object being explored (Johansson
and Westling, 1984; Westling and Johansson, 1984; Johansson
and Flanagan, 2009). At each step, the hand also receives a
Boolean representation of the current hand state (straight or
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bent), and two Boolean signals indicating contact on the finger
and the palm.

We must stress the important role of “slip sensors” in
registering the hand’s movement in our model. As already noted,
most models of haptic exploration register the hand’s movements
in Cartesian coordinates. But a biological agent doesn’t have
access to this coordinate system: such an agent would have to
compute Cartesian coordinates through a complex calculation
from joint angles. Moreover, the agent doesn’t need to work in
a Cartesian coordinate system: it is much more useful for her
to compute her hand’s movement in relation to the object being
explored, because this representation of movement is invariant to
changes in the pose of the object. Slip sensors on the hand deliver
exactly this object-relative information: it is for this reason that
we use these to represent the hand’s movements.

Hand actions are constrained by the hand’s current
configuration and position on the object. The finger can
only be bent if it is currently straight, and extended over
the edge of a surface. It can only be unbent if it is currently
bent. Translation is only allowed if contact with the object is
maintained for some part of the hand, and if the configuration of
the hand does not prevent movement in the intended direction.
These constraints mean that to move from one surface of the
cube to another, the hand must move its finger over the edge of
one surface, then bend the finger to make contact with the other
surface, then straighten the hand.

We also experiment by placing tactile “landmarks” on the
navigated object, that uniquely identify a given location. A tactile
landmark in our model is a distinctive texture at a given location
on the object. With such landmarks we model, for instance, the
material difference between the body of a glass bottle and its
metal cap, or the open side and the spine of a book. When
used, these tactile landmarks are each detected by a dedicated
Boolean perceptual signal. Each tactile landmark delivers a
unique perceptual signal: no two tactile landmarks deliver the
same signal. But note that in our model, tactile landmarks don’t
provide “ground-truth” information about where the agent is, as
they do in some models: they are simply one component of the
sequentially structured training data our unsupervised learning
model receives. (This usage of the term “landmarks” is also well-
attested in the literature on navigation: see for instance Maguire
et al., 1999; Chan et al., 2012; Epstein and Vass, 2014). In each test
of our experiments, which will be described in section 4, tactile
landmarks are randomly distributed on 3D objects. The tactile
landmark together with performed actions is input to a recurrent
neural network, which will be described in section 2.2.

2.2. Sequence Modeling With a Modified
Self-Organizing Map
Tomodel frequently-occurring sequences, we use amodified self-
organizing map. A self-organizing map (SOM, Kohonen, 1998)
is a 2-dimensional array of units, fully connected to an array of
inputs by synapses with variable weights. When presented with
an input pattern during training, the unit whose synapse weights
are closest to this pattern is selected, and its weights are moved
incrementally in the direction of the pattern. Units in a Gaussian

neighborhood around the winning unit also have their weights
adjusted, in proportion to their distance from the winning unit
in the two-dimensional grid. During training, SOM units come
to represent the most commonly occurring input patterns, and
the SOMdevelops a spatial structure whereby units close together
represent similar patterns.

While a regular SOM learns static patterns of inputs, a
modified SOM (MSOM, Strickert and Hammer, 2003) takes a
sequence of inputs, and its units come to encode commonly
encountered sequences in these inputs, through a recurrent
connection that maintains a representation of the recent inputs.
OurMSOM is trained on the sequence of sensory representations
produced when our “hand” agent travels around a cuboid object.
Our key hypothesis is that during this training process, units
in the MSOM will come to encode the hand’s allocentric state
on the object. MSOM units learn declarative representations
of commonly occurring sequences: because these sequences are
constrained by the geometry of the object being explored, we
expect MSOM units will end up encoding implicit information
about the hand’s allocentric state in relation to the object.

Formally, we will define our MSOM as a 2D array of units
M ∈ R

n×n. If we present the MSOM with an input pattern
x(t) ∈ R

m at one discrete time instant t, with m denoting the
dimension of x(t), the activity of a neuron i is

ai(t) = exp(−νdi(t)), (1)

where i ∈ 1, 2, · · · , n2 is the index of a neuron in the MSOM,
ν > 0 is a scaling parameter, and di(t) is a distance function.
Regarding our model, x(t) is the input vector, which encodes the
hand state, contact information and the action that is performed.
x(t) can also encode tactile landmark perceptual signals when the
explored object has tactile landmarks. A neuron in anMSOM has
two types of weights: one is a regular weight, which is the same as
the weight of a neuron in a regular SOM, and the regular weight
is expected to represent what is the input pattern; and the other
is the context weight, which represents the context information
about when the represented input pattern occurs. The distance
function di(t) shown in Equation (1) is a weighted sum of two
parts: the first part is ‖x(t)− wi(t)‖22 (this is the regular SOM
distance metric), which computes the distance between the input
x(t) and the regular weight wi(t) of neuron i; and the second part
is ‖c(t)− ci(t)‖22, which calculates the distance between a context
weight c(t) for the mapM and the context weight ci(t) of neuron
i. The distance function di(t) is defined as

di(t) = (1− ζ )‖x(t)− wi(t)‖22 + ζ‖c(t)− ci(t)‖22, (2)

where ζ ∈ (0, 1) is a weight factor to adjust the effect of such
two parts on di(t), and wi(t) is the regular weight of neuron i in
the map that aims to represent some information conveyed in
the current input x(t). The context weight c(t) for the mapM in
Equation (2) that represents when the current input x(t) occurs
to the map is computed by

c(t) = (1− ι)wbmu(x(t−1))(t − 1)+ ιcbmu(x(t−1))(t − 1), (3)

where wbmu(x(t−1))(t − 1) and cbmu(x(t−1))(t − 1) stand for the
regular weight and context weight of the neuron in MSOM
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with the maximal activity (i.e., the best matching unit, BMU) at
previous discrete time instant t − 1, respectively, and the design
parameter ι ∈ (0, 1).

While MSOM units normally have unbounded activity, if
we normalize the activity of MSOM units to sum to 1, we
can interpret a MSOM pattern as a probability distribution
over alternative possible input patterns (and in our case, over
alternative possible locations). By norming the activities of all
MSOM neurons shown in Equation (1), we have

pi(t) =
ai(t)

∑n2

s=1 as(t)
, (4)

which denotes the activity probability of neuron i for the current
input at time instant t. With regard to each time instance, all
neurons in the MSOM have an activity that is calculated by
Equation (1). We term the activity probability of all neurons in
the MSOM that is calculated by Equation (4) as activity pattern.
Based on the distance function shown in Equation (2), the BMU
bmu(x(t)) can be determined by

bmu(x(t)) = argmin
i
(1− ζ )‖x(t)− wi(t)‖22 + ζ‖c(t)− ci(t)‖22.

(5)
During training, the regular weight wi(t) is updated as

wi(t + 1) = wi(t)+ l(t)h(i, bmu(x(t)))(t)(x(t)− wi(t)), (6)

and the context weight ci(t) is changed as

ci(t + 1) = ci(t)+ l(t)h(i, bmu(x(t)))(t)(c(t)− ci(t)), (7)

where l(t) and h(i, bmu(x(t)))(t) are a decreasing learning rate
function and neighborhood function respectively, with bmu(x(t))
denoting the index of the neuron in MSOM with the maximal
activity for the current input x(t). At the beginning of training,
generally the regular weight wi(0) is initialized to random
numbers between 0 and 1, and the context weight ci(0) = 0.

2.3. Model Architecture
In the complete haptic exploration architecture, the agent
must choose what action to do next, based on its current
state. The current state is represented by the current MSOM
pattern; based on this pattern, a simple “next action generator”
circuit predicts a probability distribution over next moves.
This circuit basically learns what moves are possible in the
current context, and chooses stochastically between those that
are deemed possible. If the selected action is possible, it is
executed, and the MSOM gets it as an input. The next action
circuit also learns that the selected action is possible in the
current MSOM state. If the selected action is not possible,
the next action circuit learns that the selected action is not
possible, and another action is stochastically selected. At the start
of exploration, since there is no prior information about the
3D object, all actions predicted by the “next action generator”
are with the same probability (i.e., in a uniform distribution).
With the exploration proceeding, the MSOM activity pattern
gradually associates with object locations, which makes the

“next action generator” more accurately predict possible next
actions that are allowed by locations on the object (i.e., in
a non-uniform distribution). The complete architecture of
the proposed articulated tactile learning model is shown in
Figure 2.

3. METRICS FOR EVALUATING THE
MODEL’S ABILITY TO LEARN PLACE
REPRESENTATIONS

Our hypothesis is that the proposed articulated tactile learning
model is able to learn something about the agent’s location on a
simple 3D object. To evaluate this hypothesis, we introduce some
metrics for testing what information about the agent’s location is
conveyed by MSOM activity patterns, after the model has been
exposed to a training object for some period of time. All of
these metrics evaluate the model from an external perspective:
we observe the MSOM activity pattern and the agent’s actual
location over the learning process; then we devise a method
to estimate the agent’s location on the 3D object based on the
MSOM activity pattern; and based on the difference between the
estimated location and the actual location of the agent on the 3D
object, we evaluate the model’s learning performance.

3.1. Estimating Agent’s Position Based on
MSOM Activity Pattern
Assume that a 3D object is partitioned as discrete locations and
there are p locations on the object. Locations on a 3D object are
denoted as lj with j = 1, 2, · · · , p, where p stands for the number
of locations on the 3D object. For instance, for the 2× 2× 2 cube
shown in Figure 1B, there are 24 discrete locations on the cube
(that is, p = 24), and every location on the cube has a unique
index among l1, l2, · · · , l24. We also assume that the MSOM has
n2 units, as defined in Equation (1), and the unit i is denoted as
ui with i = 1, 2, · · · , n2.

Recall that in Equation (1), when anMSOM receives an input,
each unit in the MSOM has an activity. Then, we normalize
activities of all units in the MSOM to estimate the activity
probability of each unit (i.e., the activity pattern), which is
computed in Equation (4). We also identify the most active unit:
the “best matching unit,” using Equation (5). At each time during
the learning process, the agent is in one location lj and there is
a corresponding MSOM activity pattern. We denote the activity
probability of the unit ui as pui . As the model trains, we use
counters in a hit map to record the corresponding relationship
between the MSOMwinner and the agent’s actual location. In the
hit map, there are counters c(i;j) that record how many times the
MSOM winner was unit ui and the agent’s actual location was lj
over a learning period.

For each exploration step, we observe the MSOM winner
ui and the agent’s actual location lj; then, we increase the
corresponding counter c(i;j) in the hit map by 1. At any given time
in training, we can use the hit map to estimate what information
about location is conveyed by each MSOM unit. We do this by
estimating a conditional probability distribution over locations
for each MSOM unit. Given an MSOM activity pattern with the
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FIGURE 2 | Architecture of the proposed articulated tactile learning model for learning 3D object representations via translative movements (↑: translating forward;←:

translating left;→: translating right and ↓: translating back), orientational movements (�: orientating 90◦ counterclockwise and �: orientating 90◦ clockwise), and

bending and unbending movements (denoted in dashed colored lines) as well as the navigator/agent state perception, which includes the agent’s shape and touching

perceptions. MSOM units take the combination of the navigator state perception and the performed movement as their inputs, and then derive an activity pattern

calculated in Equation (4). Based on the obtained activity pattern, the next action generator predicts what moves are possible in the current context. A possible action

is stochastically selected to be executed. If the action selected is successfully performed, it updates the agent state and the performed action is an input to MSOM

units. Otherwise, another action is stochastically selected until an action is successfully executed in the current context.

winner being ui, the probability of the agent being in the location
lo is

p(lo|ui) =
c(i;o)

∑j=p
j=1 c(i;j)

. (8)

Thus, the total probability of the agent being in location lo is

p(lo) =
i=n2
∑

i=1
p(lo|ui)pui . (9)

We then rank the locations on the 3D object in order of the
corresponding probabilities, as calculated in Equation (9).

3.2. Reconstruction Accuracy
The first metric is Pmax, which is defined as

Pmax =
T(α = β)

φ
(10)

where φ denotes the size of a sliding window (the sliding window
stands for a fixed-length duration that moves one step for every
one time instant along the time direction; and we observe criteria
of the proposed model over sliding windows), T(·) denotes how
many times the given event happened in that window, α denotes
the actual agent’s position, β denotes the most probable position
of the agent from MSOM perspective (i.e., the position with
highest reconstruction probability calculated in Equation 9). That
is to say, Pmax computes how many times the agent’s actual
location is the location reconstructed with the highest probability
over a sliding window. This can be generalized to count how
many times the true position is in the top h predictions, which
gives Pmax for h = 1. These results are very similar for a range of
values of h, so we omit them in this paper.

3.3. Geodesic Distance
Reconstruction accuracy metrics like Pmax don’t give a
quantitative indication of how close an incorrect estimate
is to the true location. For this purpose, we use a metric Dgeodesic,
which reports the sum of geodesic distances between the agent’s
actual position and each location on the 3D object weighted
by the corresponding reconstruction probability calculated in
Equation (9). Let g(lo,α) denote the geodesic distance between
position lo on the object and the actual agent’s position α, which
is computed from Dijkstra’s algorithm (Goldberg and Tarjan,
1996). Then, we define

D geodesic =
p

∑

o=1
g(lo,α)p(lo) (11)

where p denotes the number of positions on the 3D object as
assumed in section 3.1 and p(lo) denotes the reconstruction
probability for position lo calculated in Equation (9). The higher
value of the reconstruction accuracy metrics suggest better
representation ability of the proposed model. In contrast, a
smaller value ofD geodesic indicates the model is better at learning
representations of 3D objects.

4. RESULTS

4.1. Simulation Setup
The 3D objects tested in the proposed model are cuboids,
constructed from discrete grids. We used two objects: a 2× 2× 2
cube and a 3×2×1 cuboid. We expect the proposed model to be
able to learn more about location on the cuboid than on the cube:
the asymmetry of the cuboid provides extra information about
which face it is on, which is missing in the fully symmetric cube.
The MSOM used in the proposed model is a 10 × 10 map, with
the design parameter ζ = 0.4 in Equation (2) and ι = 0.5 in
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Equation (3). The next action generator in the proposed model is
implemented as a 100× 100× 10 feedforward neural network.

4.2. Effects of Tactile Landmarks and
Articulation
In earlier work with a simple unarticulated agent (Yan
et al., 2018a,b), we showed that an MSOM model can learn
some knowledge about 3D objects through the agent’s tactile
exploration. We also showed that tactile landmarks on the
explored object help the MSOM model encode locations (the
more tactile landmarks, the greater accuracy). In this paper, we
extend these results to the articulated agent.

We train the proposed articulated tactile learning model to
learn about a 2 × 2 × 2 cube with different numbers of tactile
landmarks. In the proposed model, each tactile landmark is
unique, and thus provides an unambiguous cue to a particular
object location. We let the model explore and represent the cube
in 30 tests, each using a unique random seed and in each test,
tactile landmarks are randomly distributed on the cube. That
means the agent explores the cube in different trajectories and
thus guarantees that our observations are not due to a specific
choice of trajectory.

Results of the proposed articulated tactile learning model on
the cube are illustrated in Figure 3. For comparison, in the figure,
we also show results of the model with an unarticulated agent
(Yan et al., 2018a) and the corresponding theoretical values of
evaluation metrics by random guess on the cube. As we can see
from Figure 3A:

• Both Pmax of the articulated tactile learning model and
the model with an unarticulated agent are greater than the
theoretical value of Pmax by random guess, no matter whether
the cube is with tactile landmarks or without any tactile
landmarks (i.e., the number of tactile landmark being 0).
This shows that the models acquire some knowledge about
the cube no matter whether there are tactile landmarks or
not, and demonstrates the feasibility of using a sequence
learner to learn representations of 3D objects through tactile
exploration. Therefore, the effectiveness of the proposed
model is demonstrated.
• As the number of tactile landmarks on the cube increases,

the criterion Pmax rises. This shows the positive effect of
tactile landmarks on the proposed model in learning 3D
object representations.
• In comparison with the model with an unarticulated agent

in Yan et al. (2018a), the proposed articulated tactile learning
model is more accurate in learning the representation of the
cube, when there are a small number (less than five) of tactile
landmarks. For instance, the articulated tactile learning model
is superior to the model with an unarticulated agent when
the cube is without any tactile landmarks. This shows the
configuration information afforded by an articulated agent
helps to acquire structure-knowledge of 3D objects. We also
observe that the model with an unarticulated agent gains more
benefits from tactile landmarks in learning about the cube
than the articulated tactile learning model, when the cube is
with a large number of tactile landmarks (such as all grids

on 3D objects are with tactile landmarks). This is because the
articulated agent is more complicated than the unarticulated
agent, while in easy cases (e.g., all girds on 3D objects are with
tactile landmarks), it is less efficient than the unarticulated one.
Note that to make the comparison fair, the MSOMs in the
proposed model and the model with an unarticulated agent
have the same number of neurons. However, for the articulated
agent, there is more perceptual information to be processed:
namely the configuration of the agent, and an additional
dimension of touch sensation. We believe that when the object
has many tactile landmarks, this additional information may
overload the capacity of the MSOM. This capacity is not very
high: for instance, Vesanto and Alhoniemi (2000) and Tian
et al. (2014) argue that the optimal number of neurons in
a SOM approximates 5

√
q, where q denotes the number of

input patterns to be learned. (Our future work with higher-
capacity models, discussed in section 6.1, may be able to test
this hypothesis).

Figure 3B also demonstrates the above conclusions: tactile
landmarks and the configuration information afforded by an
articulated agent help the model to learn about the structure
information of 3D objects.

4.3. Effect of Object Asymmetries
In our unarticulated model (Yan et al., 2018a), we showed that
asymmetry of the explored object is also an important cue: the
model is more accurate on the cuboid than the cube. In this paper,
we extend these results to the articulated agent.

Similar to the experiment conducted in section 4.2, we train
the proposedmodel to learn about a 3×2×1 cuboid with different
numbers of tactile landmarks. For a certain number of tactile
landmarks, we let the model explore and represent the cuboid
in 30 tests. In each test, the random seed is different and tactile
landmarks are randomly distributed on the cuboid.

Results of the articulated tactile learning model on the cuboid
are shown in Figure 4. Figure 4A shows two results:

• The model has a higher reconstruction accuracy Pmax in
learning about the cuboid than the cube. This demonstrates
that object asymmetries help the model to learn about
structure-knowledge of 3D objects.
• With more tactile landmarks on the cuboid, the model

learns a more accurate model of the cuboid. This also
shows the positive effect of tactile landmarks on the model’s
learning performance.

Figure 4B also verifies that object asymmetries and tactile
landmarks help the proposed model to acquire structure-
knowledge of 3D objects.

5. ARTICULATED GOAL-ORIENTED
LEARNING MODEL

5.1. Model Architecture
In section 2.3, we developed a model that learns 3D object
representations through tactile exploration by an articulated
agent. In section 4, we showed that the proposed MSOM-based
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FIGURE 3 | Statistics means of the reconstruction accuracy Pmax and the geodesic distance Dgeodesic for the proposed articulated tactile learning model and the

unarticulated model when representing a 2× 2× 2 cube. (A) Pmax for the models, where the green line stands for the theoretical value of Pmax by random guess. (B)

Dgeodesic for the models, where the green line stands for the theoretical value of Dgeodesic by random guess.

FIGURE 4 | Statistics means of the reconstruction accuracy Pmax and the geodesic distance Dgeodesic for the proposed articulated tactile learning model and the

unarticulated model when representing a 2× 2× 2 cube and 3× 2× 1 cuboid. (A) Pmax for the models when representing such two 3D objects. (B) Dgeodesic for the

models when representing such two 3D objects.

model of haptic exploration can learn some information about
the navigating agent’s location on the exploring object. However,
we demonstrated this from a perspective external to the agent,
with metrics that made reference to the ‘actual’ position of
the hand on the object. This is well and good—but we also
need an ‘internal’ evaluation, that checks whether the location
information expressed in the MSOM is usable by the agent, for
its own purposes. A reinforcement learning (RL) model is an
obvious choice here. If an MSOM activity pattern has some
association with the agent’s actual allocentric location on the
explored object, then this pattern should be able to be used as
a proxy for this actual location in a RL scheme. Therefore, in

this section, we propose an articulated goal-oriented learning
model to explore the hypothesis that the MSOM activity pattern
could be used for the agent to reach a goal on a 3D object in the
RL domain.

The architecture of the proposed articulated goal-oriented
learning model is shown in Figure 5. The RL algorithm we
employ in the proposedmodel to solve a goal-oriented navigation
problem is a temporal difference (TD) RL system (Sutton and
Barto, 2018). A classic RL system has two components: an “actor,”
that takes a representation of the current state and decides on the
next action to perform, and a “critic,” that evaluates the current
state in relation to its proximity to reward. The system learns to
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take actions that achieve good rewards. A TD system can learn
to take actions that achieve rewards that are distant in the future,
rather than just at the next step. It does this by computing the
difference between the critic’s prediction about the reward at the
next step, and the actual reward at the next step: the so-called “TD
error.” We use a TD system, because in our model the reward is
only obtained when the agent reaches the specified goal location,
so the agent must learn to achieve a temporally distant reward.

In a regular RL system, the actor and critic both take as
input the actual state of the agent. In the current context, this
would be the agent’s actual location on the cube. But the agent
doesn’t have direct access to this location: the whole point of our
MSOM model is to deliver an approximation of this location,
from information the agent does have access to. In our updated
model (see Figure 5), the actor and the critic both take input
from the MSOM’s current activity pattern, which “stands in”
for a representation of the agent’s actual location on the object.
Other than this change, we implement a classical RL system:
the critic learns a value function of MSOM activity patterns,
which are representations of object locations, and the actor learns
to produce actions that optimize expected reward in the near
future (specifically, the sum of temporally discounted rewards,
as in Sutton and Barto, 2018). We denote the “estimated”
state information supplied by the MSOM representation at time
instant t as sr(t). And we denote the agent’s actual state on the
physical object at time t as sp(t).

The training of the proposed goal-oriented learning model
that is shown in Figure 5 consists of two stages, as illustrated
in Algorithm 1. The first stage (line 2) is to allow the MSOM
model to explore the object, and learn its own representations
of object locations, using the learning model presented in section
2.3. The second stage (lines 4—21) is a reinforcement learning
algorithm, that uses these learned representations of locations
as a proxy for the agent’s actual location on the object. Between
these stages (line 3), we freeze all the MSOM model’s weights, so
reinforcement learning operates on stable representations.

In the reinforcement learning model, the agent selects an
action a(t) from the distribution a(t) ∼ softmax(π(·|sr(t), θ) ⊙
π(·|sr(t),φ)), where π(·|·) denotes a policy, θ and φ denotes
the policy parameter (i.e., weights) of the actor and next
action generator, respectively, and ⊙ denotes the element-
wise multiplication operation. The knowledge learned in the
next action generator helps the agent explore 3D objects more
efficiently during reinforcement learning, as the trained generator
already knows how to produce successful actions.

5.2. Simulation Setup
All parameters involved in the representation learning are the
same as those used in previous experiments of the articulated
tactile learning model. For instance, the MSOM is implemented
as a 10 × 10 map, and the next action generator is implemented
as a 100× 100× 10 feedforward neural network.

The actor in this goal-oriented learning model is implemented
as a 100 × 100 × 10 feedforward neural network and the
critic is implemented as a 100 × 100 × 1 feedforward neural
network. The learning rate of the actor αa = 0.00001 and the
learning rate of the critic αc = 0.0001. During the goal-oriented

Algorithm 1: Articulated goal-oriented learning model.

Input: Differentiable policy π(a|s, θ), differentiable
state-value function v(s,̟ ), critic learning rate
αc > 0, actor learning rate αa > 0 and discount
factor γ ∈ [0, 1]

1 Randomly initialize policy parameter θ and value function
parameter ̟ ;

2 Perform the representation learning;
3 Freeze weights of MSOM and the next action generator;
4 for epoch i = 1, 2, · · · until convergence do
5 Initialize agent’s starting physical state; Set a variable

attempt = 0, which records the number of attempts that
have been performed in an epoch by the agent;

6 while sp(t) is not terminal state and attempt < 100 do
7 attempt = attempt + 1;
8 Select action

a(t) ∼ softmax(π(·|sr(t), θ)⊙ π(·|sr(t),φ));
9 Perform selected action a(t) and get the next physical

state sp(t + 1) and reward r;
10 if a(t) is allowed by the object then
11 Input a vector x(t) that encodes performed action

a(t) and navigator state perception to MSOM;
12 Get next representation state sr(t + 1);

13 else

14 sr(t + 1)← sr(t)
15 end

16 Compute TD error δ:

δ =







r − v(sr(t),̟ ) if terminal
state sp(t + 1)

r + γ v(sr(t + 1),̟ )− v(sr(t),̟ ) otherwise

and TD error δ is used to update the critic and actor;
17 Update critic: ̟ ← ̟ + αcδ∇̟ v(sr(t),̟ );
18 Update actor: θ ← θ + αaδ∇θ lnπ(a(t)|sr(t), θ);
19 Update states:

sp(t)← sp(t + 1),

sr(t)← sr(t + 1).

20 end

21 end

learning procedure, for each epoch, if the agent does not find
the goal within 100 attempts, which includes the successful and
unsuccessful attempts, the epoch is automatically finished. On
the 2 × 2 × 2 cube, the goal position is opposite to the starting
position of the agent (i.e., on the opposite surface) along the
diagonal direction. Specifically, the starting position of the agent
is set as [surface = 1, x = 1, y = 1], which stands for the top-left
position on the cube in Figure 1B that the articulated ‘finger’ is in,
and the goal position is set as [surface= 3, x= 1, y= 2], which is
opposite to the starting position along the diagonal direction. In
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FIGURE 5 | Architecture of the proposed articulated goal-oriented learning model, where ↑ denotes translating forward directly,← denotes translating left directly,→
denotes translating right directly and ↓ denotes translating back directly. Orientating movements are represented as �: orientating 90◦ counter-clockwise and �:

orientating 90◦ clockwise. The dashed colored lines stand for bending and unbending movements. First, the MSOM learns stable representations of object locations

using the model presented in section 2.3. Then, based on the learned representations in MSOM, an actor critic is employed to achieve the reinforcement learning.

When the agent is in one context, MSOM derives an activity pattern. The critic computes the temporal difference (TD) error δ (line 16 in Algorithm 1) based on the

current activity pattern and the received reward from the environment (i.e., the 3D object being explored). This TD error is used for updating both the critic (line 17 in

Algorithm 1) and the actor (line 18 in Algorithm 1). The actor predicts an action for the agent to perform for reaching a goal on the 3D object.

the experiment, the reward function is set as,

r(sp(t)) =
{

1, if sp(t) is a terminal state,
−1, otherwise. (12)

5.3. Results
When studying the performance of the articulated goal-oriented
learningmodel, we run it on the 2×2×2 cube in 30 tests. Each test
has a different random seed. Each test includes 5 × 104 training
epochs, with the first 50 epochs for unsupervised representation
learning and the rest for the reinforcement learning.

To investigate the performance of the proposed articulated
goal-oriented learning model, we compare it with a baseline,
in which the same articulated agent performs a random walk
on the 2 × 2 × 2 cube. For the random walk condition, we
include a simple analog of learning: we assume that in every
test, the agent can remember the shortest trajectory that it
has experienced. For one epoch in every test, if the current
exploration trajectory is longer than its remembered shortest
trajectory, we let the remembered shortest trajectory be its
current exploration trajectory. Otherwise, the agent performs its
current trajectory for navigation and updates its memory about
the shorted trajectory to reach the goal. This means the number
of steps required to reach the goal by this articulated agent
under the random walk with memory does not increase over the
training procedure.

The results are shown in Figure 6. As we can see from
Figure 6A, median steps for the random walk with memory
and the proposed model decrease as training proceeds. Median
steps for the random walk decline rapidly over the first 2,500
epochs, and slowly thereafter. In the proposed model, we see
the opposite pattern: median steps fall slowly at first, and then
more rapidly. To begin with, the agent in the proposed model
randomly explores the object. After the agent finds a more
optimal trajectory (i.e., a trajectory with fewer steps) to reach
the goal, the actor and critic involved in the proposed model are
then trained gradually. Finally, the agent can reach the goal in
a more optimal way than the random walk with memory. The
median reward over the training epochs shown in Figure 6B also
indicates that the articulated agent in the proposed model can
reach the goal based on the learned object representation.

Our haptic learning model significantly outperforms the
random walk with memory by the end of training. We assess
significance using the Mann–Whitney U-test, based on median
steps from the 4.5×104 epoch to the end of the training. (We use
nonparametric statistics because the ‘step’ variable isn’t normally
distributed, due to the cutoff at 100 steps). The one-sided U-test
finds that over the period (i.e., from the 4.5 × 104 epoch to the
end of the training), the median number of steps in the proposed
model is significantly smaller than that in the random walk with
memory, with the p = 3.79 × 10−316 < 0.01. By the end of
training, the median number of steps for the random walk with
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FIGURE 6 | Results of the articulated agent reaching a goal position [surface = 3, x = 1, y = 2] on a 2× 2× 2 cube in the random walk with memory and the proposed

articulated goal-oriented learning model over 30 tests with different random seeds. For one epoch in every test, if the current exploration trajectory is greater than its

remembered shortest trajectory, we let the remembered shortest trajectory be its current exploration trajectory. To smooth the figure, we show the result every 2, 000

epochs. (A) Median step per epoch over the 30 tests. (B) Median reward per epoch over the 30 tests.

memory is 13.5, while for our model it is 12.5—a reduction of
8% of the baseline journey length. (This difference is more clearly
appreciated in the inset to Figure 6A). These results demonstrate
the utility “to the agent” of the object representation acquired
in the proposed tactile exploration model, and complement the
“external” evaluations reported in section 4.

To further test the proposed model’s performance as well
as the effects of tactile landmarks, we conduct experiments of
the model on the 2 × 2 × 2 cube with different numbers of
tactile landmarks. For each number of tactile landmarks, we
run the model for 30 tests with random seeds, as before, and
we record the number of steps required to reach the goal and
the reward accumulated at the end of each test. Results are
shown in Figure 7. As shown there, the performance of the
reinforcement learning model improves as the number of tactile
landmarks increases, both when measured by median step and
when measured by median reward.

6. DISCUSSION

In this paper, we develop a tactile learning model that learns
an implicit representation of the agent’s allocentric location
on a 3D object being explored. Importantly, this model takes
purely ‘egocentric’ stimuli as input—egocentric translation and
articulation movements, and egocentric tactile sensations—but
it can learn a reasonable approximation of object-centered
location. The effectiveness of the model on learning 3D
object representations is demonstrated on a cube and cuboid.
Comparative results also show the positive effects of object
asymmetries, the configuration information of an articulated
agent, and tactile landmarks. To examine the potential utility
of the acquired knowledge in the articulated tactile learning

model, we then propose an articulated goal-oriented learning
model. The model takes advantage of the knowledge acquired in
MSOM for goal-oriented navigation. Results of the model on a
cube and comparisons with a baseline demonstrate the model’s
effectiveness, and also indicates the utility of the acquired object
knowledge in MSOM. The positive effect of tactile landmarks on
the model’s performance is also suggested.

6.1. Remarks on the Scalability of the
Proposed Model
The model presented in this paper uses a very simple model
of the articulated hand, and is only tested on simple cuboid
objects. What are the prospects for scaling it to a more realistic
scenario, where a hand with many degrees of freedom explores a
natural object, whose geometry includes curves, concavities, and
other features?

We see grounds for optimism here. The key finding of
the current paper is that a device that learns regularities in
sequentially structured inputs provides a useful basis for a model
of haptic exploration by itself, without any machinery specific to
navigation. The model doesn’t build in any special knowledge
about the properties of objects, or the navigating hand.
There are no hard-wired computations performing coordinate
transformations, or deriving intermediate representations: it is
simply a model of sequence learning. As far as our model is
concerned, a more realistic hand, or amore realistic object should
just add additional constraints, and additional complexities,
to the sequences it is exposed to. If the network learning
about these sequences is powerful enough, we expect the
representations it learns will be interpretable as information
about the hand’s object-centered location, as demonstrated here
in our simple model.
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FIGURE 7 | Box plot of results for the articulated agent in the proposed articulated goal-oriented learning model reaching a goal position [surface = 3, x = 1, y = 2] on

a 2× 2× 2 cube over 30 tests, in which the random seeds are different. The figure is based on the result at the end of each test. The blue box represents the

interquartile range (IQR) between the 25% quantile (Q1) and 75% quantile (Q3). The bottom and top edges of the box indicate the Q1 and Q3, respectively. The red

horizontal line in the blue box represents the median. The minimum and maximal value in the [Q1− 1.5 ∗ IQR,Q3+ 1.5 ∗ IQR] are represented as lower and upper

black horizontal lines, respectively. (A) Step required for the agent to reach the goal on the cube with different numbers of tactile landmarks. (B) Reward accumulated

for the agent on the cube with different numbers of tactile landmarks.

Naturally, we will need a more powerful model of sequence
learning than an MSOM. In particular, we need a model with
higher capacity for storing patterns than an MSOM, which
is constrained to encode input patterns in relatively localist
representations. But such networks are now readily available: for
instance, the new generation of Hopfield networks perform the
same kind of unsupervised associative learning as an MSOM, but
with vastly higher capacity (see e.g., Krotov and Hopfield, 2016,
and especially Demircigil et al., 2017). Of course, the question
of scalability remains to be addressed empirically—and this is
something we plan to pursue in future work. We are particularly
interested to see whether an unsupervised sequence-based model
can learn to explore objects with curved geometries, rather than
the cuboid objects discussed in the current paper.

6.2. Extending the Model to Learn Whole
Object Representations
Most computational models that learn 3D object representations
are based on visual perceptions. The proposed model, on the
other hand, is based on touch, and the motor system. The
haptic system is what teaches us what objects really are: it
directly acquires representations of surfaces and solidity. The
visual system can learn representations of object geometry—
but it must be taught by the haptic system: we feel haptic
models can play a useful role in training visual models, as
they probably have this role in the human visual system. While
the proposed model does not learn perfect representations
of allocentric object location, it has the great advantage of
parsimony: the MSOM mechanism at its core is a simple model
of “clustering” or “chunk-learning,” that encodes frequently-
encountered sequences in declarative patterns.

In the current paper, we show that an articulated haptic
learningmodel performs better on our evaluationmetrics than an
unarticulated one. This result tallies with the role of articulation
in human haptic exploration: the hand tends to adopt the local
shape of the explored object (Klatzky et al., 1990), and thus
derives much richer information about the contact surface.

Moving toward an articulated hand model also sets the stage
for an account of how the hand can manipulate the object being
touched. The proposed model provides a useful platform for an
account of how the hand can move from being a passive explorer
of the surface of an object to an active manipulator, which can
move the object, or change its properties.

6.3. Future Directions
We could extend the proposed models to investigate the
following questions in the future.

• It is obviously important to consider how readily the
models are extended to cover objects with curves which
don’t permit representation using a grid (e.g., spherical
balls), and objects with more complex geometries
(e.g., cups and chairs). A model extended to cover
smooth curves could also inform accounts of how visual
representations of curved surfaces are learned—for
instance, the inferotemporal representations of curvature
discussed in Connor and Knierim (2017). This is a matter of
future work.
• Different types of representations of 3D objects can be

gleaned from distinct sensorimotor modalities, such as
vision and touching. What is the relationship among
those representations? How does the brain acquire the
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linkage? How could we derive a model that learns a
function that maps 3D object representations obtained
from vision to those acquired in an unsupervised way
from haptic exploration? Those questions are a matter of
future work.
• Different sized objects can have the same type of shapes.

For instance, the 2 × 2 × 2 and 3 × 3 × 3 object
has the same shape as a cube. How does the brain
project those objects with different dimensions to the
same shape category? How do the proposed models
offer the ability to learn declarative shape tokens via
tactile exploration? Those questions are also a matter for
future work.

6.4. Some Predictions for Neuroscientists
The model presented here is intended as a model—admittedly
a very high-level one—of the brain circuits in humans (and
other primates) that control haptic explorations. Asmentioned in
section 1, we know roughly where in the brain these circuits are to
be found: they are in the regions of parietal, premotor, and motor
cortex that control the generation of hand/arm movements. But
we know very little about the algorithm that is implemented in
these circuits. We offer the proposed model as a hypothesis about
the nature of this algorithm. We have shown that the model
can learn allocentric representations of object location, to some
degree of approximation. We also note that the model relies on a
simple sequence-learning circuit that is attested elsewhere in the
brain (Barone and Joseph, 1989; Elman, 1990).

We finish by making some predictions about representations
in these areas of the brain that neuroscientists could test. There
are several predictions.

• A first prediction is that these brain areas contain cells (or
cell assemblies) that respond to specific commonly-occurring
sequences of slip sensations. This prediction could be tested
using single-cell recordings in monkeys: for instance, using
variants on the paradigm employed by Fortier-Poisson and
Smith (2016) in primary somatosensory cortex. The same
paradigm could be used to investigate higher cortical areas that
learn more abstract spatial representations. Good candidates
would be parietal areas that have been found to hold object-
centered encodings of locations (see e.g., Chafee and Crowe,
2013). In humans, multivoxel decoding techniques are likely
to be the most revealing. Again, somatosensory and parietal
areas are good targets for investigations, perhaps adapting
the paradigm of Kim et al. (2013), which found encodings of
vibrotactile stimuli in secondary somatosensory and posterior
parietal cortices.

• A second prediction is that these brain areas contain
cells (or cell assemblies) that respond to combinations
of slip sensations and tactile sensations that identify
distinctive textures, diagnostic of “tactile landmarks.” (Units
of our MSOM have this property). More specifically,
we predict that cells (or cell assemblies) respond to
specific sequences of slip-sensation, texture and hand-
pose combinations—because again, our MSOM units have
this property. Similar single-cell and multivoxel-decoding
techniques could be used to test these predictions—perhaps
extending brain areas to the cuneate nucleus, which is
a waystation for hand pose signals and tactile signals
(see e.g., Santello et al., 2016).
• If cell assemblies of these kinds are found, we also predict

that damage to these assemblies will impair an agent’s
ability to haptically explore objects. Indicative findings along
these lines have already been found for somatosensory
cortex: for instance, Hikosaka et al. (1985) showed that
muscimol injections in first somatosensory cortex (SI)
impaired manipulative behaviors. But our model also predicts
that damage in upstream areas (SII, or parietal cortex) will
similarly disrupt manipulation.
• We also predict that cells (or cell assemblies) will be found in

these brain areas that become active when the agent’s hand is at
a particular location (and configuration) on a given object, as
measured within an object-centered frame of reference. If such
cells are found, we also predict these cells will also respond to
sequences of slip sensations and/or tactile landmarks, as in the
proposed model.
• More directly, we also predict that if the afferent input to

upstream brain structures, like the cuneate nucleus as collector
of upper limbs electrophysiological signals, is inhibited in
some way (e.g., an animal is prevented from obtaining ‘slip’
sensations on the hand by using gloves or local anesthetic),
the agent’s ability to haptically explore objects and learn their
geometries will be impaired.
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