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Abstract

Protein–DNA binding plays a central role in gene regulation and by that in all processes in the living cell. Novel experimental
and computational approaches facilitate better understanding of protein–DNA binding preferences via high-throughput
measurement of protein binding to a large number of DNA sequences and inference of binding models from them. Here we
review the state of the art in measuring protein–DNA binding in vitro, emphasizing the advantages and limitations of differ-
ent technologies. In addition, we describe models for representing protein–DNA binding preferences and key computational
approaches to learn those from high-throughput data. Using large experimental data sets, we test the performance of differ-
ent models based on different measuring techniques. We conclude with pertinent open problems.
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Introduction

The cell is equipped with several tools for regulating the amount
of proteins it produces from each gene in a given condition—
chromatin state, RNA interference, RNA editing and alternative
splicing, to name a few. Perhaps the main regulatory mechanism
is the transcriptional program, which describes when and to
what extent each gene is transcribed to mRNA. Transcription is
controlled primarily via regulatory sequence elements, located in
the proximity of each gene’s coding sequence. These are recog-
nized and bound by specialized proteins, called transcription fac-
tors (TFs). Most TFs interact with DNA in a sequence-specific
manner and this binding enhances (or prevents) the recruiting of
polymerase for transcription initiation. As a consequence, the set
of TFs that bind to the DNA and the intensity, or affinity, of these
bindings affect the rate of transcription of the corresponding
gene. Thus, different combinations of TFs and binding affinities
can produce a huge variety of transcription profiles.

The DNA sequences bound by a TF are called its binding sites
(BSs), or cis-regulatory elements. They are typically very short (6–15

bases) and degenerate [1]—a TF can bind, with varying affinities, to
many different sequences that reflect a common pattern, called
‘motif’, which is characteristic of the factor. BSs may be found in
the promoter, which is the region upstream of the gene’s transcrip-
tion start site (TSS), as well as downstream of the TSS and at large
distance from the gene, in locations termed enhancers [2]. Some
TFs are organized in cis-regulatory modules (CRM), a DNA segment
bound by multiple TFs that cooperatively regulate specific genes,
resulting in more complex and specific transcription profiles [3].
Reverse-engineering the transcriptional program of an organism re-
quires identifying its TFs, the locations and affinities of their BSs,
and the various CRMs they form and the target genes they regulate.

Deciphering protein–DNA binding in vivo is arguably the holy
grail in understanding gene regulation, but it is a difficult task
[4]. While TF binding is sequence specific, it is affected by many
factors (an overview of these can be found in [5]): (1) the DNA
has to be accessible for binding by the TF [6, 7]; (2) other TFs
may compete for the same BSs, making it harder for the TF to
bind to its potential BSs [8]; (3) in some instances, the TFs may
only bind cooperatively, but current high-throughput
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technologies cannot distinguish between direct and indirect
binding [9]; (4) many TFs are expressed or active in only specific
cells or conditions; (5) DNA may be modified or shaped in a way
that influences binding. On top of that, the set of BS sequences
present in a genome is limited and does not cover all possible
binding sequences. As a result, one cannot derive the full range
of TF binding affinities from in vivo binding data. Learning the
DNA binding preferences of a TF from in vivo data is hence ham-
pered by assay complexity.

In contrast, in vitro data may enable a cleaner high-
resolution measurement of TF-DNA binding preferences,
as there are fewer confounding factors [10]. First, one can guar-
antee that no BSs are inaccessible owing to compressed chro-
matin. Second, there are no competing TFs and no co-factors
are involved, as the experiment is performed using a single
TF in a synthetic environment. Third, in some cases, the set of
sequences tested for binding can be combinatorially designed
to cover all words of the desired length k. In other cases, they
are randomly generated such that together they are guaranteed
to cover nearly all k-mers (DNA words of length k). So, if techno-
logical biases can be handled, the TF–DNA binding signal is ex-
pected to be much clearer.

Thanks to advancements in microarrays and sequencing
technologies, high-throughput measurement of protein–DNA
binding in vitro has been possible for several years now. The
high-quality experimental data are later dissected using com-
putational approaches that try to model protein–DNA binding
and use these models for in vivo prediction. This review aims to
cover the most prominent technologies for measuring protein–
DNA binding, computational approaches for learning binding
models from them and open problems in the field.

While the review focuses on the most prominent technologies,
protein–DNA binding models and algorithms to infer them, many
other technologies, models and algorithms exist and are not cov-
ered here owing to space constraints (see [11]). Moreover, we only
sketch experimental details of in vivo and in vitro technologies.

Technologies that measure TF–DNA binding
in vitro

Identifying the sites bound in vivo by a specific TF and their affinity
was initially applied to few short, hand-chosen genomic loci by meth-
ods like DNA footprinting or chromatin immunoprecipitation (ChIP).
The combined strategy of ChIP and promoter microarrays, also
termed ChIP-chip, enables genome-wide identification of promoter
segments that are bound by a specific TF, in a single experimental
assay [12]. Replacing the microarray-based readout with high-
throughput sequencing technologies, an approach called ChIP-seq,
allows the detection of BSs throughout the entire genome [13].

Measuring protein–DNA binding in vitro gives a cleaner view of
the TF binding preferences, but lacks the genomic context and
does not depend on specific cell types and conditions. Because
in vitro experiments are cheaper and easier, it is highly appealing
to combine in vitro models with genomic information to predict
in vivo binding (as discussed in detail below). In vitro technologies
can measure several thousand binding events simultaneously,
and report the binding intensity to each possible DNA k-mer.
Using this information, the effects of mutations in the BSs can be
predicted and ultimately help understand individual differences,
cross-species divergence and the involvement of mutations in
genetic disorders [14, 15]. Popular techniques that measure in vitro
TF–DNA binding in high throughput include protein-binding
microarrays (PBMs) and high-throughput SELEX (HT-SELEX).

Protein-binding microarrays

Universal protein-binding microarrays (uPBMs) are designed to
measure protein–DNA binding intensity in a high-throughput
and unbiased manner [16]. An array contains >41000 double-
stranded DNA (dsDNA) probes, each containing a unique se-
quence of length 36 bp. These are designed to collectively cover
all DNA 10-mers [17]. The tested protein binds some of the
probes, and its binding intensity is measured using fluorescent
tags (see [Figure 1A]). The final output of the experiment is the
set of probe sequences and the binding intensity of the protein
to each one. uPBMs can be used to test different proteins, with-
out the need to redesign the probe set, as their content is uni-
versal. They provide accurate measurements for studying TF
specificity, and in particular robust 8-mer binding scores, as
each 8-mer appears multiple times in different 10-mers. uPBMs
have been successfully applied to thousands of proteins [19].

An alternative to uPBMs are custom PBMs [20], which con-
tain probes designed to study in detail variations of a particular
BS. Several studies used them recently to test DNA binding of
certain proteins [20–23]. A different technology, mechanically
induced trapping of molecular interactions (MITOMI), based on
microfluidics, measures protein–DNA binding to >1400 probe
sequences covering together all 8-mers, each containing a
unique subsequence of length 52 bp [24]. While MITOMI has
lower throughput than uPBMs, it has the advantage of measur-
ing absolute binding affinities as opposed to specificities, which
are measured by PBM technologies. Additional approaches to
measure protein–DNA binding, such as HiTS-FLIP [25] and B1H
[26], are reviewed in [5, 10, 11].

Figure 1. High-throughput in vitro technologies for measuring protein–DNA

binding. (A) Overview of universal PBMs. These arrays are designed to include

all possible DNA 10-mers in 36 bp long probe sequences. Protein binding inten-

sity is measured using a fluorescent antibody. The experimental output is a list

of>41000 probe sequences and the binding intensity of the protein to each.

[Adapted by permission from Macmillan Publishers Ltd: Nature Biotechnology

[16], copyright (2006)]. (B) Overview of HT-SELEX. Each experiment starts from a

random set of fixed-length oligonucleotides (lengths vary from 10 to 40 bp). The

protein binds its BSs in the pool and the bound oligonucleotides are extracted

and amplified. Some of these oligonucleotides are sequenced, and the rest are

used in reiteration of the process. The experimental output is several sequence

files, one per iteration. [Adapted by permission from CSHL Press: Genome

Research [18], copyright (2010).]
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High-throughput SELEX

HT-SELEX measures the binding of a single protein to millions
of oligonucleotides over several enrichment cycles [18, 27].
Initially, a pool of pseudo-random fixed-length oligonucleotides
is used. Oligonucleotide lengths in current implementations
range from 10 to 40 bp. The protein binds to a subset of oligo-
nucleotides in the pool. The set of bound oligonucleotides is
retrieved, the protein is detached from them, they are amplified
to form a new pool and a sample from that pool is sequenced.
The new pool is then used as the initial sequence set for the
next cycle. As the specificity of the oligonucleotides in the pool
increases from one cycle to the next, so does the proportion of
the bound oligonucleotides. The output is several sets of se-
quences, each corresponding to a different cycle. Each set con-
tains from hundreds of thousands to tens of millions in current
implementations. Figure 1B shows a schematic of the process.
Recent studies have used HT-SELEX to measure the binding
preference of hundreds of human, mouse and fruit-fly TFs [28,
29]. A similar technology to HT-SELEX that was developed in
parallel is SELEX-seq, albeit the latter has been applied to much
fewer proteins to date [30].

Comparison of PBM and HT-SELEX

Because both PBM and HT-SELEX aim to measure in high-
throughput protein–DNA binding in vitro, it is important to
evaluate the techniques in terms of accuracy, robustness and
experimental noise. A recent comparison found that, on the
whole, models derived from these technologies mostly agree
[31]. The disagreements are limited to several TF families, such
as Sox proteins and zinc fingers. One advantage of PBM technol-
ogy is that its data allow better ranking of k-mers according to
their binding intensities, compared with HT-SELEX data [31].
Moreover, while PBMs measure binding to both high- and low-
affinity k-mers in the same way, results of advanced cycles in
HT-SELEX may suffer from over-specification: they typically
cover high-affinity k-mers well, but these may be over-
represented at the expense of low-affinity k-mers. On the other
hand, HT-SELEX-derived models were found to be more accur-
ate in predicting in vivo binding [31], mostly owing to their abil-
ity to measure binding to longer k-mers (uPBMs are limited to
scoring with good confidence k-mers with k � 8, owing to space
constraints of the microarray [16]).

PBM and HT-SELEX data repositories

High-throughput in vitro protein–DNA binding data can be found
in several databases. Here we mention the most comprehensive
and useful resources.

1. UniPROBE contains >400 PBM experiments covering differ-
ent protein families and model organisms, mostly generated
by Martha Bulyk’s lab [32]. Each experiment includes the raw
experimental data, probe sequences and binding intensities,
8-mer scores, binding models in position weight matrix
(PWM) format learned by the Seed-and-Wobble and BEEML-
PBM algorithms, and motif logos. The data can be down-
loaded in bulk, by study or by TF.

2. HT-SELEX data cannot be found in one inclusive database,
but in the different studies. The most comprehensive stud-
ies cover >500 human and mouse TFs [28] and >240 fruit-fly
TFs [29], both from Jussi Taipale’s lab. The sequencing data
can be downloaded from GEO database [33], while the

inferred models can be found in the supplements of the
papers.

3. CIS-BP is the most comprehensive database. The database
includes >1000 PBM experiments from Tim Hughes’s lab
and other sources [14]. For each protein, probe sequences
and binding intensities, 8-mer scores, binding models
in PWM format learned by PWM-Align-Z, PWM-Align,
FeatureREDUCE and BEEML-PBM, and motif logos, are avail-
able. It also includes models inferred by protein sequence
similarity (as opposed to direct experimental data) for >40%
of eukaryotic TFs in >300 species, and models based on
other experimental sources (e.g. PBMs from other labs, HT-
SELEX, ChIP-seq experiments and JASPAR and TRANSFAC
databases [34, 35]).

Models for BS motifs

Several computational models have been developed for describ-
ing BS motifs. The models differ in complexity and interpret-
ability. We review here the two most common models at the
two extremes of the complexity spectrum.

Position weight matrix

The most popular model is the position weight matrix (PWM) [36].
This model represents a motif of k bases by a 4�k weight matrix P,
where pb,i is the weight of base b in position i (see Figure 2A). The
binding score assigned to a given k-mer w ¼ w1w2. . .wk is simply

the sum of the corresponding matrix elements, i.e.
Xk

i¼1

pwi ;i. Thus,

an inherent property of this model is position-independence:
weights at different positions are assumed to be independent. The
weight may be, for example, a log-probability or the free energy
contribution of that nucleotide in that position. Equivalently, the
model can be presented by a 4�k position frequency matrix F,
where fb,i is the probability of observing nucleotide b at position i in

the motif, and the probability of k-mer w is the product
Yk

i¼1

fwi ;i. F

can be easily converted to P by taking the logarithms of its elem-
ents. Among the advantages of the PWM model are its simplicity,
small number of parameters and an intuitive visualization [38].
The logo format (Figure 2A) visualizes the matrix by drawing the
different nucleotides in each position in size according to their
weights and ordered by their weights. The total height of each pos-
ition is proportional to its information content (IC), which is an
entropy-based score that measures the specificity of positions in a
PWM model [39]. The score ranges from 0 to 2; positions with only
one possible nucleotide have an IC of 2, while positions wherein all
four nucleotides are equi-probable have an IC of 0. Generally, more
specific positions are higher than less specific ones.

K-mer model

While the PWM model is popular and useful, it might be too sim-
plistic for some TFs. The assumption of position independence
made by that model has been shown to be untrue for some TFs
[40, 41]. The most comprehensive model, assuming that k pos-
itions affect the binding, is the complete k-mer model [30]. In this
model, every possible DNA k-mer has a binding score represent-
ing the affinity of the TF to it (Figure 2B). One way for visualizing
the k-mer model is by its ‘specificity landscape’ in which k-mer
scores are plotted in cycles corresponding to Hamming distances
(the number of mismatches between two k-mers), allowing an
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assessment of the effect of single mismatches on the binding in-
tensity [42]. One disadvantage of this model is the huge number
of parameters, which may lead to over-fitting the model to ex-
perimental noise and technological artifacts [43].

Other models of intermediate complexity between PWM and
all k-mers model are often extensions of the PWM by additional
features. The most prominent features are di-nucleotide
dependencies. To avoid the complexity of having too many fea-
tures, usually only adjacent positions are considered, as de-
pendence between neighboring positions was observed more
often than between non-neighboring ones [44, 45].

Comparison of PWM and k-mer models

The PWM model has been the most popular model for years.
However, high-throughput data in recent years have clearly
demonstrated that the model is sometimes inaccurate, and
more complex models are needed to allow position dependen-
cies and understand the biological mechanism underlying pro-
tein–DNA binding. We performed a comparison of the models
based on the most up-to-date data. In Figure 2C, we compared
the accuracy achieved in prediction of both in vitro (PBM) and
in vivo (ChIP-seq) binding by the PWM and k-mer models,
inferred from PBM data using BEEML-PBM and average binding
intensities, respectively. Sequence binding scores are the sum
of their k-mer scores. (Note that the results of the comparison
depend on the algorithm used. While BEEML-PBM is currently
one of the two best known algorithm for PBM data [43], a future
algorithm may fare better.) While the k-mer model is more ac-
curate in predicting binding both in vivo and in vitro, its advan-
tage is significant only in vitro, and it shows a profound
improvement in accuracy (i.e. difference �2 SDs) for few pro-
teins in vitro. The simplicity of the PWM and its interpretable
visualization make it still the model of choice in the majority of
the studies, while being only slightly less accurate than more
complex binding models [43]. Note also that prediction of in vivo
binding is much harder for both models, as reflected in much
lower area under the curve (AUC) scores (the area under the
receiving-operating curve, which evaluates binding predictions
in terms of how well they rank positive sequences higher than
negative ones [46]) (Figure 2D).

Motif finding methods and tools

Over the past several years, a variety of computational methods
were developed for analyzing PBM and HT-SELEX experimental
data. These methods suggest novel biological hypotheses in the
shape of protein–DNA binding models, which can then be tested
in vivo by further experiments, such as ChIP-seq. The challenge
for such methods is that BSs are short and degenerate, and DNA
probes are longer than typical BSs and thus may contain many
putative sites, so it is difficult to distinguish between specific
and nonspecific (background) binding. Moreover, each technol-
ogy suffers from biases, which produce artifacts that may dis-
tort the measured intensities. Algorithms aim to extract the
signal, i.e. the binding preferences of the TF, and distinguish it
from the noise (background binding and technological biases).
In genomic sequences, this challenge is known as the ‘motif dis-
covery problem’: the computational challenge of constructing a
TF motif or binding model based on experimental data on TF-
DNA binding, and/or identifying the BSs in sequences. When
the model parameters are unknown, the problem is termed the
de novo motif discovery problem. De novo motif discovery has
been tackled using a myriad of algorithmic techniques, such

Figure 2. Models for protein–DNA binding preferences. (A) Position weight ma-

trix. The matrix represents scores for each nucleotide position (eight in the ex-

ample). The PWM logo plots the nucleotides by their weights and position

entropy. The PWM and logo are of protein ATF1 (downloaded from CIS-BP [14],

motif id M0295_1.02, generated by PWM-Align-Z). (B) K-mer model. Each k-mer

is assigned a binding score. The example shows the top 16 8-mers and their E-

scores for protein ATF1 (downloaded from CIS-BP, M0295_1.02). Note that mul-

tiple 8-mers correspond to different windows with respect to ATF1 ‘core’ motif

(TGACGT). (C) Performance of PWM and k-mer models in in vitro prediction. For

each paired PBM experiment (two experiments performed with the same TF

using two arrays, each with a different probe design), a model was trained on

data of one array and tested on the other. The AUC score reflects the accuracy in

ranking positive probes at the top (see [37] for definitions). Two hundred four-

teen experiments (covering 98 proteins) were included in the comparison.

(D) Performance of PWM and k-mer models in in vivo prediction. For each ChIP-

seq experiment, a model was trained on PBM data of the same TF and tested in

ranking the top 500 peaks higher than a set of 500 control sequences from

nearby genomic regions (see [37] for details). One hundred thirty-seven ChIP-seq

experiments, covering 20 TFs, were used in the comparison. In C and D,

gray lines stand for 61 standard deviation (std) of AUC difference. P-values were

calculated using Wilcoxon rank-sum paired test.
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as Expectation Maximization (MEME [47]), Gibbs sampling
(AlignACE [48]), efficient enumeration (Amadeus [49]) and neu-
ral networks (ANN-Spec [50]). Methods that use weights or a
ranked list of genes include DRIM [51] and MatrixREDUCE [52].
A survey of motif finding tools can be found in [53, 54].

The problem of inferring a motif from high-throughput
in vitro data can be naively solved by methods developed
for motif finding in genomic sequences (as those listed above).
For example, the set of DNA probes or sequences can be divided
into a positive and a negative set, according to their binding
intensity, and provided as input to a motif finding tool [55]. A
more informative way is to designate the measured binding
intensities as sequence weights, and use a tool that analyzes
weighted sequences [56]. Unfortunately, such approaches have
proved less accurate compared with technology-specific meth-
ods [43]. Thus, the problem requires algorithms that are tailored
to these specific data.

Motif finding using PBM data

Several approaches have been proposed for inferring accurate
binding models from PBM data. The most popular practice is to
first derive scores for all possible k-mers (using often k¼ 8).
These scores depend on the binding intensities of the probes
that contain the k-mer. Some methods use average or median
binding intensity, while others use enrichment scores (e.g.
Wilcoxon–Mann–Whitney test [57]). The top scoring k-mer is
identified as the consensus or seed in model construction. The
list of k-mer scores can be directly used to predict binding, or
collapsed into a more compact model, such as a PWM. Another
option is to construct a model that has the best fit to the ranking
of the probes, or to their binding intensities, without deriving
k-mer scores from them. Then, an optimization procedure
learns the model parameters (e.g. maximum likelihood using
gradient descent [58] or Levenberg-Marquardt algorithm [59]).
Methods for inferring BS models from PBM data include
Seed-and-Wobble [16], RankMotifþþ [60], BEEML-PBM [61] and
FeatureREDUCE [62]. Two recent studies evaluated the perform-
ance of different methods for inferring protein–DNA binding
models from PBM data [43, 55].

BEEML-PBM infers PWM models from PBM data [61]. The in-
ference is based on a biochemical model, which we review here.
At equilibrium, given that the log of the ratio between free TF
concentration and Kd of the reference sequence is l, the binding
probability to k-mer S is:

P Sð Þ ¼ 1
1þ eE�l

where E, the free energy difference between S and the reference
sequence, depends additively on positions based on a PWM
model:

E ¼
Xk

j¼1

fwj ;j

where fwj ;j is the energy contribution of nucleotide wj in position
j of k-mer S relative to the reference sequence.

Because TFs may bind both strands of dsDNA, the probabil-
ity of binding to dsDNA sequence U, whose reverse complement
is U’, is:

F Uð Þ ¼ P Uð Þ þ 1� P Uð Þð ÞPðU’Þ

Binding probability to probe T is then:

F Tð Þ ¼
XL�kþ1

j¼1

FðTj:jþk�1Þ

where Tj:jþk-1 is the k-mer starting at position j of probe T.
To account for positional bias in the probe, the probabilities can
be summed in a weighted manner. The PWM and l are then
estimated from the experimental data (see [61] for details).

Motif finding using HT-SELEX data

Binding model inference from HT-SELEX data is different than
from PBM data. As opposed to PBM technology, in theory, each
DNA oligonucleotide in every cycle represents a BS. Binding in-
tensity is not reported, but it can be computationally derived for
k-mers of length smaller than the oligonucleotide (for k� 12
many k-mers appear in thousands of oligonucleotides). K-mer
scores are derived based on their frequency in the different
cycles of the experiment. The ‘ratio statistic’ of a k-mer in HT-
SELEX cycle i is defined as the ratio of the k-mer’s frequency in
cycle i and its frequency in cycle i-1. This statistic represents
the k-mer’s preference, which affects the changes in its fre-
quencies between the cycles, and thus is an estimate of the
binding preference of the TF to this DNA word. The first re-
ported method for inferring binding models from HT-SELEX
data was BEEML [27]. It uses the frequencies from two consecu-
tive cycles to learn the binding preferences based on a free en-
ergy model. A method of Toivonen et al. uses k-mer frequencies
from one of the last cycles as scores and constructs a model
based on k-mers at Hamming distance �1 from the consensus
[18, 29]. Another method, developed as part of the SELEX-seq
protocol uses k-mer ratios (after correction for biases and arti-
facts) to derive a complete k-mer list as the binding model [63].
A comparison of the two SELEX methods in inference of binding
models is still needed.

SELEX-seq

The following method infers k-mer binding scores from HT-
SELEX data [63]. It estimates the preference of each k-mer S by
comparing its count in the later cycles to its count in the initial
cycle (most experiments have at least three cycles). The model
assumes that at each cycle the frequency of S is multiplied by
the same factor. Therefore, the r-th root of the ratio of S’s fre-
quency in the r-th cycle FðrÞS and in the initial cycle Fð0ÞS is used as
its binding score:

Binding score Sð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FðrÞS =Fð0ÞS

r
q

k, the width of the BS, is selected using KL-divergence [63]. The
value of k that has the highest information gain in cycle r com-
pared with the initial random pool is chosen, i.e. k maximizing:

D r; kð Þ ¼
X

S2S100 r;kð Þ

F rð Þ
S logðF rð Þ

S =F 0ð Þ
S Þ þ PðrÞ�100log

P rð Þ
�100

P 0ð Þ
�100

 !

Here S100(r,k) is the set of k-mers that appear at least 100
times in cycle r, and all other k-mers are pooled together, so
that PðrÞ�100 is the sum of frequencies of all the k-mers that appear
<100 times in cycle r.
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A 5th-order Markov model is used to estimate k-mer fre-
quencies in the initial cycle, as these have low counts, making
their observed frequencies an inaccurate estimate. In the cur-
rent implementation, cycle r¼ 1 is used, and LOESS-regression
is used to incorporate information from multiple rounds of
selection (see [63] for details).

Predicting in vivo binding from in vitro models
In vitro models predicting in vivo binding

State-of-the-art methods for learning DNA-binding preferences
of proteins from PBM data produce models that predict in vitro
binding accurately. In contrast, constructing accurate models
for in vivo binding is a harder challenge. In all studies, while pre-
dicting in vitro binding was accurate (average AUC reaching al-
most 0.9), predicting in vivo binding was much worse (average
AUC �0.7) [43, 55] (compare also Figure 2C and D). We tested
PBM-derived models on ChIP-seq experiments available on
ENCODE (considered more accurate than the ChIP-chip experi-
ments [64]), and the results were effectively the same as for
ChIP-chip and ChIP-seq from other sources [43, 55]. For 20 TFs
that had both a PBM model and a ChIP-seq experiment, the
average AUC was 0.69. A comparison of the performance of dif-
ferent methods for deriving PWM models from PBM data re-
vealed that no method had a significant advantage over all the
rest (RAP and BEEML-PBM did show an advantage over
RankMotifþþ, P-value¼ 0.008 and 0.026, respectively, Wilcoxon
rank-sum paired test) (see Figure 3A). The low accuracy may be
owing to the complexity of the cellular environment and also
owing to the simplicity of the produced models. Other factors
that affect in vivo binding in addition to sequence-specific fea-
tures include nucleosome positioning, competing TFs and coop-
erating TFs [4].

The effect of motif flanks in predicting in vivo binding

In contrast to the high accuracy of PBM-derived models in pre-
dicting binding intensities of another PBM experiment, they do
much worse in predicating in vivo binding (as measured in ChIP
experiments). A recent study tested hundreds of human TFs in
HT-SELEX experiments [28], 162 of which had a PBM experi-
ment. We used ChIP-seq to determine from which technology,
PBM or HT-SELEX, we can derive models that are more accurate
in predicting in vivo binding. Here, we show an update of the
comparison reported in [31]. When comparing the accuracy of
in vivo peak binding prediction based on PBM (derived by
BEEML-PBM) and HT-SELEX models (published in [28]) for the
same TFs, using ENCODE ChIP-seq peaks, HT-SELEX is superior
(see Figure 3B). The longer models produced by HT-SELEX are
more accurate in in vivo binding prediction for a few proteins,
achieving an average AUC of 0.761 compared with 0.728 for
PBM-derived models (P-value ¼ 0.24, Wilcoxon rank-sum
paired test). The comparison encompassed 167 ChIP-seq experi-
ments covering 28 different TFs. This suggests that some of the
signal directing protein–DNA binding lies in the flanking regions
of the core motif (see Figure 3C for examples). (A set of positions
with high IC, usually consecutive, are called ‘core positions’,
while positions adjoining the core, of lower IC, are called its
‘flanks’.) Indeed, when we removed the side positions, leaving
only the eight most informative positions (those with the lowest
entropy [38]), HT-SELEX model performance decreased signifi-
cantly (average AUC 0.761 compared with 0.739 on the same set,
P-value ¼ 0.00069) (see Figure 3B).

Conclusions and open problems

Technological advancements of recent years provide several
opportunities to further study the mechanisms behind TF-DNA
binding. For example, the effect of sequences flanking the BS
was observed through both PBM and HT-SELEX [20, 37]. With
the new HT-SELEX technology, which measures the binding to
longer motifs than those measured by PBM, additional features
may be derived from sequences flanking the core. These may be
added to the PWM as side positions or as local DNA shape fea-
tures (used to describe 3D properties of each DNA base pair), as
was proved useful in recent studies [20, 23, 65]. Similarly, accur-
ate biomechanical models based on free energy contributions
can be learned from high-quality data (using algorithms such as
BEEML) and provide more direct link to the binding mechanism
[27, 44, 61]. With technology improvements and broader data
sets, more can be learned on the binding mechanisms of differ-
ent protein families, and the mechanisms that differentiate be-
tween proteins in the same family can be better understood.

Techniques for measuring protein–DNA binding will continue
to improve, thanks to plummeting costs of microarrays and high-
throughput sequencing. The HT-SELEX technique demonstrates
the benefit of high-throughput sequencing in measuring protein–
DNA binding [27, 18, 30]. One of its main advantages over previ-
ous techniques is the ability to measure motifs of length >20 bp
[31]. Its accuracy is expected to continue to get better with greater
read coverage. Universal PBMs were recently extended by custom
PBMs, which measure the binding of a TF to a predefined set of
sequences, either wild-type genomic sequences [20, 21] or
mutated and synthetic sequences designed for the TF in question
(e.g. longer motifs for NFkB proteins [66] and cooperativity be-
tween two TFs [22]). As production of microarrays and oligo-
nucleotide printing becomes cheaper, it is now possible to design
arrays to test the binding preference of specific TFs to selected
genomic or synthetic sequences in vitro.

On the computational side, we see more complex binding
models emerging to replace the ‘good old PWM’, and develop-
ment of more advanced optimization methods for all models.
Exceptions to the position-independence assumption have
been observed since 1986 [67], and the accuracy of the PWM
model has been repeatedly challenged [43, 44]. Studies that criti-
cize this assumption suggest more complex models, mostly
adding position-dependent features, such as di-nucleotide and
3-mers [44], or combining alternate or cooperative PWM models
together [62]. The benefit of these additional features may be
explained by their effect on local DNA shape features [68].
While these models have been shown to be more accurate, and
it is possible to infer them from the new high-throughput data,
they are not broadly used. There are three main challenges. The
first is the interpretability. Models gain popularity when accom-
panied by a user-friendly and intuitive visualization, which is
still missing for the more complex models. Second, the number
of parameters is exponential in the BS width, which may lead to
over-fitting, depending on the size of the training data and the
chosen width. Third, it is difficult for a new model to reach
broad impact, when most bioinformatics tools and pipelines ac-
cept as input a PWM. Further evidence on the advantage of
complex models is needed to sway the community to adopt
them. On the optimization side, application of new machine
learning approaches may further improve models accuracy.
A new approach termed ‘deep learning’ was recently applied to
both PBM and HT-SELEX data and was shown to outperform
the current state of the art, especially at predicting in vivo bind-
ing [69].
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Figure 3. In vitro models predict in vivo binding. (A) Performance of PBM-derived models in predicting in vivo and in vitro binding. Boxplots of AUC for the models inferred

by different methods show that in vivo binding prediction using in vitro models is less accurate than in vitro binding prediction by the same models (P-value<10� 7 for

each of the four methods, Wilcoxon rank-sum unpaired test). AUC values for in vitro were calculated for 355 paired PBM experiments (results taken from [37]), and for

in vivo for 20 TFs tested by ChIP-seq experiments (downloaded from ENCODE). (B) Comparison of PBM- and HT-SELEX-derived models in predicting in vivo binding. Left:

HT-SELEX models are more accurate on some proteins in predicting in vivo binding. In computing the significance, for each protein, the values for different experiments

of that protein were averaged to avoid dependencies. (Without such collapsing of the data, the HT-SELEX advantage is significant, giving P ¼ 0.006.) Right: When only

the eight most informative positions are used for modeling each TF, models are less accurate than full models. One hundred sixty-seven ENCODE ChIP-seq experi-

ments covering 28 different TFs were used to gauge the accuracy of in vitro binding models. In vitro models were downloaded from CIS-BP. (C) Logos of some PBM- and

HT-SELEX-derived models. RXRA (for which PBM is more accurate in in vivo prediction), MAFK (for which HT-SELEX is more accurate) and ELK4 (where the methods

perform similarly).
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A key challenge is how to transfer the accuracy of the in vitro
models into the in vivo domain. Measuring effects of flanking se-
quences and adding epigenetic information such as nucleo-
some occupancy was shown to improve prediction accuracy [5].
However, there is still a wide gap between the quality of in vitro
and in vivo binding prediction. Key factors that should be ad-
dressed to narrow the gap are co-factors and competing pro-
teins, whose effect is still unknown. Many TFs bind only as a
complex, thus measuring the independent binding affinities of
their components does not reflect their true regulatory role. A
breakthrough in measuring DNA-binding preferences of pairs of
TFs was recently achieved by an extension of HT-SELEX [70].
Similarly, distinct proteins with similar binding preferences
compete for the same BSs. Comparing between them requires
affinity measurements, which have lower throughput com-
pared with binding specificity measurements. Only recently,
measuring affinities to >100 preselected genomic sequences (as
opposed to pseudo-random sequences as in [24]) in one experi-
ment became possible [71]. Clearly, competition has to be mod-
eled to improve in vivo binding prediction, taking into account
both protein concentrations, localization and absolute affinities
to putative BSs.

In conclusion, the field of gene regulation has seen a tre-
mendous leap in recent years in throughput and accuracy of
protein–DNA binding measurements. These have been used in
numerous studies, producing better prediction models and im-
proving the understanding of evolution of TFs. We expect these
technologies and computational models to improve in coming
years, advancing our ability to predict in vivo binding and to
understand gene regulation.

Key Points

• Protein-binding microarrays (PBMs) and high-
throughput SELEX (HT-SELEX) measure the binding of
a single protein to many thousands of DNA sequences
and report accurate binding intensities in vitro. Public
databases contain hundreds of PBM and HT-SELEX ex-
periments and models covering proteins from diverse
model organisms.

• Protein–DNA binding models range from simpler pos-
ition weight matrices (PWMs) to all k-mer models. The
latter is more accurate, but hard to interpret and visu-
alize and may over-fit the training data. Algorithms for
inference of both models must be tailored to the spe-
cific experimental technique.

• HT-SELEX- and PBM-derived models mostly agree, but
HT-SELEX models are more accurate in prediction of
in vivo binding for a few proteins, mostly owing to
coverage of longer sequences.

• The performance of in vitro binding models in predict-
ing in vivo binding is rather poor; bridging this gap will
require incorporation of the genomic context into the
models.
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