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As China’s population enters the aging stage, the threat of abdominal aortic

aneurysm (AAA) mainly in elderly patients is becoming more and more serious.

It is of great clinical significance to study the pathogenesis of AAA and explore

potential therapeutic targets. The purpose of this paper is to analyze the

pathogenesis of AAA from the perspective of cellular senescence: on the

basis of clear evidence of cellular senescence in aneurysm wall, we actively

elucidate specific molecular and regulatory pathways, and to explore the

targeted drugs related to senescence and senescent cells eliminate measures,

eventually improve the health of patients with AAA and prolong the life of

human beings.
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Introduction

Abdominal aortic aneurysm (AAA) is locally weak and aneurysm-like dilatation of
the abdominal aorta, diameter > 3 cm or more than 1.5 times the normal diameter
(1). AAA is a common disease among the elderly, and the incidence of AAA increases
with age. In one study, the incidence of AAA is reported to be 55 per 100,000 person-
years in males aged 65–74, 112 per 100,000 person-years in males aged 75–85, and
298 per 100,000 person-years in males older than 85 (2). Most AAA patients are
asymptomatic and are discovered accidentally during a physical exam or ultrasound
screening. However, rupture or precursor rupture may occur when patients present
with symptoms such as lumbago and abdominal pain. The in-hospital mortality rate
of rupture is about 40% (3), while the out-of-hospital mortality rate can be as high
as 90% (4), resulting in about 150,000–200,000 deaths globally (5), which is a serious
threat to patients’ health. Currently there is no effective method to inhibit AAA progress
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in the treatment of clinical drug. Usually, surgical treatment
(open surgery or endovascular stent repair) is the only treatment
for AAA patients whose diameter is greater than 5.5 cm (greater
than 5.0 cm for women) or increases by more than 1.0 cm
every year (6). Patients who fail to meet the surgical indications
need long-term follow-up (7), which brings heavy economic
burden and psychological pressure to patients. Therefore,
finding and developing potential therapeutic targets and drugs
to delay aneurysm progression or prevent AAA rupture is of
great clinical significance and can significantly extend human
life expectancy.

The mechanism of the occurrence and development of
AAA has not been fully clarified, mainly including oxidative
stress, immune inflammatory response, apoptosis of vascular
smooth muscle cells (VSMCs) and vascular aging (8–10). The
main risk factors for AAA are age over 65, male, smoking
habit and family history (11) (Figure 1). With the progress
of the population aging in China, the elderly population
in 2050 is expected to appear the big bang, 65 years of
age or older population will reach 400 million (accounts
for 26.9% of the total population), more than 80-year-old
aging population will reach 150 million (12), China will
become one of the countries with the highest proportion of
elderly people in the world, and which will inevitably cause
a series of social and economic challenges (13). Therefore,
it is important to elucidate the specific mechanisms involved
in the pathogenesis of age-related AAA, and to provide
potential therapeutic targets for the development of novel
therapeutic agents that inhibit the expansion and rupture of
AAA.

Hayflick and Moorhead were the first to describe
“Replicative senescence (RS)” in 1961, which referred to
the limited ability of human cells to proliferate (cell cycle
arrest). Senescence is the irreversible loss and depletion of the
cell’s ability to differentiate and divide (14). The “telomere
hypothesis” emerged in the 1890s as one of the most important
molecular mechanisms of RS, generating much scientific
interest in the study of senescence (15). Later, it was proved
that senescence may be caused by other genetic damage, such

Abbreviations: AAA, abdominal aortic aneurysm; AMPK, adenosine
monophosphate activated protein kinase; AGE, advanced glycation
end-product; BET, bromine domain and extra-terminal; CDKI, cycle-
dependent kinase inhibitor; C/EBPβ, CCAAT/enhancer binding protein
β; CVD, cardiovascular disease; DDR, DNA damage responses; EC,
endothelial cell; EPC, endothelial progenitor cell; FA, fatty acid; JAK,
janus kinase; LA, licorice chaltone A; MCP-1, monocyte chemotactic
protein-1; MDM2, mouse double minute 2; miDAS, mitochondrial
dysfunction related senescence; MSC, mesenchymal stem cell; NAD+,
nicotinamide adenine dinucleotide; NF-κB, nuclear factor kappa-B;
NMN, nicotinamide mononucleotide; NR, nicotinamide riboside; rDNA,
ribosomal DNA; ROS, reactive oxygen species; SIPS, stress-induced
premature senescence; SAHF, senescence associated heterochromia
lesions; SASP, senescence-associated secretory phenotype; SIRT1,
silencing information regulator 2 related enzyme 1; STAT, signal
transduction and transcription activator; TMAO, trimethylamine N-oxide;
TVA, tricarboxylic acid; VSMC, vascular smooth muscle cell.

FIGURE 1

The remain risk factors and pathogenesis of AAA.

as DNA damage, chromosomal aberrations and chromatin
aggregation (16, 17). Now, it is recognized that senescence also
acts as a defense mechanism in response to various stresses,
including telomere wear, oncogene activation, tumor suppressor
gene inactivation, oxidative stress, mitochondrial dysfunction
and DNA damage (radiation, chemicals, and ROS) (18, 19). This
process is classified as stress-induced premature senescence
(SIPS). RS is characterized by telomere shortening. Telomeres
are regions thousands of bases long in DNA, covering the ends
of chromosomes, and they play an essential role in maintaining
the integrity and stability of DNA molecules (20). Because
DNA polymerase cannot replicate the end of the DNA molecule
completely each time, the DNA molecule loses 50–200 base
pairs of telomeres at the 3′ end after each replication (21).
Hayflick et al. observed a limit, known as the Hayflick limit,
which was the maximum number of cell divisions (about 50–70)
(14). When the Hayflick limit is reached, the integrity of DNA
molecules is broken and the ends of chromosomes are exposed,
leading to replicative senescence (22). And SIPS is triggered by
telomere-independent DNA damage responses (DDR) caused
by both internal and external stressors, which is often involved
in the activation of cycle-dependent kinase inhibitor (CDKI)
p21 and exogenous tumor suppressors (p16 and Rb) (23).
CDK mediates the transition among different stages of the cell
cycle, which stagnates when interrupted by DNA damage. Once
stopped, the cells face three outcomes: after DNA damage is
repaired, cells can re-enter the cell cycle; If not, cells die and are
cleared; If still in stasis, they become senescent cells. Thus, cell
cycle arrest is the first step of senescence (24).

Hallmarks of cellular senescence

Although there is no consensus on the senescence process
and related mechanisms, the scientific community has proposed
a senescent cell phenotype that is characterized by specific
changes during cellular senescence occurred. In addition to cell
cycle arrest, senescent cells undergo morphological, biochemical
and functional changes, which are signs of cellular senescence
(25) (Figure 2).
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Morphogenesis and chromatin
remodeling

Senescent cells undergo significant morphological and
structural changes, including enlargement, flattening,
nuclear enlargement, multinucleation (26) and changing
the composition of plasma membrane (27, 28). These
seemingly simple changes help establish and maintain the
senescent state of cells.

Senescent cells have also been observed with significant
chromatin related changes, most notably the formation of
senescence associated heterochromia lesions (SAHF), which
were first described by Lowe et al. (29). SAHF, as a DNase-
resistant and DAPI-dense subnuclear cell structure, enriches in
histone modification (H3K9me) associated with transcription
inhibition (30). The formation of SAHF leads to transcriptional
inhibition of E2F target genes, which triggers permanent cell
cycle arrest (31). The emergence and function of SAHF depend
on an effective INK4A-Rb pathway, since INK4A inactivation
prevents SAHF formation and Rb is recruited into proliferation-
related genes to inhibit them (32). However, recent research
results challenged some of earlier explanations. It has been
reported that cellular senescence can be robustly established in
the absence of SAHF. One study found that telomere shortening,
ionizing radiation, and prolonged exposure to hydroxyurea
or etoposide also can trigger senescence without the distinct
formation or the typical heterochromatin markers of SAHF
(33). Surprisingly, SAHF formation was observed under similar
conditions but with different cell lines, which may be related to
INK4A induction (31).

Senescence-associated-β
galactosidase (SA-β-Gal)

Detection of SA-β-Gal activity is the most commonly
used senescence discrimination method (27). Endogenous β-
Gal is the product of GLB1 gene encoding (34), and the
transcription process is negatively regulated by the NOTCH1
signaling pathway (35). The lysosome content in senescent
cells increases significantly, leading to a significant increase in
the endogenous β-Gal activity of lysosomes (34). Lysosomal
β-galactosidase activity is usually most active at pH 4.0, but
which can also be detected at pH 6.0 in senescent cells
(36). Therefore, SA-β-Gal activity can reflect lysosome β -
galactosidase activity, thus revealing the increase of lysosome
content in senescent cells. Although these histochemical and
immunohistochemical staining methods are widely performed,
SA-β-Gal activity is not only present in senescent cells
(37). Studies have found that cells lacking GLB1 gene
undergo unimpeded senescence (38). In addition, osteoclasts
and macrophages themselves have higher levels of β-Gal
activity (39, 40). Therefore, SA-β-Gal activity assay combined
with other markers may be more reliable for determining
cellular senescence.

Senescence-associated secretory
phenotype

Senescent cells influence surrounding environment and
communicate with their neighbors by producing a complex

FIGURE 2

Pattern diagram of senescent cell hallmarks.
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mixture of secreted factors that change the behavior of both
themselves and nearby non-senescent cells (41–43).

The attribute of senescent cells secreting pro-inflammatory
cytokines, chemokines, angiogenic factors, and proteases is
referred to as senescence-associated secretory phenotype (SASP)
(44). SASP can have positive or negative effects on the organism.
When it is excessively elevated or persistent, SASP causes local
and potentially systemic inflammation, destroys tissue structure,
and stimulates adjacent cells to senescence. In contrast, local
or transient SASP stimulation may promote recovery of tissue
damage (44). Cytokines IL-6 and IL-8 in SASP enhance the
growth stagnation of senescent cells, which is detrimental (45).
MMPs, the component of SASP, can limit fibrosis after liver
injury or during skin wound healing, which is beneficial (46,
47). SASP enhances and spreads senescence through autocrine
and paracrine. IL-1α, TGF-β and IL-6 promote senescence in a
cellular autonomous manner, while many other SASP factors act
in a non-cellular autonomous manner, thus altering the behavior
of neighboring cells (48, 49).

SASP is highly heterogeneous and regulated at multiple
levels (50). Transcriptional level regulation: SASP is mainly
regulated by activation of nuclear factor kappa-B (NF-κB) and
CCAAT/enhancer binding protein β (C/EBPβ) transcription
factors (47). Janus kinase (JAK), transcription activator (STAT)
pathways and NOTCH signaling are also involved in regulating
SASP expression (51). Epigenetic regulation: Bromine domain
and extra-terminal (BET) family protein BRD4 recruited the
super enhancer element adjacent to SASP gene, resulting in the
remodeling of the enhancer (52). Decreased histone H3K9me2
(53) and histone deacetylase silencing information regulator
2 related enzyme 1 (SIRT1) (54), increased expression of
histone variant macroH2A1 (55) in the promoter region of key
SASP factors are involved in the regulation of SASP. Histone
variant H2AJ accumulated in senescent cells is also involved
in the induction of SASP (56). Other epigenetic mediators,
such as histone lysine-n-methyltransferase 2A (MLL1 and
HMGB2), also promote SASP production by keeping their gene
loci open and active (57, 58). Post-transcriptional regulation:
Rapamycin (mTOR) is a key regulator of protein translation
in senescent cells. MTOR mainly regulates SASP through
two mechanisms. On the one hand, mTOR promotes IL-1α

translation and activates NF-κB and C/EBPβ (59). On the
other hand, mTOR indirectly inhibits the RNA-binding protein
ZFP36L1, preventing it from degrading the mRNA encoding
SASP factor (60).

P53/p21 and p16/Rb pathways

The p53/p21 signaling pathway is activated in response
to DNA damage caused by oncogenic factor mutations,
telomere wear or oxidative stress, thereby inducing cellular
senescence (61, 62). The activation of p53 is regulated
by post-translational modifications, including ubiquitination,

methylation, phosphorylation and acetylation (63). Mouse
double minute 2 (MDM2) is an E3 ubiquitin ligase that plays
an important role in p53 degradation as a negative regulator
(64). Activated p53 regulates the expression of numerous
anti-proliferation genes and participates in cellular senescence
(65, 66). In addition, p53 is an important tumor suppressor
protein that regulates p21 transcription process (67). P21 is
a cyclin kinase (CDK) inhibitor that inactivates all CDKs,
thereby inhibiting cell cycle progression. Specifically, p21
inhibits the CDK complex activity by interacting with two
cyclin-binding mods (Cy1 and Cy2), resulting in the removal
of phosphorylation of the Rb protein family and subsequent
binding to E2F to form the DREAM complex, eventually which
leads to cell cycle stagnation (68, 69). P21 also promotes
senescence by down-regulating mitotic gene cyclin E2 and up-
regulating senescence-related gene fibronectin-1 (70). However,
p21 can also be activated in a p53-independent manner, induced
by pathway such as TGF-β and by using Sp1 as a main
transcription factor (71–73).

P14 (ARF), p15 and p16 are three tumor suppressor proteins
encoded by INK4/ARF gene (74). ARF regulates the stability of
p53 by binding to MDM2, whereas p53 regulates the expression
of ARF through a negative feedback mechanism (75, 76). P16
directly binds to CDK4/6 and blocks the formation of CDK4/6
complex, thereby inhibiting Rb phosphorylation and facilitating
E2F target gene expression (77). Rb family is one of the main
targets of CDK complex, and its most significant function is
to bind and inactivate E2F complex and prevent transcription
of E2F target genes. Dephosphorylated pRb binds to E2F to
form the Rb-E2F complex that inhibits transcription of genes
involved in cell cycle progression by binding to the promoter
region of E2F target genes (78). This inhibitory mechanism
is eliminated by CDK2-mediated Rb hyperphosphorylation,
which releases E2F and promotes S-phase gene transcription
and cell cycle progression (79). In addition, p16 has also been
reported to induce cellular senescence in a manner independent
of p53 (80).

Apoptosis resistance

Apoptosis is a kind of spontaneous and orderly death
controlled by genes, which helps to maintain homeostasis
(81, 82). Various pro-apoptotic signals initially stimulate
different signaling pathways and eventually converge into a
common mechanism: up-regulating the expression of cysteine
proteases, activating caspase and executioner caspase, and which
ultimately leads to degradation of cell components (83). This
mechanism is negatively regulated by a variety of genes, the
most common of which is the Bcl-2 family (84). Studies have
shown that anti-apoptotic factors Bcl-W, Bcl-XL and Bcl-2 of
the Bcl-2 family are significantly upregulated in senescence
induced cells, and these proteins can successfully induce cellular
senescence after being removed (85, 86). However, there are
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still great differences in apoptosis resistance among different cell
types (87).

Metabolic reprogramming

Senescent cells undergo a series of metabolic changes
related to increased oxidative stress and oxidative protein
accumulation, impaired protein homeostasis and specific
metabolic pathways (88). Increased metabolic activity is
considered to be an adaptive change, and senescent cells need
metabolic reprogramming to meet their nutritional and energy
requirements in the senescent state, such as increased SASP
secretion, oxidative stress and endoplasmic reticulum stress
(87). In addition, studies have also found that autophagy in
senescent cells is combined with protein synthesis to overcome
the amino acid shortage (89). Meanwhile, the combination
of metabolomics and proteomics has revealed that senescent
cells can flexibly use different metabolic pathways to improve
survival and support function. Specifically, the tricarboxylic acid
(TCA) cycle, pentose phosphate and nucleotide pathways are
upregulated in senescent cells, while the fatty acid (FA) pathway
is downregulated (90).

Relationship between cellular
senescence and abdominal aortic
aneurysm

AAA is a degenerative cardiovascular disease, partly
characterized by local weakness of the abdominal aorta,
which may be an objective manifestation of changes in
the internal microenvironment of local cellular components
and extracellular matrix components, namely, the result of
vascular remodeling. In the process of vascular remodeling,
the most significant feature is the loss of VSMCs and
infiltration of immune inflammation, which is very consistent
with the two typical characteristics of senescent cells, the
reduced proliferation ability and SASP, suggesting that cellular
senescence may play an important role in the pathogenesis of
AAA. It can’t be ignored that AAA is more common in elderly
patients, and elderly patients are the main population of aging.
Below, we will elaborate on the evidence and mechanisms of
local and circulatory senescence in patients with AAA (Table 1).

Evidence and mechanisms of
cellular senescence in abdominal
aortic aneurysm

A large number of studies have found that the formation
and progress of AAA is closely related to cellular senescence.

Liao et al. obtained VSMCs derived from paired AAA and
adjacent (non-aneurysmal) inferior mesenteric artery (IMA)
using explants and observed their differences during successive
passages in culture. The results showed that VSMCs derived
from AAA were larger and rounder in appearance than VSMCs
derived from IMA, with significantly reduced proliferation
ability and limited in vitro life (91). This is the first report of signs
of senescence in AAA medial VSMCs, which lays the foundation
for us to explore the correlation between the two. VSMCs
senescence characterization has also been confirmed in human
end-stage aneurysm tissues and age-matched saphenous vein
tissues (92). Subsequent study has shown that, compared with
the control group, the expression of telomerase in endothelial
cells of AAA patients is significantly reduced. The association
persisted after adjusting for age, sex, coronary artery disease,
hypercholesterolemia, hypertension and smoking (93). The
finding further suggests that cellular senescence is closely
related to AAA, and we have reason to believe that cellular
senescence is a key link in the pathogenesis of AAA. Meanwhile,
it has been reported that circulating leukocyte DNA content
can predict vascular telomere content, which can serve as an
accurate proxy for human vascular age (94, 95). In recent years,
it has been found that the mesenchymal stem cells (MSC)
of aneurysm wall have senescence state, which promotes the
occurrence and development of AAA. Compared with adipose-
derived mesenchymal stem cells from healthy donors (H-ASC),
adipose-derived mesenchymal stem cells from patients with
AAA (AAA-ASC) were characterized by enhanced senescence,
such as increased SA-β-Gal activity and decreased proliferation
and migration. In addition, AAA-ASC showed decreased cell
function with mitochondrial kinetic disorder, production of
reactive oxygen species (ROS) and decreased mitochondrial
membrane potential (96). Similar studies have found that
vascular-resident mesenchymal stromal cells (AAA-MSC) and
circulating endothelial progenitor cells (EPCs) in patients with
AAA have the characteristics of senescent cells and damage of
vascular repair ability of MSC (97, 98). Besides, another study
has found that pretreatment of elderly mice with oral anti-
aging agents (dasatinib + quercetin) can reduce the abundance
of senescent cells in the arterial wall and surrounding tissues,
and inhibit the severity of Ang II-induced AAA (99). Further
elucidation that cellular senescence supports the occurrence and
development of AAA, and reversal of cellular senescence is
helpful to explore a new strategy to restore AAA therapy.

VSMCs play a key role in maintaining vascular system
development and normal vascular homeostasis (100–102).
Under physiological conditions, VSMCs are located in the
vascular media, and their main functions are to regulate
vasoconstriction, blood pressure, arterial tension diameter and
flow distribution (103). VSMCs have differentiated plasticity
in response to abnormal environmental stimuli, and tend to
transform from a contractile phenotype to a synthetic phenotype
and secrete pathogenic factors, such as ROS, inflammatory
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TABLE 1 Evidence of cell senescence in the aneurysm wall.

Sample types Sample sources Senescent signs References

Vascular SMCs AAA tissues Larger and rounder in appearance, reduced proliferation
ability and limited in vitro life.

(101)

IMA tissues

Vascular SMCs AAA tissues Prominent “rhomboid” morphology, increased spread area,
impaired proliferation and SA-β-gal activity.

(102)

Saphenous vein tissues

Vascular ECs AAA tissues Decreased telomerase expression. (103)

Normal aorta tissues

Circulating leucocytes AAAs group Reduced telomere length. (104, 105)

Normal aortas group

Vascular MSCs AAA tissues Decreased proliferation and migration ability, increased
mitochondrial fusion, ROS production and SA-β-gal

activity,

(106)

Normal aorta tissues Decreased mitochondrial membrane potential and autophagy
level, downregulation of IL-10 secretion, upregulation of IL-6

and TNF-α secretion.

Vascular MSCs AAA tissues Decreased proliferation, increased cell surface area and
ROS production, activation of the p21, p16 and DNA

damage response, dysregulated autophagy.

(107)

Normal aorta tissues

Circulating EPCs AAAs group Increased SA-β-gal activity. (108)

Normal aortas group

cytokines and MMPs (104). Importantly, oxidative stress and the
secretion of inflammatory cytokines are also important features
of cellular senescence. The phenotypic transformation process
has been fully verified and is closely related to the occurrence
and development of AAA (105). In terms of mechanism,
cellular senescence is also an important pathological process
in the formation of AAA. In addition, aging has become an
independent risk factor for cardiovascular diseases (CVDs),
so how cellular senescence is involved in CVDs has been
the focus of researchers for the past several decades (106).
Signs of VSMCs senescence have been found in aging vascular
walls, represented by reduced proliferation rate and phenotypic
transformation (107). Although the current understanding of
VSMCs senescence is not fully adequate, it is necessary to
decipher the correlation between senescence-related molecules
and AAA progression in the search for new therapies.

SIRT1-related senescence and
abdominal aortic aneurysm

The SIRT protein family is a group of histone
deacetyltransferases with nicotinamide adenine dinucleotide
(NAD)+ dependence, including seven homologous genes of
SIRT1-SIRT7 (108). SIRT1 is the most well-studied member
of the SIRT protein family and has been proven to regulate
senescence and age-related diseases (109, 110). A Study
has shown that endogenous SIRT1 expression in VSMCs of

elderly donors is significantly reduced compared with that of
young donors. The loss of SIRT1 expression leads to cellular
senescence in VSMCs, which is related to cell proliferation and
migration ability, even VSMCs from young donors showed
cellular senescence after si-SIRT1 knockout (111). These data
suggest that down-regulation of SIRT1 motivates to VSMCs
senescence. It is found that the expression and activity of SIRT1
are significantly reduced in human AAA samples. VSMC-
specific knockout of SIRT1 accelerates Ang II-induced AAA
formation and rupture and AAA-related pathological changes,
while VSMC-specific overexpression of SIRT1 inhibits Ang
II-induced AAA formation and progression. Mechanistically,
SIRT1 inhibits p21-dependent VSMCs senescence by blocking
Ang II-induced binding of NF-κB to monocyte chemotactic
protein-1 promoter (MCP-1) (112). In addition, the role of
phosphodiesterase 1C (PDE1C) in VSMCs senescence in vitro
and in vivo depends on SIRT1. Mechanism studies further
demonstrate that inhibiting cAMP by PDE1C stimulates SIRT1
activation, which leads to subsequent upregulation of SIRT1
expression. It is also found that the pharmacological inhibition
of PDE1C significantly slows down the progression of AAA
(113). Importantly, SIRT1 activators show good effects in
regulating lipid metabolism, inhibiting inflammation and
protecting CVDs (110).

Non-coding RNAs play an important role in regulating the
formation of AAA and the senescence of VSMCs (114–116).
Upregulation of miR-199a-5p, enhanced expression of p-p53
and p21, and decreased expression of SIRT1 were observed
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in plasma and Ang II-treated VSMCs of patients with AAA.
Bioinformatics prediction of TargetScan database and analysis
of dual luciferase reporter genes showed that the 3′-UTR of
SIRT1 had a potential binding site for miR-199a-5p, indicating
that SIRT1 was a potential target of miR-199a-5p. Mechanically
speaking, Ang II treatment significantly increased the level
of miR-199a-5p, thereby promoting VSMCs senescence to
participate in the formation of AAA by inhibiting the expression
of SIRT1 (117). During the continuous culture of human aortic
VSMCs in vitro, an increase in miR-34a level was observed
accompanied by down-regulation of SIRT1. Surprisingly, even
in young human aortic VSMCs, miR-34a overexpression and
SIRT1 inhibition may induce cellular senescence. However,
cellular senescence induced by overexpression of miR-34a in
VSMCs was saved by transfection of SIRT1 protein, implying
that the pro-senescence effect of miR-34a depended on SIRT1
participation (118). In addition, a research has confirmed that
miR-34a induces senescence in endothelial cells, which is also
achieved by targeted inhibition of SIRT1 (119). Meanwhile,
other study has found that miR-188-5p with senescence
induction in aneurysm wall co-locates with CD68 and CD3,
suggesting that miR-188-5p may regulate the senescence of
macrophages and T cells to involve in the occurrence and
development of AAA (120). Therefore, different cell types
may have different mechanisms of senescence regulation. In
addition to miRNAs, long non-coding RNAs (lncRNAs) are
also participated in AAA lesions and VSMCs senescence.
Both ANRIL and SIRT1 were down-regulated and miR-
181a expression was up-regulated in dual-channel-triggered
senescent VSMCs. However, the overexpression of ANRIL
prominently restrained senescence and promoted VSMCs
viability via p53/p21 regulatory pathway. Mechanically, ANRIL
overexpression inhibited miR-181a expression, which decreased
the 3′-UTR inhibitory targeted binding of miR-181a to SIRT1
and increased SIRT1 expression (120). In the IgE-induced
VSMCs senescence model, lincRNA-p21 was found to be
upregulated, thereby enhancing p21 expression without altering
p53 expression. Rescue experiments also proved that IgE
induced VSMCs senescence and aggravated the development
of AAA by upregulation of lincRNAp21/p21 pathway (121).
The above studies provide more new potential targets for the
treatment of AAA.

Therefore, it can be seen that SIRT1 is a key factor
in regulating cellular senescence, and it must be the most
promising protective regulator for AAA. It was found that
the protective effect of calorie restriction (CR) on AAA
development was eliminated in VSMC-specific SIRT1 knockout
mice (122). In addition, licorice chaltone A (LA), an ingredient
in licorice, prevented Ang II-induced AAA formation in
apoE−/− mice by upregulating SIRT1 in VSMCs (123).
Resveratrol (RSV), a natural activator of SIRT1, significantly
alleviated Ang II-induced VSMCs senescence (124). A selective
activator of SIRT1, SRT2104, was found to improve serum lipid

metabolism parameters including total cholesterol, low-density
lipoprotein and triglycerides in CVDs (125), and also attenuated
serum pro-inflammatory cytokine levels and coagulation
activation induced by intravenous LPS in healthy subjects (126).
Senescent mechanisms and intervention measures for AAA
patients based on SIRT1 are listed in Figure 3.

Mitochondrial dysfunction-related
senescence and abdominal aortic
aneurysm

Mitochondrial dysfunction is an important cause of cellular
senescence, which is different from senescence caused by
genotoxic stress. Mitochondria oxidize NADH to NAD+

to maintain their normal function, but when mitochondria
are dysfunctional, the ratio of NAD+ to NADH is out of
whack, leading to the activation of adenosine monophosphate
activated protein kinase (AMPK) and p53, which triggers
mitochondrial dysfunction related senescence (miDAS) (127).
Mitochondria are the main source of ROS, and mitochondrial
dysfunction may contribute to abnormal ROS production (128).
Specifically, elevated ROS levels impair the lifespan of vascular
cells during cellular senescence and have been demonstrated
in human brain aneurysms. Dysregulation of mitochondrial
dynamics is also a key factor in cellular senescence, which
is mainly regulated by fission and fusion processes and is
closely related to cardiovascular diseases (129, 130). Fortunately,
studies have confirmed that targeted inhibition of Drp1, a
key protein of mitochondrial fission, and enhancement of
Mfn1, a key protein of mitochondrial fusion, can inhibit the
production of ROS and the senescence of VSMCs to maintain
mitochondrial integrity, which is a potential treatment method
to inhibit the formation and progression of AAA (131, 132).
In addition, CR is a non-pharmacological intervention that
regulates mitochondrial function to prevent AAA formation.
Mechanistically, p53 knockout almost completely blocks the
protective effect of CR by inhibiting the activity of cytochrome
C oxidase assembly protein 2 (SCO2)-dependent mitochondrial
complex IV. On the contrary, SCO2 overexpression restores
the beneficial effect of CR on antagonizing Ang II-induced
expression of AAA-related molecules and ROS production in
VSMCs (133).

MiDAS is characterized by imbalance of NAD+/NADH
and mitochondrial fusion/fission. It is noteworthy that SIRT1
is an NAD+ dependent histone deacetylase, so SIRT1 is
closely related to NAD+/NADH (108). The therapies that
improve mitochondrial function by exogenous supplementation
of their precursors, such as nicotinamide riboside (NR) and
nicotinamide mononucleotide (NMN), have been demonstrated
to be effective in the treatment of CVDs in vivo experiments
(134, 135). The natural compound resveratrol not only acts as
an activator of SIRT1, but also acts as an antioxidant, helping
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FIGURE 3

Regulation mechanism and intervention between SIRT1-related senescence and AAA.

to remove excessive ROS and reducing mitochondrial damage
to protect cellular senescence and AAA (136, 137). In addition,
mdivi1, an inhibitor of Drp1, can also effectively maintain
mitochondrial integrity and reduce vascular senescence (132,
138). Intervention targets and methods related to MiDAS
for the occurrence and progression of AAA are listed in
Figure 4.

Autophagy-related senescence and
abdominal aortic aneurysm

Autophagy plays an important role through a complex
network of autophagy related proteins (ATG) involved in the
induction and formation of autophagosomes (139). The key
step of autophagosome evolution is to transform LC3-I into
lipidized LC3-II (140). Cellular senescence under normal and
pathological conditions is often closely related to the reduction
of autophagy (141). Aortic autophagy decreases with age,
leading to age-related dysfunction of endothelial cells (ECs) and
arterial calcification (142). Defective autophagy has been shown
to promote senescence in VSMCs. It was reported that a large
amount of SQSTM1/p62 was accumulated in the VSMCs of
ATG7 knockout mice, which accelerated the occurrence of SIPS,
such as cell enlargement, nuclear hyperplasia, cell cycle arrest
and increased SA-β-Gal activity (143). Importantly, trehalose
or spermidine can slow age-related aortic pulse wave velocity
and reduce the accumulation of oxidative stress and advanced
glycation end-products (AGEs) in arterial wall (144). At present,
there are few mechanisms about how autophagy regulates the

senescence of aneurysm wall cells, but the veil behind autophagy
will be revealed with the further research.

Other

The nucleoli are sites where ribosomal DNA (rDNA)
transcription (mediated by RNA polymerase I or Pol I) and
ribosomal biogenesis occur. Studies have shown that inhibition
of rDNA transcription in eukaryotic cells triggers a conserved
cellular stress response called nucleolar stress (also known as
ribosomal stress) (145, 146). Nucleolar stress induces activation
of p53 pathway, thus promoting cellular senescence (147). In
human AAA tissue, increased nucleolar stress in the medial
cells is accompanied by localized DNA damage responses in
the nucleolar septum. In vitro, nucleolar stress induces atypical
DNA damage responses, mediating phosphorylation of p53
and senescence of VSMCs (148). However, clearance of rDNA
transcription disturbance and nucleolar stress can contribute to
recovery and prevention of AAA (148–150).

In addition, studies have found that both exogenous
PM2.5 and endogenous intestinal microbiota metabolite
trimethylamine N-oxide (TMAO) can mediate VSMCs
senescence and promote the formation of AAA (151,
152). Other researchers found that treatment with soluble
recombinant human ApoER2 or hydroxyurea, a DNA synthesis
inhibitor, can inhibit PCSK9-induced VSMCs senescence (153).
Meanwhile, a study have shown that inhibition of VSMCs
senescence by targeting the MKL1/p38/MAPK pathway can be
a potentially effective method for the treatment of AAA (154).
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FIGURE 4

Regulation mechanism and intervention between mitochondrial dysfunction-related senescence and AAA.

At the same time, a study found that excessive mechanical
stress induces the continuous release of ADP and promotes
VSMCs senescence through P2RY12-dependent Ras activation,
which leads to excessive inflammation and degeneration
and ultimately accelerates the formation and progression of
thoracic aortic aneurysm (155). Another study reported that
the reduced number and impaired function of circulating
EPCs in patients with intracranial aneurysms may contribute
to the pathophysiological process of aneurysm formation
(156). In addition, a study has confirmed that cellular
senescence is closely related to the formation process of retinal
microaneurysms in the elderly (157).

Conclusion

With the discovery of the physiological and pathological
effects of senescence, many researchers have focused on
the exploration and development of therapeutic methods
targeting senescent cells. On the one hand, we have
made good achievements in pre-clinical basic research,
such as the research and development of senescent cell
scavenger and SASP inhibitor(dasatinib + quercetin),
which can effectively improve the continuous deterioration
of senescence and even reverse senescence. Of course,

on the other hand, we still need to do a lot of more
difficult work, such as the search for specific markers
of senescence cells, the heterogeneity and dynamics of
senescence, the combined application of anti-senescence
and pro-senescence therapy, and the precise change
of SASP. However, as biological approaches and drug
discovery technologies continue to advance, the underlying
mechanisms that regulate senescence will come to light,
offering promising transformational opportunities for the
development of new treatments that minimize the harmful
consequences of senescence and bring great benefits to elderly
patients with AAA.

Although a large amount of evidence has been found
to prove that cellular senescence is closely related to AAA,
there are still some limitations in this paper. 1. Most of this
paper discusses the evidence of VSMCs senescence in the
vascular wall, but lacks the description of ECs, macrophages
and other vascular cells. 2. The evidence chain between cellular
senescence and AAA has not been fully elucidated in some of
the included literature.

In this paper, we conclude that the reduction of SIRT1
molecular activity, on the one hand, leads to cell cycle
arrest through p53/CDK2 signaling, and on the other hand,
induces inflammation through the activation of NF-κB signaling
pathway, both of which jointly promote aging and eventually
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form AAA. Therefore, designing drugs targeted SIRT1 may be
effective in preventing AAA formation and progression.
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