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Abstract

Single cell ATAC-seq (scATAC) yields sparse data that makes application of conventional analysis 

approaches challenging. We developed chromVAR, an R package for analyzing sparse chromatin 

accessibility data by estimating gain or loss of accessibility within peaks sharing the same motif or 

annotation while controlling for technical biases. chromVAR enables accurate clustering of 

scATAC-seq profiles and enables characterization of known and de novo sequence motifs 

associated with variation in chromatin accessibility.

Main Text

Transcription factor binding to regulatory DNA sequences controls the activity of cis-

regulatory elements, which modulate gene expression programs that define cell phenotype. 

Assays for probing chromatin accessibility have enabled the discovery of cis-regulatory 

elements and trans-acting factors across different cell states and types that lead to functional 

changes in gene expression1. Concurrently, single cell genomic and transcriptomic methods 

have enabled unbiased de novo deconvolution of dynamic or diverse cellular populations2,3. 

Recently-developed assays for measuring chromatin accessibility within single cells4–6 

promise to enable the identification of causative cis- and trans- regulators that bring about 

these diverse cellular phenotypes.

However, the exceedingly sparse nature of single cell epigenomic data sets present unique 

and significant computational challenges. All single-cell epigenomic methods are 
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intrinsically sparse, as the total potential signal at a genomic locus is fundamentally limited 

by the copy number of DNA, thus generating 0, 1 or 2 reads from regulatory elements within 

a diploid genome. Methods developed for single cell RNA-seq have shown that measuring 

the dispersion of gene sets, such as Gene Ontology or co-expression modules, rather than 

individual genes can be a powerful approach for analyzing sparse data7. In this vein, and 

building on previous work from our group and others4,8,9, we have developed chromVAR, a 

versatile R package for analyzing sparse chromatin accessibility data by measuring the gain 

or loss of chromatin accessibility within sets of genomic features while controlling for 

known technical biases in epigenomic data (Supplementary Software). We show that 

chromVAR can be used to identify transcription factor (TF) motifs that define different cell 

types and vary within populations, providing a unique analytical toolkit for analysis of 

sparse epigenomic data.

The chromVAR package takes as inputs 1) aligned sequencing reads, 2) chromatin 

accessibility peaks (derived from either data aggregated across cells or external resources), 

and 3) a set of chromatin features representing either motif position weight matrices 

(PWMs) or genomic annotations (Fig. 1a, Supplementary Fig. 1). For use as input (3) into 

chromVAR, we have curated a set of human and mouse PWMs from the cisBP database10 

that represent a diverse and comprehensive collection of known TF motifs. Alternately, user 

provided TF motifs or other types of genomic annotations, such as enhancer modules, ChIP-

seq peaks, or GWAS disease annotation may be used. chromVAR may also be applied to a 

collection of kmers—DNA sequences of a specific length k—in order to perform an 

unbiased analysis of DNA sequence features that correlate with chromatin accessibility 

variation across the cells or samples.

chromVAR first computes a “raw accessibility deviation” for each motif and cell, 

representing the difference between the total number of fragments mapping to peaks 

containing the given motif and the total expected number of fragments based on the average 

of all input cells. This aggregation across peaks sharing a common motif yields a signal that 

is considerably less sparse than the signal within individual peaks, however this aggregation 

can also amplify technical biases between cells due to PCR amplification or variable Tn5 

tagmentation conditions (Supplementary Note 1). These technical biases can lead to 

differences in the number of observed fragment counts between cells for a given peak set 

with distinct GC content or mean accessibility (Supplementary Fig. 2). To account for these 

technical confounders, “background” peak sets are created for each annotation, which 

comprise of an equal number of peaks matched for GC content and average accessibility 

(Supplementary Figs. 2–5; Supplementary Note 2). The raw accessibility deviations for 

these background peak sets are used to compute a bias corrected deviation and z-score for 

each annotation and cell, providing a bias-corrected differential measure describing the gain 

or loss of accessibility of a given genomic annotation relative to the average cell profile (see 
methods). These bias corrected deviations and z-scores can be used for a number of 

downstream analyses, including de novo clustering of cells and identification of key 

regulators that vary within and between different cell types. The chromVAR package 

includes a collection of tools for such downstream analysis, including an interactive web 

application for exploring the relationship between key TF motifs and clustering of cells 
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(Supplementary Figure 6). We have also incorporated tools for generating previously-

described analyses characterizing the correlation and potential cooperativity between two TF 

binding sites within the same regulatory element, and computing chromatin variability 

across regions in cis4.

To test the applicability of this computational workflow for single-cell analysis, we set out to 

measure the robustness of chromVAR outputs to data downsampling. To do this, we applied 

chromVAR to bulk ATAC-seq data from a deeply-sequenced set of hematopoietic cell 

types8, and compared the results of the analysis for the data across various degrees of 

downsampling. We found that the TF motif deviations using 106 to 5×103 fragments per 

sample are highly correlated to those determined using the full data set (Fig. 1b, 

Supplementary Fig. 7). The clustering accuracy using the bias corrected deviations is also 

largely preserved after downsampling, and compares favorably to clustering using PCA or 

other peak-based approaches (Supplementary Fig. 7; see methods).

Importantly, chromVAR provides robust results for 10,000 fragments per cell, a typical 

number of fragments generated from a single-cell using scATAC-seq4 (Supplementary 

Figure 7). By projecting the vector of bias corrected deviations from individual cells into 

two dimensions using tSNE11, chromVAR enables the reconstruction of the major 

hematopoietic lineages using 10,000 fragments per sample. With this analytical framework, 

we can also visualize the TFs associated with significant chromatin accessibility within each 

simulated single cell epigenome, thereby correctly identifying known master regulators of 

hematopoiesis, including HOXA9, SPI1, TBX21, and GATA112–15 (Fig. 1c).

We next characterized chromVAR’s ability to capture biologically relevant chromatin 

variability from single cell ATAC-seq data drawn from multiple distinct cell lines and human 

samples (Supplementary Fig. 8). Using tSNE with bias corrected deviations for motifs and 

7mers, we clustered individual cells into distinct cell types and observe individual motifs 

that best distinguish each cell type (Fig. 2a). Notably, well defined, distinct clusters are 

formed in this tSNE projection when using the bias corrected deviations, but the clustering is 

confounded by technical biases when using raw deviations without the bias correction 

infrastructure. Importantly this approach for classifying cell types also compares favorably 

performing tSNE on the counts within peaks using a variety of approaches (Supplementary 

Fig. 9). Interestingly, we also observe that cells from acute myeloid leukemia (AML) 

patients cluster between lymphoid-primed multipotent progenitors (LMPPs), monocytes, 

and HL60 (an AML derived cancer cell line) cells. In this unsupervised analysis, we find 

that the AML leukemic stem cells are more similar to LMPPs, while the AML blasts are 

more similar to the monocytes. In addition, we also observe that patient 1 (AML blast 1) 

maintains a more stem-like state when compared to patient 2 (AML blast 2) as anticipated 

from alternate analyses of these cells16. By visualizing the cell-specific Z-scores layered on 

this projection, we identify putative TFs that may promote the stem-like versus differentiated 

leukemia phenotype; for example, the master-regulators of myeloid cell development SPI1 

(PU.1) and CEBPA17 appear as the most differential motifs between AML leukemic stem 

cells (LSCs) and blasts (Fig. 2b–c).
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In addition to visualizing the similarity of cells, we inverted our tSNE analysis to visualize 

the similarity of motifs and kmers in their activity patterns across cells (Fig. 3a). In this 

visualization, motifs and kmers that have similar activity profiles across cells cluster 

together in the tSNE subspace, allowing the identification of major clusters representing 

several different TF families. Notably, different TFs within the same family (e.g. GATA1 and 

GATA2) often bind highly similar motifs, and therefore chromVAR alone cannot distinguish 

the causative regulator binding a particular TF motif. In the inverted tSNE visualization for 

motif and kmer similarity, most, but not all kmers cluster with a known motifs, suggesting k-

mer analysis may enable de novo discovery of previously unannotated motifs.

By comparing the variation in chromatin accessibility across cells between highly similar 

kmers, we can identify critical bases associated with chromatin accessibility variation. For 

example, the “AGATAAG” kmer, which closely matches the GATA1 motif, is highly 

variable across single cells, but most kmers differing by one nucleotide share little or none 

of that variability (Fig. 3b, Supplementary Fig. 10). The mismatched kmer with the greatest 

correlated variability is “TGATAAG”, which is consistent with the weights of each 

nucleotide in the GATA1 motif. Similarly strong sequence specificity is seen across other 

variable motifs (Supplementary Fig. 10).

We can use these comparisons of variation between highly similar kmers to construct de 
novo motifs representing sequences associated with variation in chromatin accessibility. In 

brief, we start with highly variable “seed” kmers, and use the covariance between the seed 

kmer and kmers either differing by one mismatch or partially overlapping the seed kmer to 

assign weights to different nucleotide bases at each position of the motif model 

(Supplementary Fig. 11; see methods). Importantly, many de novo motifs assembled using 

this approach closely match known motifs (Figs. 3c–f, Supplementary Fig. 11). For motifs 

that do not closely match to a known TF, we confirmed that the constructed motifs were also 

associated with variation in DNase hypersensitivity between different samples represented in 

the Roadmap Epigenomics Project18 (Supplementary Fig. 12), demonstrating that these de 
novo motifs are associated with chromatin accessibility variation in two distinct accessibility 

assays. To further validate the discovery of these putative trans-regulators we calculated 

aggregate TF “footprints”, a measure of the DNase or Tn5 cut density around the given 

motif, and found a diverse set of accessibility profiles (Supplementary Fig. 12). 

Interestingly, several of these motifs did not match canonical narrow (~20 bp) transcription 

factor footprints, but rather are associated with a large footprint (>20 bp) potentially 

indicative of larger regulatory complexes.

In summary, we envision that chromVAR will be broadly applicable to single-cell and bulk 

epigenomics data to provide an unbiased characterization of cell types and the trans 
regulators that define them. As such, we applied chromVAR to two bulk chromatin 

accessibility data sets18,19 down-sampled to 10,000 fragments per sample and data from an 

alternate scATAC-seq approach and find chromVAR to generalize to these additional data 

(Supplementary Figs 13–15; Supplementary Note 3). As methods for measuring the 

epigenome in single-cells and bulk populations continue to improve in throughput and in 

quality, scalable analytical infrastructure is needed. Analysis workflows for ATAC or 

DNase-seq data often include the identification of motifs enriched in differentially accessible 

Schep et al. Page 4

Nat Methods. Author manuscript; available in PMC 2018 February 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



peaks, but such approaches scale poorly to comparisons across many sample types and 

require sufficient read depth per-locus to determine differential peak accessibility 

(Supplementary Note 4). In contrast, chromVAR analysis is highly robust to low sequencing 

depth and readily scales to hundreds or thousands of cells or samples. Budget-constrained 

researchers often face a trade-off between the number of samples to sequence and the 

sequencing depth for each sample; sparse sequencing analysis coupled with chromVAR 

analysis may enable new applications of “bulk” ATAC, DNase-seq or other epigenomic 

methods as large-scale screening tools. We also anticipate that chromVAR will enable 

additional downstream analyses of single cell chromatin accessibility data, as the reduction 

of dimensionality associated with vectors of bias corrected deviations provide a powerful 

input to existing algorithms for inferring inferring spatial and temporal relationships 

between cells.

Online Methods

chromVAR algorithm

Bias corrected deviations and z-scores—For each motif (or kmer or genomic 

annotation), a “raw accessibility deviation” for each cell or sample is computed that 

represents the difference in the total accessibility of peaks with that motif minus the 

expected count based on the accessibility profile across all cells, divided by that expected 

count (Figure S1). Using the matrix of fragment counts in peaks X, where xi,j represents the 

number of fragments from cell i in peak j, and the matrix of motif matches M, where mk,j is 

1 if motif k is present in peak j. The total number of reads mapping to every peak containing 

motif k in cell i is given by M * XT. For each peak, the expected number of fragments per 

cell E is computed as the fraction of all fragments across all cells mapping to that peak 

multiplied by the total number of fragments in peaks for that cell:

The expected number of fragments mapping to every peak containing motif k in cell i is then 

given by M * ET, and the raw accessibility deviation Y by:

For each motif or genomic annotation, background peak sets are sampled that match the set 

of peaks with the motif or genomic annotation in terms of the distribution of GC content and 

average accessibility. These background peak sets are determined by finding possible 

background peaks for each peak, as described in the next section. For each background 

iteration, we can represent the background peak assignments as a matrix B where bj,j, is 1 if 

peak j has peak j′ as it’s background peak and 0 otherwise. A background motif match 

matrix M′ is thus computed as M′ = M * B, and a background raw deviation as:
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Y′ is calculated for each background iteration, and these background deviations are used to 

compute a bias-corrected deviation as Y − mean(Y′). A deviation Z-score is computed by 

dividing the bias-corrected deviation by the standard deviation of the background raw 

deviations for each iteration:

Background peak selection—The state space of GC content and the log of the average 

accessibility of peaks is transformed by the Mahalanobis transformation in order to remove 

the correlation between the two variables. This transformed space is split into an even grid of 

bins with a specified number of divisions (50) along each axis evenly spaced between the 

minimum and maximum values. For a peak in a given bin j, the probability of selecting 

another peak x in bin i is given by:

Where f is the probability distribution function of the normal distribution with mean zero 

and standard deviation w (set to 0.01), and ρ is the number of peaks in the bin j.

Variability—The variability of a TF motif across samples or cells was determined by 

computing the standard deviation of the z-scores across the cells or samples. The expected 

value of this metric is one if the motif peak sets are no more variable than the background 

peak sets for that motif.

De novo motif assembly—As a measure of the shared variability in chromatin 

accessibility between a reference kmer (or motif) and other kmers (or motifs), we compute a 

normalized co-variance based on deviation z-scores. This normalized covariance is simply 

the covariance of the z-scores across each cell divided by the variance of the z-scores for the 

reference kmer (or motif).

For assembling de novo motifs, we start with the kmer associated with the greatest 

variability in chromatin accessibility across the cells as a “seed” kmer. We first find the 

distribution of the normalized covariances between that seed kmer and all other kmers with 

an edit distance from that seed kmer of at least 3; these values are used as a null distribution 

for testing the significance of the observed covariances for kmers with a single nucleotide 

mismatch using a Z-test. For each position along the kmer, the nucleotide of the seed kmer is 

given a weight of 1. Each alternate nucleotides is given a weight of zero if the p-value for the 

normalized covariance of the kmer with that mismatch is greater than 0.05; if the p-value is 

less than 0.05 the nucleotide is given a weight equal to the square of the normalized 

covariance. The weights for each base pair are then normalized to sum to 1. To further 
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extend the de novo motif, we used kmers overlapping the seed kmer with an offset of 1 or 2 

bases. For the two bases immediately outside the seed kmer, the weighting of each 

nucleotide is given by x * y2 + (1 − x)) * 0.25, where y2 is the square of the normalized 

covariance for the kmer with the given nucleotide offset (if significant at 0.05 and otherwise 

0) and x is the maximum value of the normalized covariances for the four kmers (bounded 

by 0 and 1). For the bases offset by two from the seed kmer, the weighting is computed in 

the same way except that there are four possible kmers with a given nucleotide at that 

position that overlap the seed kmer; only the kmer with the maximum normalized covariance 

with the seed kmer is used (Figure S11).

Input data and pre-processing

ATAC-seq, scATAC, and DNase Data—In addition to the previously published data, we 

generated three new replicates of single-cell K562s (ATCC; validated using STR genotyping 

(Genetica DNA laboratories)) using the previously published protocol4,8. Bulk ATAC-seq 

and scATAC-seq data was aligned and filtered as described previously4,8. Uniformly 

processed DNase data was downloaded from the Roadmap Epigenomics Project Portal18. 

ATAC-seq data from Lavin et al. (2014) was obtained from GSE63341 and processed as 

follows: adapters were trimmed using Cutadapt20, reads were aligned using Bowtie221, and 

filtered for mapping quality (mapq > 30). For the scATAC-seq data from the GM12878 and 

HEK293T mixture from the combinatorial indexing approach, a count matrix was obtained 

from GSM1647122.

Peaks—For the bulk data analysis, we obtained DNase hypersensitivity peaks from the 

Roadmap Epigenomics Project. MACS222 peaks for blood cells (Primary monocytes from 

peripheral blood, Primary B cells from peripheral blood, Primary T cells from peripheral 

blood, Primary Natural Killer cells from peripheral blood, Primary hematopoietic stem cells 

G-CSF-mobilized Female, Primary hematopoietic stem cells G-CSF-mobilized Male, and 

Monocytes-CD14+ RO01746 Cell line) were downloaded from the Epigenomics Roadmap 

Portal18. For the single cell ATAC-seq data, peaks were called for each cell line or type using 

MACS2 applied to the merged single cell ATAC-seq data. All peaks were re-sized to a 

uniform width of 500 bp, centered at the summit. For both the set of peak calls from the 

blood cells in Roadmap and the set of peak calls from the scATAC-seq data, peaks were 

combined by removing any peaks overlapping with a peak with greater signal. Peak width 

was chosen based on typical sizes of ATAC-seq peaks across a wide collection of 

experiments, although chromVAR is fairly robust to the exact size of the peaks used (Figure 

S5, Supplementary Note 2).

Motif collection—We curated Position Frequency Matrices from cisBP representing a 

total of 15,389 human motifs and 14,367 mouse motifs. To filter motifs to a representative 

subset, we first categorized motifs as high, medium or low quality, as is provided in the 

cisBP database. We then grouped all 870 unique human or 850 unique mouse TF regulators 

represented in the database and assigned these regulators to their most representative TF 

motif(s). To do this, we first iterated through each TF regulator to find all motifs associated 

with that regulator from the high-quality motif list. For these associated high quality motifs, 

we first computed a similarity matrix using the Pearson correlation of the motifs. To 
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calculate the Pearson correlation between pair-wise motifs, the shorter motif was padded 

with an equal distribution of A,C,G,T. Then the Pearson correlation was calculated at every 

possible offset, and the maximum correlation of all offset comparisons was recorded. To 

select a representative subset of motifs for each TF regulator, we first found the motif 

correlated with the most other motifs at R>0.9. Treating that motif and all of the correlated 

motifs (R>0.9) as a group, we next found the motif with the greatest mean correlation to the 

other members of the group, and kept that motif as a representative motif for the TF. Motifs 

highly correlated with that chosen motif (R>0.9) were then discarded from further analysis, 

and the process was iterated until no motifs remained. We repeated the process using the 

medium and low-quality databases for TF regulators with no associated motifs in the high-

quality database. The final curated motif database contains 1,764 human motifs and 1,346 

mouse motifs representing 870 human and 850 mouse regulators. The resulting names are 

formatted as follows:: “ensemble ID”_”unique line number”_”common TF name”_”direct 

(D) or inferred (I)”_”number of similar motifs grouped”. These position frequency matrices 

were then converted into Position Weight Matrices (PWMS) by taking the log of the 

frequency after adding a 0.008 pseudocount and dividing by 0.25.

These PWMs were used for all analyses in main text figures. For Figures S2–5 and S13 a 

smaller set of motifs from the JASPAR CORE database 2016 were used23. For Figure S14, 

motifs downloaded from http://homer.ucsd.edu/homer/custom.motifs were used24, and for 

Figure S15 motifs downloaded from http://compbio.mit.edu/encode-motifs/ were used25 in 

order to use the same motifs as the original publication for those data sets.

Motif matching—The MOODS26 C++ library (Version 1.9.3) was used for identifying 

peaks containing a motif match, using a p-value cutoff of 5×10−5. As background 

frequencies we used the nucleotide frequencies across all peaks. We wrapped the MOODS 

library into an R package, motifmatchr, which enables fast determination of motif presence 

or positions within genomic regions. The package is available at www.github.com/

GreenleafLab/motifmatchr and https://bioconductor.org/packages/devel/bioc/html/

motifmatchr.html.

Analysis

Downsampling Analysis—To downsample a sample with X total fragments to a depth of 

Y total fragments, we use the fragment count matrix and for each fragment within a peak 

retained each fragment with probability Y/X. Thus the downsampled samples are equivalent 

to having approximately Y total fragments, but not precisely.

The set of peaks used for the analysis remained the same for each down-sampled data set, as 

the peaks used were from an external data source (Roadmap Epigenomics Project).

For clustering samples using chromVAR results, highly correlated motifs were first removed 

and then one minus the pearson correlation of the bias corrected deviations was used as the 

distance matrix for input into hierarchical clustering. For clustering samples using PCA, 

PCA was performed on the log of the fragment counts for all peaks after normalization for 

the total number of reads in peaks, and clustering was performed on the euclidean distance 

between the first five principal components. Hierarchical clustering was performed with 
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complete linkage, and the resulting dendrogram was cut into 13 groups (the number of cell 

types). Clustering accuracy was measured using normalized mutual information 27.

Differential Accessibility and Variability—For determining differentially accessible 

motifs between AML LSC and blast cells, an unequal variances t-test (two-sided) was used 

on the bias corrected deviations. For determining differential variability, a Brown–Forsythe 

test was used on the deviation z-scores.

Sample similarity tSNE—For performing sample similarity tSNE, highly correlated 

motifs or kmers as well as motifs or kmers with variability below a certain threshold (1.5) 

were first removed from the bias corrected deviations matrix. The transpose of that matrix 

was then used as input to the Rtsne package28, with a perplexity parameter of 8 used for the 

down-sampled bulk hematopoiesis data and 25 for the single cell ATAC-seq data.

Motif and kmer similarity tSNE—For performing motif similarity tSNE, motifs or 

kmers with variability below a certain threshold (1.5) were first removed from the bias 

corrected deviations matrix, which was then used as input to the Rtsne package 28 with 

perplexity parameter set to 15.

Motif Similarity Scores—To score the similarity between a de novo motif and the most 

similar known motif, we first computed the normalized Euclidean distance between the de 

novo motif and all the known motifs in our collection using the optimal local alignment with 

at least five overlapping bases. We then selected the known motif with the lowest distance as 

the closest match. The similarity score was computed as the negative of the Z-score for this 

distance using the distribution of distances for all the motifs in the collection.

Software Availability

The chromVAR R package is freely available under the MIT license at www.github.com/

GreenleafLab/chromVAR and as Supplementary Software. The motifmatchr R package is 

freely available under a GPL-3 license is available at www.github.com/GreenleafLab/

motifmatchr and as supplementary software.

Data Availability

The additional K562 scATAC-seq data have been deposited at GEO with accession number 

GSE99172. Previously published single cell ATAC-seq data are available from GSE74310 

and GSE65360. Bulk hematopeisis ATAC-seq data are available at GSE74912. Macrophage 

bulk ATAC-seq data was obtained from GSE63341, combinatorial scATAC-seq from 

GSM1647122, and Roadmap Epigenomics data from the Roadmap Epigenomics Portal 

(http://egg2.wustl.edu/roadmap/web_portal/).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. chromVAR enables interpretable analysis of sparse chromatin accessibility data
(a) Schematic illustrating how chromVAR uses aggregation of accessibility across peaks 

sharing a common feature (e.g. a motif) with bias correction to generate scores for each cell 

or sample that can be used for downstream analysis (b) Pearson correlation of bias corrected 

deviations for 77 samples from different hematopoietic populations before and after downs 

down-sampling total sequencing reads from full data. Each point shows the correlation for a 

different motif. The top 20% most variable motifs are shown. Three of the most variable 

motifs are highlighted. (c) tSNE visualization of different samples using normalized 

deviations calculated from data down-sampled to 10,000 fragments per sample. In the first 

panel, cells are colored by cell type, and in other panels cells are colored by the deviations 

score for different motifs.
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Figure 2. chromVAR enables clustering of single cell populations and interpretation of motifs 
underlying chromatin accessibility variation in single cells
(a) tSNE visualization of similarity of 1561 single cells based on chromVAR raw (left) or 

bias corrected deviations (right) for motifs and 7mers (see methods). In top panels, points 

are colored by cell type and in bottom panels points are colored by raw (left) or bias 

corrected (right) calculated deviations for a set of random peaks with high GC content and 

high average accessibility (the bias set). (b) Volcano plot showing the mean difference in 

bias corrected accessibility deviations (left) and variability (right) for each motif between the 

AML blast (n = 122) and LSC cells (n = 144) versus the −log10(P-value) for that difference. 

(c) tSNE with bias corrected deviations for AML blast and LSC, monocyte, LMPP, and 

HL60 cells (n = 509). In top panel, points are colored by cell type, and in other panels points 

are colored by deviation Z-scores for CEBPA and ZEB1 respectively.
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Figure 3. chromVAR identifies de novo motifs associated with chromatin accessibility variation in 
single cells
(a) tSNE visualization of similarity between motifs and kmers based on the vector of 

normalized deviations across different cells. Labels highlight predominant families of motifs 

within a cluster and example kmers (b) For the seed kmer “AGATAAG”, the shared 

variability of k-mers with one mismatch from the seed kmer. The shared variability is 

defined as the square of the covariance of the deviation z-scores for the two kmers divided 

by the variance of the seed kmer for covariances greater than zero, and zero otherwise. 

These shared variabilities were used to assemble a de novo motif, shown under the plot 

along with the GATA1 motif. (c) Example de novo motifs assembled by chromVAR using 

deviations scores for 7-mers, along with the closest matching known motif below it. (d) 

Variability for both the de novo motif and the known motif for each pair in panel (c). (e) 

Motif similarity score (see methods) between the de novo motif and the known motifs in (c) 

(f) The Pearson correlation between the normalized deviations of the de novo motif and the 

known motif for each pair in (c).
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