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ABSTRACT Accurate predictions across multiple fields of microbiome research have
far-reaching benefits to society, but there are few widely accepted quantitative tools
to make accurate predictions about microbial communities and their functions. More
discussion is needed about the current state of microbiome analysis and the tools
required to overcome the hurdles preventing development and implementation of
predictive analyses. We summarize the ideas generated by participants of the Mid-
Atlantic Microbiome Meet-up in January 2019. While it was clear from the presenta-
tions that most fields have advanced beyond simple associative and descriptive
analyses, most fields lack essential elements needed for the development and appli-
cation of accurate microbiome predictions. Participants stressed the need for stan-
dardization, reproducibility, and accessibility of quantitative tools as key to advanc-
ing predictions in microbiome analysis. We highlight hurdles that participants
identified and propose directions for future efforts that will advance the use of pre-
diction in microbiome research.
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In this conference report, we summarize
the ideas generated by participants of the Mid-
Atlantic Microbiome Meet-up about how to
advance the use of predictions in microbiome
research that will be of interest to a wide
variety of microbiome researchers.

Published

PERSPECTIVE
Applied and Environmental Science

September/October 2019 Volume 4 Issue 5 e00392-19 msystems.asm.org 1

8 October 2019

https://orcid.org/0000-0003-2083-6027
https://orcid.org/0000-0001-6721-8061
https://orcid.org/0000-0001-7365-2382
https://doi.org/10.1128/mSystems.00392-19
https://doi.org/10.1128/mSystems.00392-19
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:jdiruggiero@jhu.edu
mailto:sprehei1@jhu.edu
https://msystems.asm.org
https://crossmark.crossref.org/dialog/?doi=10.1128/mSystems.00392-19&domain=pdf&date_stamp=2019-10-08


KEYWORDS microbiome, bioinformatics, metagenomics, prediction, machine
learning, conceptual models, quantitative models

Prediction can be used for prognosis, interventions, and knowledge generation,
since testing predicted versus actual outcomes can reveal gaps in knowledge.

Therefore, developing an understanding of microbial processes to support predictions
has far-reaching benefits in diverse areas of microbiome research. Advances toward
predictive analyses across a spectrum of disciplines have been made, such as predicting
disease states from microbial community composition (e.g., see reference 1) and
environmental conditions from microbial community composition (e.g., see reference
2). Yet, the field of medicine has not routinely implemented microbiome analysis as part
of standard clinical care, diagnosis, or treatment. Nor does the field of environmental
engineering use microbial community composition to predict the ecosystem response
to changing environmental conditions. Although there have been a few papers that
have attempted to provide a framework for advancing the field of predictive analysis
in microbiome research (3–5), further discussion is required to spark innovation and
drive quantitative and predictive analysis forward in all microbiome research areas.

To address the topic Predictions and the Microbiome and promote additional
discussions around predictive analysis, we organized the Mid-Atlantic Microbiome
Meet-up (M3) 2019 meeting at Johns Hopkins University. M3 was started in 2016 at the
University of Maryland College Park (spearheaded by Todd Treangen and Mihai Pop)
and has spurred discussion and interactions on a variety of topics of general interest to
microbiome research, including biodefense and pathogen detection (6) and metag-
enomic software validation (7). M3 conferences have also provided an excellent venue
to catalyze interactions across clinical, environmental, and computational microbiome
fields. As such, this meeting facilitated the presentation and discussion of issues that
are broadly applicable across microbiome fields to encourage interactions and discus-
sions of common challenges. This report summarizes the talks, posters, and breakout
session discussions from this conference. We offer recommendations based on these
discussions for advancing predictions in microbiome research.

MEETING DEMOGRAPHICS

This year’s M3 meeting participants represented faculty, postdocs, and students
drawn largely from academic institutions around Maryland, with a minority of partici-
pants coming from farther away and from nonacademic institutions. The composition
of participants was fairly evenly split between students, postdocs, and faculty, with a
smaller proportion of attendees with other positions (Fig. 1). Geographically, attendees
were largely drawn from the local community of Johns Hopkins University and the
University of Maryland’s multiple campus locations (Fig. 2 and 3). However, M3 partic-
ipants came from over 30 different institutions, mostly along the East Coast, including

FIG 1 Self-reported positions of registered M3 attendees for the 2019 meeting.
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two Historically Black Colleges and Universities (HBCUs), Howard University and Morgan
State University. This conference, which is local in nature, provides a venue for
interactions between researchers working in the Mid-Atlantic region and familiarizes
everyone with resources and expertise in their local community. One of the objectives
of M3 is to encourage student participation by maintaining low registration and travel
costs. Although this information was not collected, people from a variety of back-
grounds participated in the meeting and discussions, such as environmental science,
microbiology, and veterinary and human medicine, along with many participants who
mentioned that they were not microbiologists or do not routinely work on the
microbiome.

DEFINITIONS AND SCOPE

We loosely define microbiome research as the analysis of composition, function, and
biotic and abiotic interactions of microorganisms in complex communities. For the
purpose of this discussion, participants were told to define microbiome predictions as
the estimation of a set of unknown variables (from the past, present, or future) from a
set of known variables, where microorganisms or their components, functions, or
consequences are either the known or unknown variable. We uniquely focused on
aspects of microbiome predictions that are not well-established, especially those
predicting complex community structure and function at a future state, and drew on
microbiology and other fields as references for examples of predictions that are
well-developed and commonly implemented.

Discussions were designed to encompass a broad set of predictions stemming from
existing models and modeling tools that vary with respect to their purpose, scope,
implementation and methodology. As our goal was to focus on the microbiome,
relevant models involve or incorporate data from multiple microbial species or groups,
typically through the use of metagenomic analysis. Machine learning/statistical ap-
proaches and mechanistic/theory-based models are two broad categories of predic-
tions that formed the basis for discussions at this conference (Table 1). Machine
learning/statistical approaches (e.g., random forest, neural networks) are well suited for
classification predictions from metagenomic data, but cannot always elucidate the
mechanisms structuring the community and outcomes. Mechanistic/theory-based
models (e.g., biogeochemical models, genome-scale metabolic models) provide a
mechanistic explanation for observations typically based on theoretical underpinning,
but typically lack resolution to explain a majority of metagenomic observations, espe-

FIG 2 Geographic distribution of M3 participants drawn from registration information.
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cially in complex communities. The divide between models explaining observations
and models testing theory was a central theme in our conference, resulting in a call to
unite these approaches.

MEETING PRESENTATIONS: STATE OF THE FIELD

Numerous talks and posters highlighted progress in advancing microbiome research
beyond a purely descriptive science by incorporating quantitative analysis or predic-
tions. Alvaro Sanchez (Yale University) began the conference by providing an excellent
framework for advancing predictions in microbiome research by focusing on how
progress will likely be made when observational data can be combined with theory
developed from simple, well-constrained model systems. Dr. Sanchez used the field of
astronomy as an example. He highlighted how the movement of stars and planets
(observational data) was combined with the variation in pendulum motion at different
locations of the planet (well-constrained model system) to integrate the concept of
gravity into a quantitative theory of mechanics. This knowledge built an understanding
of our solar system that led to the successful deployment of probes to distant celestial
bodies (e.g., the New Horizons spacecraft’s fly-by of Ultima Thule). Therefore, to
advance predictions in microbiome research, we need not only observational studies,
research on model systems, and theoretical concepts, but also mechanisms to bridge
the gap between observation and theory. Talks at the meeting showcased research in
both observational data set collection and analysis and theory development with
model systems.

FIG 3 Breakdown of M3 participant affiliation with institutions listed.
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TABLE 1 Examples of predictive models and tools guiding conference presentations and discussions

Category Model type or toola Microbiome type Input for predictionb Prediction

Machine-learning/statistical Random forest (32) Human microbiome,
gut

Genus-level OTUs Disease state for
10 different
diseases

Artificial-neural
network, Bayesian
network (33, 34)

Aquatic, marine,
western English
Channel

Environmental
conditions or
satellite data

Relative abundance
of taxa (order
level) or their
associated metabolites
in space or time

Gradient boosting
regression (35)

Human microbiome,
gut

Meal content,
daily activity,
physiological
features,
questionnaire
responses, and
microbiome features

Postmeal glycemic
response

Naive Bayes and neural
network models (36)

Human microbiome,
gut

Informative OTUs Colon polyps

BSI risk index (37) Human microbiome,
gut

Pretreatment
fecal OTUs

Risk of bacteremia
during chemotherapy
treatment

Multiple regression on
distance matrices (38)

Terrestrial, dust Soil and climate
variables

Bacterial and
fungal composition

Linear and nonlinear
regression (39)

Aquatic, marine,
global ocean

Environmental
factors

Taxa and
diversity
distributions

Regression (40) Terrestrial, soil Historical and
contemporary
climate variables

Diversity and
taxon abundance
as soil communities
equilibrate with
current conditions

Mechanistic/theory-based Individual- or agent-based
model (41)

Engineered systems,
wastewater treatment

Initial state
conditions,
biomass growth,
death and
chemical reactions

Granule solute and
microbial community
composition

MacArthur’s resource
competition model with
by-product secretion and
metabolic “families” (8)

Experimental, model
system

Composition carbon
source, microbes with
randomly assigned
resource uptake
rates

Family-level
convergence with
species-level
diversity on same
growth media

Global ocean circulation,
biogeochemistry
and
ecosystem model (42–44)

Aquatic, marine,
global ocean

Global ocean state,
stochastically
assigned
microbial growth
preferences or
genome composition

Microbial community
structure, diversity,
and gene
distribution

Water column hydrological
and biogeochemical
model (45, 46)

Aquatic, freshwater
lake

Initial chemical state,
biogeochemical
reactions

Microbial functional
type distribution
and chemical
composition of future
or unobserved state

Constraint-based
genome-scale
metabolic model (47)

Experimental, coculture
(sulfate reducer/
methanogen)

Genome-scale
biogeochemical
reactions,
externally supplied
chemicals

Acetate and methane
fluxes

Constraint-based
genome-scale
metabolic model (48)

Human microbiome,
gut

Genome-scale
biogeochemical
reactions, externally supplied
chemicals

Changes of
metabolites in
response to diet
interventions

aThe model type or tool is represented by the microbiome example, with the associated reference(s) in parentheses.
bNot training, if applicable.
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Controlled experiments with model systems. Several talks focused on the analysis
of well-controlled, model systems. Dr. Sanchez described research in his lab aimed at
developing a predictive, quantitative theory of microbial community assembly. To-
gether with his team, he focuses on predicting the composition of complex natural
communities under simplified and controlled growth conditions. With glucose as the
sole carbon source, they found that community assembly is deterministic at the family
level, with a predictable ratio of Enterobacteriaceae to Pseudomonadaceae (8), or more
generally fermenters and nonfermenters, of 75% to 25%, respectively. To determine
whether other carbon sources also have deterministic assembly at the family level, they
used flux balance analysis to create a similarity metric to compare carbon substrates.
This allowed them to cluster sugars and sugar alcohols together, separately from
carboxylic acids and organic alcohols. While the 75/25 ratio of fermenters to nonfer-
menters held across sugars and sugar alcohols, it did not hold for carboxylic acids and
organic alcohols. Nevertheless, the fermenters-to-nonfermenters relationship was ro-
bust enough to predict the family-level composition of novel carbon sources with
reasonable accuracy.

Other talks highlighted research using model systems to understand basic principles
of microbial community function and dynamics. Joseph Zackular (University of Penn-
sylvania and Children’s Hospital of Philadelphia) described his research, which uses a
combination of mouse models and in vitro systems to study Clostridium difficile infec-
tion. Dr. Zackular described how excess dietary zinc modulates microbial community
composition in mice and exacerbates C. difficile-associated disease (9). Furthermore, he
showed how microbiota-pathogen interactions impact C. difficile infection. Using in
vitro systems to study interspecies interactions, his work demonstrated that Enterococ-
cus and C. difficile cross talk results in alterations in C. difficile growth and virulence. Dr.
Zackular postulates that co-occurrence of C. difficile with certain pathogenic and
commensal members of the microbiota may impact the severity of disease.

Additional talks focused on manipulating specific variables within a variety of model
systems and experimental conditions. Emmanuel Mongodin (Institute for Genome
Sciences, University of Maryland School of Medicine) presented work on the influence
of the gut microbiome on host immunity resulting in organ transplant rejection in mice.
Fecal transplants were used to manipulate the microbiome in mice receiving a heart
transplant. It was found that transplanting the microbiome of pregnant mice increased
survival over microbiome transplants from normal or colic mice, with the presence of
Bifidobacterium pseudolongum populations identified as significantly different between
these groups (10). Transplanting Bifidobacteria alone improved transplant outcome and
altered the host immune response. Carly Muletz Wolz (Smithsonian National Zoological
Park & Conservation Biology Institute) investigated the effect of temperature on the
microbiome and fungal pathogen load (Batrachochytrium dendrobatidis) of salaman-
ders. Dr. Muletz Wolz found that temperature directly and indirectly impacted sala-
mander skin microbiome diversity, both in a predictable manner. Temperature indi-
rectly impacted microbiome diversity through its direct effect on pathogen load, with
increasing pathogen load leading to increased changes in the microbiome. Dr. Muletz
Wolz also quantified how effective culturable bacterial strains were at killing B. den-
drobatidis across different temperatures to better predict which strains could serve as
probiotics across a range of temperatures.

Observational data analysis. Other talks were largely focused on using observa-
tions to advance our understanding and predictive power of microbial community
dynamics and function of natural systems. Jacquelyn Meisel (University of Maryland)
analyzed human stool microbiomes in a large case study of diarrheal disease in young
children. In 60% of cases, a single pathogen could not be detected (11), suggesting that
the disease state was either caused by a novel pathogen or by the association of
multiple organisms. The study found over 1,000 operational taxonomic units (OTUs)
enriched in cases versus controls, with Lactobacillus ruminis associated with nondysen-
teric samples. Facultative anaerobes were largely enriched in disease cases, including
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an association of Streptococcus with disease, which was only recently identified. In a
totally different field that exemplified the diversity of the M3 meeting, Eric Sakowski
(Johns Hopkins University) presented work to develop a novel experimental technique
to identify virus infections of cyanobacteria in the ocean using emulsion paired-
isolation concatenation PCR (epicPCR). This technique will fill the void in observational
data that currently exists in viral ecology and is an important first step toward
advancing predictions of how viruses will impact natural microbial communities. Rachel
Cooper (Johns Hopkins School of Medicine) presented her work to identify whether
microbiome community compositions were different in marmoset populations with
and without wasting syndrome. Preliminary data suggested that the microbial com-
munities are different, providing a mechanism to probe the cause of mortality in these
animals. Finally, Rebecca Mickol (American Society for Engineering Education, U.S.
Naval Research Laboratory) presented observations of the evolution of microbial
communities in alternating-current (cathodic/anodic) microcosms. Metagenomic ob-
servations suggested that a number of dominant microorganisms could play a role in
the generation or utilization of current.

Some talks advanced observational data analysis by attempting to develop or
explain observations with conceptual or quantitative models. Gherman Uritskiy (Johns
Hopkins University) presented a conceptual model framework with which to interpret
shifts in the microbial community after a catastrophic rain event in salt rock commu-
nities in the Atacama Desert, Chile. The initial response to the rain was characterized by
rapid shifts in both community membership and gene composition, while the micro-
biome’s recovery was achieved through gradual changes in the newly restructured
community. These dynamics resulted in rock communities that performed similar
functions to those from before the rain but were comprised of a new set of individual
strains. These observations allowed for the inference of a conceptual model of com-
munity dynamics in response to perturbation and the proposal of a quantification
method for the strain composition flux. Jeseth Delgado Vela (Howard University)
presented work using a quantitative biogeochemical model to explain nitrogen cycling
in a membrane-aerated biofilm reactor with increasing concentrations of influent
sulfide. Predictions of ammonia levels from a one-dimensional biofilm model of bio-
geochemical processes fell short of observed amounts. Through rate experiments using
15N and metagenomic analysis, Dr. Vela identified dissimilatory nitrate reduction to
ammonia (DNRA) coupled to sulfide or methane oxidation as a potential process to
explain discrepancies between experimental results and model predictions.

Two additional talks described quantitative frameworks to interpret metagenomic
data through improvements in machine learning techniques or by quantifying the bias
inherent in marker gene or shotgun metagenomic analysis. Mohammad Arifur Rahman
(George Mason University) discussed a multiple instance learning (MIL) framework to
determine clinical outcomes based on metadata and oral, skin, and gut microbiome
analyses (12). Validation and the biological significance of their approach remain to be
addressed. Michael McLaren (North Carolina State University) discussed how to mea-
sure and correct the error that occurs in measurements of microbial communities by
marker gene and shotgun metagenomics sequencing as each step in an experimental
workflow is biased toward detecting some taxa over others. Dr. McLaren presented
results of a recent study (13) that shows that a simple mathematical model captures
how bias distorts community measurements of defined bacterial communities (i.e.,
cellular mock communities). This model can be used to quantify and correct bias
(calibration) when calibration standards containing the taxa of interest are available. It
can also be used to determine whether certain metagenomics-based analysis and
prediction algorithms are expected to be more or less likely to be confounded by bias.

BREAKOUT REPORT

Participants were encouraged to discuss and share their own ideas about how to use
and advance predictions in their own fields of microbiome research and to identify
benefits of and obstacles to implementation. A number of themes emerged from these
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discussions, including (i) the need for reproducibility and standards of analysis, (ii) more
communication between researchers in different fields to better share ideas, and (iii)
integration of observations with theory to make predictions.

Standardization and reproducibility. Most discussion groups mentioned the chal-
lenge for prediction posed by the quantitative incomparability of microbiome mea-
surements made by different experiments. This was emphasized by one of the partic-
ipants who remarked that, for stool microbiome analysis to be used in diagnosis and
treatment, the results should not vary depending on which testing laboratory is used.
Microbiome measurements, such as marker gene and metagenomics sequencing, from
different experiments are typically made with a variety of sample extraction, library
preparation, and sequencing methodologies, each of which lead to experiment-specific
differences in the resulting measurements. A predictive model developed from data
generated in one experiment may not make reliable predictions on data obtained by
a different experiment that used, for example, different primer sets (14), sample storage
techniques (15), or DNA extraction methods (16). In addition to such technical variation,
biological differences in the cohorts or environments being sampled can result in a
model that makes accurate predictions on the samples it was developed on but that do
not transfer to a new set of samples. To be practically applicable, quantitative predic-
tions will have to explain observations across multiple data sets and be able to provide
useful information about the limitations and uncertainty associated with the prediction
due to technical, as well as biological, variables.

A major obstacle to developing and implementing predictions in microbiome
research lies in the limited use of control material (i.e., standards) and standardized
protocols in microbiome experimental and analysis techniques. Standardization of
protocols and widespread analysis of control materials were necessary to coordinate
large-scale microbiome sequencing projects, such as the Human Microbiome Project
(17, 18) and the Earth Microbiome Project (19). These efforts have also resulted in a
push for more standardization, especially in the human microbiome field (http://www
.microbiome-standards.org). Yet, outside of these coordinated efforts, standardization
of protocols and the regular use and reporting of control material could be substan-
tially improved, making it easier to test or validate predictions from samples collected
and analyzed from different groups.

Enhancing communication. Additional avenues of communication are needed
between researchers in different fields. It is essential to bridge the gap between the
theory and tools developed for observation-based data sets and those developed for
model systems through effective communication between groups. This applies to
model system developers and observational data collectors, computational scientists
and clinicians, human and environmental microbiome researchers, microbiologists, and
even nonmicrobiologists. Observational researchers could then have access to more
tools for analysis to identify relationships within their own system. Researchers may
become aware of existing models and standards in other fields of study that are
applicable to their own system. Proper communication requires common and basic
language, the creation of conceptual models that can be used to communicate
complex relationships, and mechanisms for nonexperts to access and use quantitative
models developed by experts. The power and limitations of any relationship or quan-
titative association should also be clearly communicated, such as the extent of testing
with different systems, populations, or conditions. Ideally, if a prediction or model is to
be used by a specific group (e.g., doctors, engineers, or managers), people from that
group should be involved in its development. These objectives are being increasingly
achieved through multidisciplinary collaborations and open access to data and analysis
pipelines.

Improving predictions with machine learning techniques guided by theory.
Machine learning techniques can be used to identify previously unknown relationships,
but are heavily dependent on the quality of the input data set. Machine learning allows
for robust quantitation of relationships between microbial components and metadata
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categories even before there is a mechanistic understanding to explain the relationship.
This is similar to the example from astronomy that was presented in the introductory
talk. A quantitative relationship of the movement of planets based on the size of
celestial bodies was developed before the role of gravity was understood. This so-called
“black box” top-down approach has been most commonly applied in the context of
single studies (e.g., references 20 and 21) and less often applied across multiple,
uncoordinated studies (e.g., references 22 and 23). The widespread use of standard
protocols and processing of control materials in microbiome analysis could allow these
techniques to provide more broadly comparable data sets to enhance and strengthen
predictions.

The results of machine learning techniques should be used with caution, ideally
paired with biological knowledge of the system to validate the results. Machine
learning techniques can identify predictive features that are not directly associated with
the condition or response itself. For example, machine learning can lead to misleading
predictions by picking up on extraneous features or biases (e.g., see reference 24).
Additionally, the results of machine learning techniques might be misleading if the
input data are biased or skewed (e.g., see reference 25). While machine learning
techniques can develop predictions with some degree of accuracy, it will be important
to interpret the results of these predictions within the context of in-depth biological
knowledge of the system to understand what predictions mean and how to apply them
properly.

CURRENT CHALLENGES AND RECOMMENDATIONS

The field of microbiome research is poised to progress from making observations of
microbial communities to predicting future states. The applications of such predictions
could be many and varied, from anticipating an individual’s likelihood of developing
certain diseases to forecasting the location and severity of harmful algal blooms. The
continued development of quantitative analyses of microbiome observations and
conceptual models that probe fundamental principles of community assembly and
environmental predictors will be important steps forward. Additionally, greater efforts
should be made to develop intradisciplinary and transdisciplinary standards of data
collection and analyses in microbiome research. Such standards should reflect the
needs of multiple stakeholder groups, including target user groups (people who would
make decisions based on the output from predictions). Finally, improved communica-
tion between different fields of microbiome research would promote the spread of
ideas that may be more developed in one field than another. Here, we provide
recommendations based on our discussions for integrating these components toward
future predictive models.

Implementing standard protocols and control material to reduce biases and
improve comparative analyses. The use of standard protocols and routine processing
of control material will result in data sets that can easily be compared and corroborated,
which is critical to improving and validating microbiome predictions. Currently many
individual groups choose to use their own combination of extraction methods, library
preparation methods, sequencing platforms, and internal standards or commercial
mock communities. Differences in library processing at almost every step affect the
resulting community composition (e.g., see references 14 to 16). This limits the extent
to which we can broadly compile data sets to validate predictions. Some research
groups will have a compelling reason to choose novel protocols or standards, such as
for improving or developing protocols or for unique or difficult environmental samples.
For researchers who are not in this position, voluntarily adopting the standard proto-
cols and control material from a large microbiome project closest to their field of study
will make data sets more comparable and valuable. There are a number of such groups
to choose from with accessible protocols and control materials (e.g., the Human
Microbiome Project [17, 18] and the Earth Microbiome Project [19]). With acceptance
and implementation of standard protocols and control materials across multiple stud-
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ies, more comparable microbiome data sets will be available to test predictions or to
identify novel relationships that can be investigated further.

There are still a number of challenges in widespread use of standard protocols and
control materials. Standardization begins with implementing standards in metadata
collection and reporting (26), which could incur unnecessary expenses collecting
information that is not relevant to the specific microbiome study. Standardizing exper-
imental protocols will require techniques that are easy to implement and robust
between labs and between users with various degrees of expertise. Differences in
equipment and facilities could also hamper standardization of experimental proce-
dures, and as such, there should be accommodations for both large and small labora-
tories. Although the use of even the best-designed standard protocol is not likely to
eliminate differences generated across different laboratories, the use of control material
prepared alongside experimental samples will help to identify inherent biases.

Along with standard protocols and processing of control materials, reproducible
analysis also will be critical for broadly applying predictions. Bioinformatically reducing
the bias between data sets (13) will be an important advance, as samples that have
been prepared with standard protocols and control materials will still contain biases.
Reproducibility in data analysis across studies may not be as critical as the implemen-
tation of standard protocols and control materials in the data generation step, since
multiple analysis pipelines can be applied to the same data set. Yet, steps should be
taken to facilitate the reproducible analysis of data across studies, whether with
implementation software developed to enhance reproducibility, such as Docker con-
tainers (27), the Anaconda environments (28), or routine publishing of analysis code.
Facilitating access to data and analysis software, such as Integrated Microbial Genomes
and Microbiomes (29) and Qiita (30), will also be an important aspect of microbiome
analysis standardization. These steps will facilitate reproducibility and standardization
in data analysis, so different groups can apply or confirm predictions.

Oversight committee for microbiome research. Implementing the aforemen-
tioned recommendations for standardization could be more easily achieved if there was
strong leadership by an oversight committee specifically for microbiome research.
There are a number of different groups promoting the use of standards for various
aspects of microbiome analysis, such as the International Human Microbiome Stan-
dards (IHMS) project (http://www.microbiome-standards.org/), the Genomic Standards
Consortium (https://press3.mcs.anl.gov/gensc/), and the Association of Biomolecular
Resource Facilities (https://abrf.org/research-group/metagenomics-mgrg). To be maxi-
mally effective, efforts should be coordinated through strong leadership from a feder-
ally supported oversight committee, such as the National Microbiome Initiative and
groups developing microbiome standards at the National Institute of Standards and
Technology. Researchers could refer to this oversight committee for field-specific
protocols, control materials, new analysis tools, and training. This group could work to
incentivize biotechnology companies to develop and commercialize standard protocols
and control materials. While individual researchers would not be required to adhere to
the recommendations of this committee, there could be pressure from funding agen-
cies or publishing groups to develop data in compliance with standard protocols if
there is not a clear need to deviate from these standards. Finally, the committee could
foster dialogue between different fields and research sectors by organizing and spon-
soring meetings like M3.

Testing and validating microbiome predictions. Predictions developed in model
systems or with machine learning techniques need extensive validation to be widely
accepted and useable. Both the microbial community composition and the environ-
ments that microorganisms inhabit are complicated and difficult to predict. Thus, it is
unlikely that one model will be developed that will hold across multiple systems
anytime soon, so most models will depend on the specific question being asked. This
is largely due to the fact that the number of factors influencing the system is so great
that no study can measure all of the relevant metadata. Because of this, the scope and
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applicability of any relationship should be clearly communicated, and efforts should be
made to validate relationships across more systems, such as was suggested during the
breakout session for clinical and experimental studies of the inflammosome (e.g., see
reference 31). This may result in a simplification or generalization of any relationship
with insight from additional testing. For example, Dr. Sanchez and his group were able
to generalize the reproducible patterns they observed in community assembly in
glucose-only media by simplifying by function (i.e., fermenters/nonfermenters) once
they expanded their observations to multiple carbon sources. The act of formulating
and testing predictions can often provide valuable insight into the factors that influ-
ence microbial communities.

CONCLUSIONS

We hope to advance the use of predictions in microbiome research by summarizing
the presentations and discussions held during the M3 2019 meeting on Predictions and
the Microbiome. Microbiome research has advanced beyond purely descriptive analy-
ses, but there are still major hurdles preventing the development of accurate, reliable
predictions for most microbiome applications. Participants highlighted the need to
merge theories and principles developed from the analysis of model systems with
quantitative analysis of observations from natural systems in order to advance accurate
and reliable predictions. They identified the lack of reproducibility, the need for
standardization, and the reduction of biases in microbiome analysis as the biggest
hurdles to developing reliable predictions. Participants also felt that breaking down
barriers to communication between fields and engaging diverse groups in research was
the best way to make progress. Although most fields do not routinely apply micro-
biome predictions, the act of making predictions forces researchers to be quantitative
in their analysis and tests the limits of previously identified relationships such that
advances can be made. It is our hope that the power of quantitative analysis and the
hurdles to implementation identified in this report will inspire and guide researchers as
they work toward advancing predictive analysis in their field of microbiome research.
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