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Abstract

Engineered nanomaterials can alter the structure and/or function of biological membranes

and membrane proteins but the underlying mechanisms remain unclear. We addressed this

using a Langmuir phospholipid monolayer containing an active transmembrane protein,

glucose-6-phosphatase (G6Pase). Gold nanoparticles (nAu) with varying ligand shell com-

position and hydrophobicity were synthesized, and their partitioning in the membrane and

effects on protein activity characterized. nAu incorporation did not alter the macroscopic

properties of the membrane. Atomic force microscopy showed that when co-spread with

other components prior to membrane compression, nAu preferentially interacted with

G6Pase and each other in a functional group-dependent manner. Under these conditions,

all nAu formulations reduced G6Pase aggregation in the membrane, enhancing catalytic

activity 5–6 fold. When injected into the subphase beneath pre-compressed monolayers,

nAu did not affect G6Pase activity over 60 minutes, implying they were unable to interact

with the protein under these conditions. A small but significant quenching of tryptophan

fluorescence showed that nAu interacted with G6Pase in aqueous suspension. nAu also

significantly reduced the hydrodynamic diameter of G6Pase in aqueous suspension and

promoted catalytic activity, likely via a similar mechanism to that observed in co-spread

monolayers. Overall, our results show that nAu can incorporate into membranes and associ-

ate preferentially with membrane proteins under certain conditions and that partitioning is

dependent upon ligand shell chemistry and composition. Once incorporated, nAu can alter

the distribution of membrane proteins and indirectly affect their function by improving active

site accessibility, or potentially by changing their native structure and distribution in the

membrane.

Introduction

Engineered nanomaterials (ENMs) have unique, size-dependent properties that make them

desirable for a range of applications, including drug delivery, diagnostics, catalysts, and more.

The incidental release of ENMs through aerosols, terrestrial runoff, and wastewater is pro-

jected to increase ENM burdens in the environment [1,2] and toxicity has been noted in a
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variety of aquatic and marine species [3,4]. Small volume biomedical applications represent

little risk to the environment, but the potential for non-target bioactivity has limited their

widespread use in therapeutics and imaging [5]. The rapid proliferation of novel ENM formu-

lations and our inability to test each for bioactivity has augmented the need for a better under-

standing of how ENMs interface with and affect biological systems on a molecular scale [6].

Interactions between ENMs and soluble proteins often leads to the formation of a “protein

corona” on the ENM surface, which can facilitate cellular uptake and influence bioactivity [7].

In vitro, ENM-protein interactions have also been shown to disrupt the structure and function

of soluble proteins [8–10], which may explain in vivo toxicity under certain conditions [11].

The physicochemical properties of the ENM and protein dictate if an interaction will occur

and what the impact of that association will mean to the structure and function of the protein

[12]. Molecular dynamics models indicate that electrostatic forces likely drive these binding

events [9,13] and that resulting protein conformation changes can substantially impact ligand

binding affinity and catalysis in enzymatic reactions [9]. A large body of work has addressed

the mechanisms and consequences of ENM-protein interactions in soluble proteins [7] but

much less is known regarding interactions between ENMs and membrane proteins. It is also

difficult to accurately assess the effects of hydrophobic ENMs in solution-based systems but

these formulations may still interact with membranes and membrane proteins.

In aquatic nanotoxicity studies, membrane proteins appear to be important ENM targets,

but the mechanisms by which they are affected remain elusive. In fish, the Na+/K+-ATPase

(NKA) protein lies on the basolateral membrane of the gill epithelium where it plays a critical

role in maintaining whole animal ion and acid/base homeostasis. A number of ENMs, particu-

larly metal formulations, potently influence gill NKA activity and their effects cannot always

be readily explained by dissolution of bioactive metal ions [14–21]. Changes in protein con-

formation and ligand binding dynamics resulting from direct interactions with ENMs may

explain changes in activity, but membrane proteins are also sensitive to alterations in their sur-

rounding lipid environment. For example; the molecular activity of the NKA protein increases

with membrane phospholipid desaturation and resulting increases in lateral pressure in the

bilayer core [22]. ENMs can alter the morphology of lipid bilayers or even trigger the forma-

tion of pores in membranes [23], and such changes could impact the function of embedded

proteins. Characterizing how ENMs interact with membranes and membrane proteins will

allow us to better understand the molecular basis of ENM bioactivity and optimize ENM for-

mulations to improve molecular targeting and efficacy in clinical applications and reduce envi-

ronmental toxicity. It will also aid in understanding how chronic exposure to ENMs may

promote misfolding of membrane proteins and increase the risk of developing neurodegenera-

tive diseases like Alzheimer’s [24].

The goal of this study was to characterize how the relative hydrophobicity of gold ENMs

(nAu) influence partitioning in a simplified model membrane system and to understand how

this may impact the function of an embedded membrane protein. To address this problem, we

formed a Langmuir phospholipid monolayer incorporating a catalytically active transmem-

brane protein, glucose-6-phosphatase (G6Pase). Such membranes are known to accurately

mimic the interface between a phospholipid-protein membrane and an aqueous medium and

can provide valuable information on how ENMs influence membrane properties [25–27].

Manipulation of these membranes using the Langmuir balance technique enables in situ mea-

surement of the membrane response to compression and precise control over their lipid den-

sity and surface tension. Coupled with Langmuir-Blodgett transfer to suitable supports for ex
situ imaging, this approach allows us to characterize how hydrophobic ENMs interact with

membrane proteins. Analytical tools that can accurately characterize such mechanisms in the

complex membrane environment in vivo are lacking but this model system provides a means
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to extend the knowledgebase on ENM-protein interactions beyond soluble proteins. In the

endoplasmic reticular membrane, G6Pase dephosphorylates glucose-6-phosphate (G6P) to

glucose and inorganic phosphate in the terminal step of gluconeogenesis. In addition to play-

ing a key role in interprandial glucose homeostasis and the pathophysiology of a number of

diseases [28], it is also a potential target for nano-enabled pharmaceuticals. Several ENM for-

mulations exhibit anti-diabetic activity in vivo [29,30] and in vitro [31] and their effects have

been linked to alterations in G6Pase activity or expression.

Materials and methods

Reagents and solutions

Reagents used in this study were purchased from Sigma-Aldrich (Oakville, ON, Canada), unless

otherwise noted. 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) was purchased from

Avanti Polar Lipids Inc. (Alabaster, AL). D-Glucose-6-Phosphate (G6P) was purchased from

Calzyme Laboratories Inc. (San Luis Obispo, CA). The G6Pase preparation was a crude purifi-

cation from rabbit liver (Sigma-Aldrich) and was approximately 30% protein, with the balance

of the mass mostly consisting of sucrose with a small quantity of lipids. SDS-PAGE analysis of

the G6Pase preparation (S1 Fig) indicated that the protein was not fully purified, which is

expected given the reasons outlined elsewhere [32]. The lipid constituents of the enzyme prepa-

ration were characterized by lipid profile analysis as follows. Lipids were extracted using chloro-

form and methanol in a modified version of the Bligh/Dyer method [33]. A 1.12 mg sample of

the isolate was prepared in a solution containing 1 mL chloroform (CHCl3), 2 mL methanol

(MeOH) and 0.8 mL phosphate buffered saline (1:2:0.8 solution of CHCl3/MeOH/saline). This

sample was transferred to a glass vial with 25 μL acetic acid (AcOH, 10%), followed by 100 μL

1,2-Diheptadecanoyl-sn-glycero-3-phosphorylcholine (0.03 mg mL-1, internal standard). Once

the extraction was performed, the CHCl3 portions were pooled and evaporated followed by

base hydrolysis and transmethylation. The resulting solution was split between hexanes and

brine; the hexane layer was collected, concentrated under nitrogen gas, and reconstituted in

200 μL hexanes before transfer to gas chromatography vials. Samples were injected and fatty

acid methyl esters (FAMEs) were detected by flame ionization. The profile of FAMEs in the

G6Pase preparation can be found in S1 Table.

A buffer containing 100 mmol L-1 sodium cacodylate trihydrate, pH 6.5, was used for the

subphase of the Langmuir-Blodgett trough apparatus and for assessing G6Pase activity in sus-

pension. In monolayer studies, the G6P substrate (8 mmol L-1) was added to the subphase

immediately prior to use.

Gold nanoparticle synthesis, purification, and characterization

nAu were prepared and characterized using established methods [34]. Particles were initially

coated and stabilized with 4-dimethylaminopyridine (DMAP). This coating was exchanged

with thiol in a two-phase exchange to create nAu with varying hydrophobicity [34]. Three

batches of nAu were synthesized using this method, characterized by the terminal functional

group of thiol ligands: 100% CH3 terminated nAu (1-undecanethiol), 100% OH terminated

nAu (11-mercapto-1-undecanol), and 25% OH terminated nAu (11-mercapto-1-undecanol

and 1-undecanethiol). It should be noted that the 25% OH terminated nAu was previously

shown to exhibit improved hydrophilic character (compared with 100% CH3 terminated nAu)

at the air/water interface, where several studies have indicated non-monotonic trends in

hydrophobicity with ligand shell composition [35–37]. nAu were purified by repeated washing

cycles of vortex mixing, centrifugation, and separation until 1H NMR (200 MHz, Varian

Oxford, Palo Alto, CA) showed an absence of unbound alkanethiol. 1H NMR was also used to
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determine the final composition of the mixed ligand shell by I2 decomposition using estab-

lished methods [38]. Transmission electron microscopy (TEM) imaging was used to determine

the distribution of nAu core sizes, with samples prepared for analysis as described below.

Membrane monolayer preparation

The constituents of the in vitro membrane system were prepared in one suspension and co-

spread on the air-aqueous interface of a Langmuir trough apparatus (KSV Minitrough and

Nima 602A film balance; Biolin Scientific, Stockholm, Sweden) which was equipped with a

refrigerated and heating water circulator. 500 μL of the 0.2 mol% nAu suspension contained

7.5 mg G6Pase preparation and 0.075 mg DPPC for all trials, with the addition of 0.5 mg nAu

for treatment conditions. Dosages in the range of 0.1–0.5% nAu have been shown to have no

effect on the monolayer phase behavior seen in the isothermal compression of DPPC mem-

branes, but do have a significant effect on the monolayer structure, particularly the shape and

distribution of solid phase lipid in the phase coexistence regime [26]. All components were

suspended in a solvent mix of chloroform (CHCl3) and dimethyl sulfoxide (DMSO) in a 1:1

ratio. 25–48 μL of this suspension was spread at the air-water interface in a dropwise fashion

and the solvent was allowed to evaporate for 20 min. The mixed monolayer was compressed to

a physiological pressure of 30 mN m-1 [22] at a speed of 10 cm2 min-1, with surface pressure

measured by a filter paper Wilhelmy plate. Full isotherms of 220 μL of spread suspension were

obtained in triplicate to monitor potential changes in membrane compressibility or collapse

pressure. A Bradford protein assay was performed on the subphase solution and protein was

not detected (data not shown), confirming that G6Pase did not partition into the subphase fol-

lowing spreading of the monolayer. The specific activity of G6Pase measured in the monolayer

ranged from 20 to 110% of the specific activity in the stock enzyme preparation, depending on

the treatment conditions.

Influence of nAu on membrane G6Pase activity

500 μL samples of subphase were taken from beneath the trough barriers at times 0, 10 and 30

min immediately following compression of the monolayer to 30 mN m-1. Samples were

assayed for inorganic phosphate (Pi) using the Taussky-Shorr Color Reagent [39] and com-

pared to a standard curve of 1 to 5 μg mL-1 Pi. The average activity (N = 7 trials, on average)

was normalized to the amount of protein loaded on the trough.

Trials were also performed in which nAu were introduced through the subphase following

full compression of the synthetic membrane. The monolayer (without nAu) was spread and

compressed to 30 mN m-1, as described above, and then 500 μL of a 0.1 mg mL-1 suspension of

nAu in ethanol were injected into the gently stirred subphase. Subphase samples were taken at

30 min prior to spreading (-30 min), halfway through the solvent evaporation phase (time =

-20 min), and at 0, 10, 20, 30, 40, and 50 min following introduction of nAu to the subphase.

Influence of nAu on G6Pase structure and function in suspension

The impact of nAu on the conformation of G6Pase in suspension was qualitatively assessed by

examining the intrinsic fluorescence of tryptophan amino acid residues in the protein [40].

The fluorescence of monolayer spreading solution containing DPPC and G6Pase in a 1:1 sol-

vent mixture of DMSO and chloroform, with and without nAu (0.1 mg mL-1), was measured

at 280/350 nm (ex/em) using a fluorimeter (LS 50B, Perkin Elmer, Waltham, MA). The effect

of nAu on G6Pase activity in suspension was also assessed to compare with previous studies

on ENM interactions with soluble proteins. G6Pase was prepared in cacodylate buffer with or

without 100% OH terminated nAu (0.1 mg mL-1 in EtOH) and samples were taken at 0, 5, 10,
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15, 20, 25, and 30 minutes immediately following the addition of the G6P substrate. Samples

not containing nAu were treated with an equivalent volume of EtOH to control for possible

solvent effects. Enzyme activities are presented as mean ± standard error of the mean (SEM)

and comparisons between treatments were done using a one-way ANOVA with Tukey’s post

hoc tests for individual comparisons (GraphPad Prism, Version 5.0).

Atomic force microscopy imaging

Atomic force microscopy (AFM) was used to characterize the surface topography of the mono-

layer and assess the partitioning of nAu and G6Pase in the system. Samples for AFM imaging

were prepared by transferring monolayers from the Langmuir trough to mica supports. Mixed

monolayer films were compressed to 30 mN m-1 and transferred to solid mica supports at a

vertical transfer rate of 1 mm min-1 while maintaining a constant surface pressure. Samples

were allowed to dry and imaged by AFM within 24–48 h. The solid-supported monolayers

were scanned in air under ambient conditions using a Park Systems XE-100 Advanced Scan-

ning Probe Microscope and XE-Series controller (Park Systems Inc., Santa Clara, CA). Topog-

raphy and phase contrast images were simultaneously acquired in tapping mode, using silicon

probes (Park Systems, PPP-NCHR) with a nominal spring constant of 42 N m-1, a resonant

frequency of 320–350 kHz, and a tip radius< 10 nm. Images were analyzed using Park Sys-

tems XEI software.

Transmission electron microscope imaging

Transmission electron microscopy imaging was used to provide additional information on the

localization of nAu in compressed, mixed monolayer films. Samples were prepared by hori-

zontal Langmuir-Shaefer transfer: 400 mesh copper (Cu) grids with film coatings of both For-

mvar and carbon (Ladd Research Industries Inc., Williston, VT) were lifted through the

compressed monolayer interface on the Langmuir trough. Samples were subsequently dried

on filter paper and imaged using a JEOL USA Inc. (Peabody, MA) 2011 Scanning TEM oper-

ated at 200 keV and images were captured by a Gatan (Pleasanton, CA) camera.

Results

Effects of nAu on membrane monolayer properties

Representative surface pressure versus surface area isotherms of monolayers containing DPPC,

G6Pase, and each different nAu formulation are presented in Fig 1, along with a control con-

taining only DPPC and G6Pase. Both the control and nAu-containing films display a broad

liquid-expanded (fluid) phase over the compression range, with monolayer collapse at a sur-

face pressure of ~37 mN m-1. The horizontal shift between the control and nAu treatments

can be accounted for (to within ~15% of the nAu interfacial area per particle measured in pure

nAu films [37]) by the interfacial area occupied by the nAu included in these membranes, indi-

cating that the nAu are residing at the air-water interface. The consistent response to compres-

sion in terms of slope and collapse pressure indicate that the macroscopic properties (fluidity)

of the membrane are not affected by the presence of nAu at this low dosage.

Partitioning of nAu and G6Pase in the monolayer

Samples of the monolayer films transferred at 30 mN m-1 were collected for morphological analy-

sis by both AFM and TEM (Fig 2). AFM topographical images showed that in the absence of

nAu, G6Pase formed relatively large aggregates of variable diameters, on average 23 ± 7 nm tall

(S2 Table). The dimensions of G6Pase have not been characterized, but the largest dimension of a
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single protein of similar molecular weight is approximately 14 nm [41]. It is likely that each peak

represents several stacked proteins. The AFM phase imaging clearly indicates material contrast of

these large features from the flat DPPC monolayer, indicative of protein. Upon addition of nAu,

the lateral dimensions of the putative G6Pase protein regions (or aggregates thereof) become less

variable, and generally appear to be smaller. In the case of the 100% OH nAu, the height of these

protein regions is drastically reduced to 17 ± 4 nm tall. Analysis of the TEM images found core

diameters for each nAu formulation of (mean ± SD, N>100) 4.4 ± 0.8 nm for 100% OH, 5.3 ± 1.4

nm for 25% OH, and 4.6 ± 0.9 nm for 100% CH3. The interfacial behavior of the nAu used in this

study was assessed in an earlier study and revealed that in the absence of other components, the

nAu remain pinned to the air/water interface and form close-packed monolayers [37]. AFM topo-

graphical images (Fig 2 and S2 Table) displayed regions of closely packed material of 5–6 nm in

Fig 1. Surface pressure versus surface area isotherms of monolayers containing DPPC and G6Pase,

in the absence (control) or presence of nAu. Control (blue), nAu functionalized with 100% OH (red), nAu

functionalized with 25% OH (black), nAu functionalized with 100% CH3 (green).

https://doi.org/10.1371/journal.pone.0183274.g001

Fig 2. AFM and TEM images of the control (A), 100% CH3 (B), 25% OH (C), and 100% OH (D) terminated

nAu. Left: AFM topography; middle: corresponding AFM phase; right: TEM images. Note that the TEM

images do not correspond to the areas displayed in the AFM images. Line scans on far right correspond to red

lines in AFM topography images. Scale bars on topographical and phase images are 500 nm and on TEM

images they are 200 nm for 100% CH3 terminated nAu (B) and 100 nm for both the 25% OH (C) and 100%

OH terminated nAu (D).

https://doi.org/10.1371/journal.pone.0183274.g002
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height matching the TEM size ranges, contrasted against the largely featureless phospholipid

background. TEM images confirmed that the nAu formed similar patterns of association in the

membrane monolayers, further supporting the conclusion that the 5–6 nm regions observed in

topographical images are nAu. In the mixed-membrane monolayers, all nAu formulations exam-

ined were primarily associated with other nAu particles and with the regions of G6Pase protein.

AFM phase imaging also revealed distinct contrast corresponding to the taller protein regions and

the 5 nm tall (nAu) regions, compared to the phospholipid background (S2 Table).

Size analysis of multiple AFM images revealed that co-spreading nAu with the phospholipid

and G6Pase components of the monolayer clearly reduced the (lateral) size of the G6Pase pro-

tein aggregates in comparison to monolayers prepared without nAu. The magnitude of this

effect was dependent upon the ligand shell composition of the nAu and directly related to mea-

surements of G6Pase activity in the membrane (see below). The pattern of nAu partitioning

was generally in favor of the protein (vs. the lipid membrane) in the co-spread monolayers and

also clearly influenced by differences in the surface functional groups present on the ENMs

(Fig 2). The 100% CH3 terminated nAu were tightly associated around smaller clusters of pro-

tein, while clearly maintaining significant ENM-ENM interactions. The 25% OH terminated

nAu formulation induced the greatest dispersal of the G6Pase into smaller aggregates through-

out the monolayer and the strongest partitioning toward nAu-protein interactions. Both

hydroxyl terminated nAu formulations adopted a web-like pattern around and between pro-

tein clusters, however this was more exclusive in the case of 100% OH nAu. Similar to the

100% CH3, the 100% OH nAu are involved in nAu-nAu interactions at the air-water interface.

Further investigations into potential direct interactions between nAu and G6Pase were car-

ried out in aqueous suspension. When G6Pase was exposed to a suspension of 100% OH nAu,

both tryptophan fluorescence and the hydrodynamic diameter of the protein aggregate signifi-

cantly decreased by ~8% (P = 0.004 and 0.007, respectively), suggesting some interaction

between G6Pase and nAu (S2 Fig).

Effects of nAu on G6Pase activity

The effects of differently functionalized nAu on the catalytic activity of G6Pase was quantified

in the mixed monolayer under 2 different exposure conditions; with nAu co-spread with

DPPC and G6Pase prior to compression, and with nAu injected into the subphase following

compression of the monolayer (Fig 3). In co-spread monolayers, all nAu formulations signifi-

cantly increased G6Pase activity 5–6 fold compared to control monolayers without nAu

(P< 0.0001). No significant differences in G6Pase activity were noted between individual nAu

formulations. A similar result was also observed when G6Pase activity was assessed in aqueous

suspension, where exposure to 100% OH terminated nAu significantly increased activity >2

fold (Fig 3; P = 0.006). This phenomenon was not observed when 100% OH terminated nAu

were introduced into the subphase beneath monolayers compressed to 30 mN/m, with no dif-

ferences in activity noted after a 50 min exposure (P = 0.912).

Grain analysis on AFM images was used to calculate mean surface area to volume ratios

(SA:V) of the putative protein aggregations observed in monolayers co-spread with each nAu

formulation. This data was then plotted against the measured G6Pase activity under each con-

dition to determine if reductions in the size of G6Pase aggregates associated with nAu may

influence catalytic activity in co-spread monolayers (Fig 4). A positive correlation between

G6Pase SA:V and activity was observed (R2 = 0.8048), with the SA:V of G6Pase aggregates gen-

erally increasing with increasing nAu hydrophilicity. Although the slope of the regression line

was not significantly different from 0 (P = 0.103), this data supports qualitative observations of

AFM images and suggests that nAu interact with G6Pase in a formulation-specific manner.
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Discussion

The aim of this study was to characterize the partitioning of hydrophobic nAu in a mixed pro-

tein-phospholipid monolayer and to understand whether they impact membrane protein func-

tion differently in situ. G6Pase, an integral membrane protein, was successfully incorporated

into DPPC monolayers and catalytic activity was maintained at physiological membrane pres-

sures. In aqueous suspension, tryptophan fluorescence and dynamic light scattering data showed

that nAu-G6Pase interactions did occur, and catalytic activity increased as a result. When

co-spread with phospholipid and protein in a monolayer and compressed to physiological

Fig 3. (A) G6Pase activity in a compressed (30 mN m-1) mixed monolayer co-spread with or without (control)

differentially terminated nAu (N = 6–9). (B) Relative activity (expressed as a proportion of control) of G6Pase

in a compressed mixed monolayer with 100% OH terminated nAu injected into the subphase (100% OH

injected) and of suspended G6Pase exposed to 100% OH terminated nAu (100% OH suspension; N = 3 for

both). Activity is expressed per mg protein preparation in the mixed monolayer. Statistically significant

differences are indicated by dissimilar letters.

https://doi.org/10.1371/journal.pone.0183274.g003
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pressures, nAu indeed increased the catalytic activity regardless of nAu composition. Analysis of

the membranes by AFM and TEM indicate that the nAu generally partitioned to the protein,

rather than distributing throughout the phospholipid membrane. This partitioning affected the

distribution of G6Pase within the membrane, ostensibly decreasing the size of protein aggregates

and promoting catalytic activity. These effects were not observed in acute studies where nAu

were introduced through the subphase below compressed membranes, although specific cellular

conditions may promote ENM incorporation (see below). Varying the relative hydrophobicity

of surface functional groups on nAu with identical core structures altered the pattern of nAu

partitioning in co-spread monolayers, indicating that the physicochemical properties of the

ENM may influence membrane bioactivity differentially with composition and dosage.

nAu affects membrane protein distribution

In the absence of nAu, G6Pase did not homogeneously distribute throughout the membrane,

forming large protein aggregates up to several hundred nm in diameter (Fig 2A). In mem-

branes co-spread with nAu, AFM images illustrated close associations between nAu and pro-

tein regions, suggesting all three nAu formulations preferentially associated with protein and

each other, rather than dispersing into the phospholipid matrix. A key finding is that nAu-

nAu interactions compete with nAu-protein interactions in the most and least hydrophilic for-

mulations and that partitioning in the intermediate 25% OH nAu is dominated by nAu-pro-

tein interactions. In TEM images, the nAu also remain primarily at the air-water interface, as

opposed to decorating the protein aggregates throughout. These data illustrate that even

amongst hydrophobic ENMs, altering the relative hydrophobicity of a surface functional

group can substantially influence particle behavior in a biological system. Furthermore, these

results suggest that nAu are only partially associated with G6Pase in solution prior to spread-

ing and that much of the partitioning is indeed occurring within the membrane. Thus, while

hydrophobic ENMs likely have fewer mechanisms by which they can be delivered to biological

membranes, they can lead to some restructuring of the membrane once incorporated.

Interactions between nAu and protein influenced protein-protein interactions, reducing

the size of G6Pase aggregates observed in the AFM topographical images (Fig 2). Surface area

Fig 4. G6Pase activity versus protein surface area to volume ratio in compressed (30 mN m-1) mixed

monolayers co-spread with or without differentially terminated nAu. Activity is expressed per mg protein

preparation in the mixed monolayer. Protein surface area to volume ratios in the membrane were determined

by AFM. The line of best fit has an R2 value of 0.8048.

https://doi.org/10.1371/journal.pone.0183274.g004

Gold nanoparticles interact with membrane proteins

PLOS ONE | https://doi.org/10.1371/journal.pone.0183274 August 17, 2017 9 / 15

https://doi.org/10.1371/journal.pone.0183274.g004
https://doi.org/10.1371/journal.pone.0183274


to volume ratios of G6Pase aggregates were >2 fold higher in membranes co-spread with any

of the 3 nAu formulations studied here (Fig 4). Aggregation often results from interactions

between exposed hydrophobic amino acid residues on neighboring proteins in the aqueous

cellular environment [42]. In this case, G6Pase aggregates were likely formed during the pro-

tein extraction and purification process, where hydrophobic membrane spanning domains on

adjacent G6Pase subunits were brought into close association as the protein was concentrated.

The partitioning data suggest that nAu-protein binding was more thermodynamically favor-

able than these protein-protein interactions, leading to a reduction in the observed size of

G6Pase aggregates in the membrane. In aqueous suspension, the hydrodynamic diameter of

G6Pase was reduced in the presence of 100% OH terminated nAu, however this reduction is

not enough to account for the >2-fold increase in SA:V observed in the monolayer. It is most

likely that nAu-protein interactions limited the size of G6Pase aggregates in suspension prior

to spreading, and further prevented the propagation of aggregates during monolayer forma-

tion, therefore improving “solubilization” of the protein in the membrane.

nAu likely affects protein function indirectly

The smaller size of G6Pase aggregates in the presence of nAu was strongly associated with

increases in the catalytic efficiency of the protein, both in compressed membranes and in aqueous

suspension. G6Pase activity was 5 to 6-fold higher in membranes co-spread with any of the three

nAu formulations tested and>2-fold higher when exposed to 100% OH terminated nAu in sus-

pension. By reducing the size of G6Pase aggregates, nAu-protein interactions likely increased the

number of accessible active sites and facilitated catalysis. An alternative explanation is direct inter-

actions with nAu altered the native structure of G6Pase, allosterically activating the protein.

ENMs can change protein structure [8,10,40] and the modest quenching of G6Pase tryptophan

fluorescence observed here (Fig 3) indicates structural changes may have occurred. Given that

such changes were minor compared to the>2-fold change in the surface area to volume ratios of

protein aggregates, increases in activity arising from structural changes are likely insignificant.

The influence of relative surface functional group hydrophobicity on membrane protein

function remains unclear. While all 3 nAu formulations tested solubilized G6Pase aggregates,

the intermediate 25% OH terminated nAu were the most effective. Given the distinct proper-

ties of the CH3 and OH-terminated nAu, it is likely they form favorable interactions with the

protein by different mechanisms. If this is the case, the 25% OH nAu may engage in both

mechanisms to optimally interact with G6Pase to reduce aggregate size and promote activity.

The modest differences in bioactivity between nAu formulations in terms of both solubiliza-

tion and catalytic activity suggests disaggregation is not likely an equilibrium process, but

rather is limited to the period of spreading and evaporation of solvents used during monolayer

formation. Given the unexpectedly large solubilization effect observed here, it is difficult to

discern subtle differences in functional effects the ENMs may be having on the protein. Testing

a broader range of nAu formulations, dosages, or different phospholipid components may also

provide insight into the relative contribution of nAu-protein interactions and nAu-induced

changes in local membrane properties (viscosity, elasticity, etc.) to protein function. The most

hydrophilic nAu formulation (100% OH terminated) formed web-like patterns throughout

the membrane, effectively stringing G6Pase aggregates together, while 100% CH3 terminated

nAu clustered tightly around protein aggregates (Fig 2). Changes in membrane properties can

influence the catalytic efficiency of membrane proteins [43,44] and changes in protein distri-

bution may have repercussions on biological function, so such differences in ENM partition-

ing between protein, other ENM, and phospholipid could influence protein function by

different mechanisms.
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In a similar monolayer system (without protein), graphene oxide ENMs partitioned

between phospholipid molecules when co-spread prior to compression [27]. The ability of the

ENM to incorporate into the membrane was highly dependent upon the charge of the phos-

pholipid head group, with positively charged phospholipids accommodating the complimen-

tary negative charge of the graphene oxide [27]. The net neutral charge of DPPC’s head group

may explain why clear links were not observed between nAu-protein/lipid interactions and

relative nAu hydrophobicity. All nAu formulations tested preferentially partitioned to the pro-

tein rather than localizing to the acyl chains or zwitterionic head group of DPPC. In a biologi-

cal membrane expressing a range of heterogeneously distributed lipid classes, cholesterol, and

peripheral and integral membrane proteins, ENM partitioning will be much more complex.

Surface pressure inhibits acute nAu incorporation

In the current work, 100% OH terminated nAu did not influence G6Pase activity when intro-

duced through the subphase (Fig 3), indicating they were unable to penetrate the compressed

membrane over the short time scale of the experiment (60 min). This result agrees with the

results obtained from the AFM imaging, which suggests that while the nAu-protein interactions

are significant, they do not strongly out-compete nAu-nAu or nAu-water interactions. Stronger

nAu-protein interactions are likely necessary to observe nAu penetration into a compressed

membrane. Li et al. [27] showed that graphene oxide was able to incorporate into some pre-

compressed phospholipid monolayers, but not others, and that incorporation depended upon

the nature of the lipid head group. The high surface pressure used in the current study (30 mN

m-1) may prevent interactions between nAu and the hydrophobic domains of G6Pase that are

necessary to facilitate nAu incorporation into the membrane. When closely associated in the

compressed monolayer, DPPC’s head groups may also shield interactions between nAu and the

protein. Incorporation might occur over longer exposure durations, higher ENM concentra-

tions, or lower surface pressures but further study is necessary to confirm this possibility.

Implications for bioactivity and toxicity

Lipid composition differs greatly between the ER and plasma membranes, with the former

having mostly loosely packed neutral lipids like DPPC and the latter tightly packed anionic lip-

ids [45]. The non-polar CH3 terminated nAu studied here may therefore exhibit greater bioac-

tivity at the plasma membrane relative to the negatively charged OH terminated nAu, which

would interact more favorably with intracellular membranes such as the ER. The phagocytosis

of extracellular ENMs and subsequent release from damaged lysosomes represents one poten-

tial route of intracellular ENM exposure [46]. The highly dynamic nature of biological mem-

branes in vivo may also present circumstances where energetic barriers to ENM incorporation

are reduced, such as fluctuations in surface pressure associated with acute temperature change

or cellular stress.

ENMs can directly or indirectly damage lipid bilayers [47] and cause protein misfolding

[48], leading to toxicity in clinical applications and in the environment. Understanding the

core mechanisms underlying ENM partitioning in mixed membrane systems, like that em-

ployed here, will allow us to better predict the toxicity of novel ENMs and improve the target-

ing and efficacy of nano-enabled pharmaceuticals.

Supporting information

S1 Fig. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of the crude

G6Pase preparation utilized in the study. 3 μg of the G6Pase preparation in Laemmli buffer

was loaded into a Mini-Protean TGX gel (Bio-Rad, Hercules CA, USA) and electrophoresed in
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Tris running buffer at a constant 200 V. The gel was stained for total protein (SimplyBlue Safe-

Stain, Invitrogen, Carlsbad, CA, USA). A molecular weight (in kiloDaltons, kDa) ladder (Preci-

sion Plus, Bio-Rad) is included for comparison.

(TIF)

S2 Fig. The effects of 100% OH terminated nAu on (A) fluorescence of tryptophan resi-

dues in G6Pase (in relative fluorescence units, RFU; N = 4 for both treatments) and (B) the

hydrodynamic diameter of G6Pase in suspension (N = 3 for both treatments). Asterisk

indicates significant difference from control.

(TIF)

S1 Table. Profile of fatty acid methyl esters (FAME) in the lipid component of the purified

G6Pase sample.

(DOCX)

S2 Table. Atomic force microscopy height and phase measurements (relative to DPPC

monolayer) of regions in mixed monolayers putatively labeled as protein or nAu regions.

Data are presented as mean ± standard deviation.

(DOCX)
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