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A B S T R A C T

Sjögren’s disease (SjD) is a systemic autoimmune disorder characterized by dry eyes and mouth caused by 
chronic inflammation and is often accompanied by various extra-glandular manifestations, including fatigue and 
diffuse pain. Although the pathogenesis of the disease remains elusive, several factors (e.g. environmental, ge-
netic and hormonal factors, abnormal metabolic status) are associated with this condition. Accumulating evi-
dence suggests a potential role of cholesterol metabolism in immune and non-immune modulation in various 
diseases. In this review, we summarize the current findings on the associations between cholesterol metabolism 
and SjD.

1. Introduction

A dysregulated cholesterol/lipid metabolism has been associated 
with various autoimmune disorders such as rheumatoid arthritis (RA), 
systemic lupus erythematosus (SLE), and SjD. For example, presence of 
atherosclerosis and an increased risk of cardiovascular mortality lead to 
a higher risk of RA [1]. Several other clinical findings suggest a link 
between autoimmune diseases and atherosclerosis/dyslipidemia [2–5]. 
In addition, increased serum triglycerides, as well as increased levels of 
very low-density lipoprotein (VLDL) cholesterol, have been reported in 
patients with SLE, while decreased high-density lipoprotein (HDL) 
cholesterol (known as ‘good cholesterol’) has been observed [6]. Inter-
estingly, reduced serum cholesterol levels due to either diet-restricted 
cholesterol intake or treatment with statins, which suppress choles-
terol synthesis but also elicit immunosuppressive effects, can improve 
the symptoms of autoimmune diseases [7–11]. These evidences clearly 
show that cholesterol metabolic issues are related to autoimmune dis-
eases, and not just a coincidence. These findings obtained through 
human cohort studies are also supported by experiments in mice; 
hyperlipidemia and atherogenic dyslipidemia induce proinflammatory 
cytokine secretion by dendritic cells in mice, which is a key step of in-
flammatory responses in autoimmune diseases [12–14]. However, it 
remains largely unknown whether and how cholesterol metabolism 
plays a role in SjD.

Conversely, patients with autoimmune diseases often develop 
atherosclerosis [15]. Interestingly, metabolomics data in RA and pri-
mary SjD show apparent differences between these diseases [16], indi-
cating that certain metabolites can become potential diagnostic markers 
for each autoimmune disease. Currently, there is a research gap in the 
contribution of abnormal metabolism(s) to the cause, activity, and 
progression of autoimmune diseases. In this review, we summarize the 
evidence showing the link between abnormal cholesterol metabolic 
status and SjD.

2. SjD characteristics

SjD is one of the most common autoimmune disorders, with a 
prevalence of 0.1–0.6 % in adults [17]. SjD has been known in the past 
as Sjögren’s syndrome; however, since the symptoms are now well 
characterized, it was renamed to SjD [18]. Another complication in the 
classification and terminology of this disease is the definition of primary 
versus secondary SjD. It should be noted that primary SjD is distinct from 
secondary SjD given the absence of other autoimmune rheumatic dis-
eases and predominance in peri- and post-menopausal women (average 
of 50 years of age at diagnosis). As defined by the American-European 
Consensus Group, primary SjD has been used for describing patients 
without any potentially associated diseases, and secondary SjD has been 
used for describing patients with potentially associated disease(s), such 
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as other well-defined connective diseases and/or autoimmune diseases, 
and presenting SjD-like symptoms (e.g. dry mouth and dry eyes) in the 
exocrine glands [19]. SjD is characterized by lymphocytic infiltrations, 
which are abundant in CD4+ T cells, in the exocrine glands, mainly the 
salivary glands (SGs) and lacrimal glands (LGs). These lymphocytic in-
filtrations cause acinar cell death or changes in glandular epithelial cell 
morphology and characteristics or exocrine mechanisms, resulting in 
reduced saliva and tear production and oral and ocular dryness [17, 20, 
21]. Some patients develop extra-glandular manifestations in multiple 
organs/tissues, such as the lung (e.g. pulmonary arterial hypertension, 
interstitial lung disease), joints (arthralgia), skin (e.g. xerosis cutis, 
pruritus, primary localized cutaneous nodular amyloidosis, annular er-
ythema), nervous system (neurological symptoms), and kidney (e.g. 
interstitial nephritis, renal tubular acidosis) [22–24].

The diagnosis is based on a combination of symptoms (e.g. dryness of 
mouth/eye), physical examination (e.g. saliva flow test, biopsy of minor 
salivary glands on the lip), and serologic tests (e.g. detection of anti-Ro/ 
SSA and anti-La/SSB antibodies) [17]. To date, due to lack of definite 
diagnostic marker(s) as well as progress marker(s) for SjD (there is no 
single test for SjD), the diagnosis takes an average of 2.8 years. In 
addition, some patients with other autoimmune diseases, such as SLE 
and RA, frequently develop SjD-like symptoms, called secondary SjD 
[25–29]. These conditions make it more complex to reach a diagnosis 
because there is no clear boundary between such diseases and each 
patient develops a wide variety of clinical symptoms at different degrees 
(Table 1). For example, one of the most widely used diagnostic markers, 
the anti-Ro/SSA and anti-La/SSB antibodies, are detectable only in 
approximately 40–70 % and 20–40 % of SjD patients, respectively 
[30–33]. Interestingly, the presence of anti-Ro/SSA autoantibody 
anti-correlates with serum total cholesterol levels, whereas the presence 
of anti-La/SSB autoantibody is strongly associated with lower serum 
HDL levels [34]. Early-onset SjD has unique clinical manifestations, such 
as elevated immunoglobulin levels, higher anti-Ro/SSA and anti-La/SSB 
positivity, and severe CD4+ T cell lymphopenia [35]. On the other hand, 
SjD that is negative for both anti-Ro/SSA and anti-La/SSB antibodies is 
more frequent in men or patients with aggressive disease progression 
and presents a higher risk for interstitial lung disease [36]. SjD patients 
presenting anti-centromere antibody (ACA) show distinct characteristics 
[37–39]. For example, patients positive for ACA are less frequently 
positive for either anti-Ro/SSA antibody, anti-La/SSB antibody, rheu-
matoid factor (RF), or immunoglobulin levels than the ones negative for 
ACA. In addition, it is known that ACA-positive patients show lower 

disease activity, longer disease duration (more than 5 years), and less 
active humoral immune system [37–39]. Thus, there is an urgent need to 
identify novel biomarkers for diagnosis at the pre- or early stage of 
clinical onset, as well as novel therapeutic strategies for SjD. Currently, 
several autoantibodies (e.g. AQP5, M3R, ENO1, HMGB1) are being 
considered as new candidate biomarkers for the diagnosis of SjD [40, 
41].

2.1. Cholesterol/lipid metabolism aberrations in SjD

Although the prevalence of abnormal metabolic conditions in pa-
tients with SjD varies between cohort studies, an accumulating number 
of studies support that there is a clear link between SjD and metabolic 
diseases, such as diabetes and cardiovascular disease [44, 52–54]
(Table 2). For instance, a cohort study in the United Kingdom showed 
that hypertension (28–50 % vs 15.5–25.6 %, P < 0.0001) and hyper-
triglyceridemia (21 % vs 9.5 %, P = 0.002) are more prevalent in women 
with primary SjD (n = 538) compared to age-matched healthy women 
(n = 410) [55]. A cohort study in Germany showed that hypertension 
(73.8 % vs 38.2 %, P < 0.001) and hypercholesterinemia (55.7 % vs 
23.9 %, P < 0.001) are significantly more prevalent in patients with 
primary SjD (n = 61) compared to sex- and age-matched control in-
dividuals (n = 251) [45]. A cohort study in Spain showed that there is a 
higher prevalence of hypertriglyceridemia (22 % vs 15 %, P = 0.023) in 
individuals with primary SjD (n = 312 including both sexes) than in 
controls (n = 312 including both sexes) [54]. Another cohort study in 
the European population revealed that hypercholesterolemia (30 % vs 
23 %, P < 0.001) is more prevalent in women with primary SjD (n =
788) compared to healthy women (n = 4774), whereas the prevalence of 
hypertension was less associated with primary SjD (32 % vs 28 %, P =
0.021) [44]. In addition, there is a higher prevalence of dyslipidemia 
(abnormal amounts of lipids such as triglycerides, cholesterol, and/or 
phospholipids) in primary SjD (cohort study of women in Brazil, with 71 
patients and 71 healthy control individuals) [56]. The prevalence of 
metabolic syndrome and diabetes is also higher in primary SjD (39 % vs 
17 % in a cohort study involving women in Brazil and 27 % vs 13 % in a 
cohort study including both sexes in Spain, respectively) [54,56]. Thus, 
several cohort studies show significant associations between SjD and 

Table 1 
Clinical features of SjD.

Clinical characteristics Frequency (%) in SjD 
patients (Number of 
Patients)

References

Lymphocytic infiltration in the 
lacrimal and salivary glands

78 % (n = 229) and 79 % (n 
= 1010)

[42,43]

Keratoconjunctivitis sicca and 
xerostomia

38 % (n = 318), 89 % (n =
1343), and 53.8 % (n = 312)

[37, 44, 45]

Vaginal dryness 53 % (n = 33) and 56 % (n =
33)

[46,47]

Non-productive cough 41-50 % (n = 33) [48–50]
Salivary gland swelling 30 % (n = 1343) [44]
Systemic symptoms Fatigue: 70 % (n = 120) 

Arthralgia: 48 % (n = 1010) 
and 94 % (n = 120)

[51]
[43,51]

Anti-nuclear antibodies 85 % (n = 1010), 68 % (n =
1343), and 72.4 % (n = 312)

[43–45]

Anti-Ro/SSA antibodies 52 % (n = 1010), 68 % (n =
1343), and 53.2 % (n = 312)

[43,44]

Anti-La/SSB antibodies 34 % (n = 1010), 36 % (n =
1343), and 18.9 % (n = 312)

[43–45]

Rheumatoid factor 48 % (n = 1010), 51 % (n =
1343), and 29.2 % (n = 312)

[43–45]

Anti-centromere antibody 14 % (n = 318) and 16 % (n 
= 62)

[38,39]

Table 2 
Metabolic disorders in SjD.

Laboratory 
measurements

Frequency 
(%) in SjD 
patients

Frequency 
(%) in 
healthy 
individuals

P- 
value

References

Obesity 11 % (n =
788) 
19.5 % (n =
200)

21 % (n =
4774) 
18.6 % (n =
200)

P <
0.001 
P =
0.899

[44]
[55]

Diabetes mellitus 4 % (n =
788) 
3 % (n =
200) 
28 % (n =
254)

7 % (n =
4774) 
2 % (n = 200) 
18 % (n =
254)

P =
0.001 
P =
0.543 
P =
0.006

[44]
[55]
[55]

Hypertension (WHO 
definition)

28 % (n =
200)

15.5 % (n =
200)

P =
0.003

[55]

Hypertension (NCEP 
definition)

50 % (n =
200)

25.6 % (n =
200)

P <
0.0001

[55]

Hypercholesterolemia 19 % (n =
200) 
30 % (n =
788)

17.5 % (n =
200) 
23 % (n =
4774)

P =
0.796 
P <
0.001

[55]
[44]

Hypercholesterinemia 55.7 % (n =
61)

23.9 % (n =
251)

P <
0.001

[52]

Hypertriglyceridemia 21 % (n =
200)

9.5 % (n =
200)

P =
0.002

[55]

NCEP, National Cholesterol Education Program; SjD, Sjogren’s disease; WHO, 
World Health Organization.
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abnormal metabolic conditions. A differentiated lipid serum profile has 
been reported in primary SjD (cohort study in women at the National 
Institute of Dental and Craniofacial Research (NIDCR) Sjogren’s Syn-
drome Clinic in the US, with 46 patients and 12 healthy control in-
dividuals) [34], and a higher rate of subclinical atherosclerosis is 
significantly associated with primary SjD (cohort study including White 
Italian women, with 37 patients and 35 healthy control individuals) 
[57].

Interestingly, some clinical studies suggested that metabolic status 
may affect SjD activity and progression. For instance, patients with 
primary SjD showed higher frequency of hypertriglyceridemia (P =
0.002, 200 patients and 200 age-matched healthy control individuals) in 
the United Kingdom [55]. Among primary SjD, patients with hyper-
triglyceridemia (n = 42) showed a higher frequency of abnormal sali-
vary flow (P = 0.030) and antinuclear antibody positivity (P = 0.021), a 
marker for immune system hyperactivity, compared to patients without 
hypertriglyceridemia (n = 158) [55]. In addition, in a cohort study in 
Brazil, patients with SjD and dyslipidemia (n = 56) showed higher levels 
of erythrocyte sedimentation rate (P = 0.03), which reflects a chronic 
inflammatory state, compared to patients with SjD but without 
abnormal lipid profiles (n = 17) [58]. However, as debated on various 
metabolic conditions, causative effects of high levels of serum choles-
terol/lipid on SjD should be further studied with large-scale multi--
populations cohort studies.

Aberrations in metabolic enzymes, not only in exocrine tissues but 
also in immune cells, are involved in SjD pathogenesis. For instance, 
HUWE1, an E3 ubiquitin ligase, is highly expressed in CD4+ T cells in 
patients with SjD (the NCBI GEO database, 18 patients and 18 healthy 
control individuals) [59]. The inhibition of Huwe1 reduced serum 
cholesterol levels and suppressed CD4+ T cell activity in NOD/ShiLtj 
mice, a SjD model [59]. CYP51A1/Cyp51, a mitochondrial enzyme that 
catalyzes demethylation of lanosterol and dihydrolanosterol at the 
beginning of the Bloch and Kandutsch-Russell pathway in cholesterol 
biosynthesis, is specifically upregulated in CD4+ T cells isolated from 
patients compared with middle-aged female controls, and in activated 
CD4+ T cells isolated from mouse spleens compared with non-activated 
controls [60].

An altered lipid and cholesterol metabolism in SjD animal models 
suggests a relationship between inflammation and excessive cholesterol. 
Epithelial cells in the LGs of NOD.H2b mice, a SjD model, show altered 
lipid metabolism, production of inflammasomes, and downregulated 
expression of genes related to cholesterol metabolism, suggesting that 
impairment of lipid metabolism and inflammasome formation are key 
factors for the pathogenesis and progression of the SjD-like phenotype in 
NOD.H2b mice [61]. Treatment with ketoconazole of NOD/ShiLti mice, 
another SjD model, ameliorated SjD-like phenotypes, namely lymphoid 
infiltration into the SGs and reduced saliva flow rate, suggesting that 
excessive cholesterol is linked to SjD [60]. Interestingly, in ApoE defi-
cient mice, a SLE model, simvastatin (a drug that suppresses cholesterol 
production) was able to reduce autoantibody production, lymphocyte 
proliferation, and atherosclerotic lesion formation at a dose lower than 
that needed to normalize serum cholesterol levels [62].

Patients with primary SjD and hypertriglyceridemia were more likely 
to show reduced salivary flow (95.2 % vs 81.3 %, P = 0.003) and pos-
itive antinuclear antibodies (90.6 % vs 70.6 %, P = 0.02) compared to 
sex- and age-matched healthy control individuals in a cohort study of 
women in United Kingdom (538 patients and 410 healthy control in-
dividuals) [55]. Consistent with these findings, the prevalence of pri-
mary SjD is higher in patients with hypercholesterolemia than in 
individuals with normal cholesterol levels [44, 63–65]. A 
population-based multicenter cohort study in Italy showed that in-
dividuals with hypercholesterolemia had a higher risk of SjD than the 
healthy control group (P < 0.001, 788 patients and 4774 healthy control 
subjects) [44]. Moreover, patients with primary SjD and metabolic 
syndrome showed higher scores in body mass index, as well as higher 
levels of serum cholesterol, low-density lipoprotein (LDL) cholesterol, 

triglycerides, proinflammatory cytokine interleukin (IL) 6 production, 
and cooccurrence of hypertension or type II diabetes, in contrast to 
lower levels of B-cell activating factor (BAFF) expression, compared to 
primary SjD without metabolic diseases (cohort study including women 
in Brazil, 82 % White patients and 86 % White healthy control in-
dividuals, 28 patients with metabolic syndrome, and 43 patients without 
metabolic syndrome) [56]. Therefore, high fat/cholesterol diets and 
metabolic diseases are considered to be associated with SjD and hypo-
salivation [56, 63, 66, 67]; however, the precise role of cholesterol 
metabolism in the SGs, under physiological and pathological conditions, 
remains largely unknown.

Interestingly, some clinical reports suggest that statins, which are 
drugs that normalize cholesterol levels, may be beneficial for autoim-
mune diseases including SjD [68,69]. For example, statin use is associ-
ated with a lower risk of blepharitis [70] and inhibition of inflammatory 
response caused by anti-M3 peptide IgG in SjD [71]. Since no prospective 
randomized trials have been conducted yet, there is a considerable 
debate about beneficial effects of statins on autoimmune diseases. 
Future studies will address this important question about the onset and 
potential therapeutic target for SjD.

2.2. Correlation between cholesterol metabolism aberrations and 
exocytosis defects in the salivary glands in SjD

An altered saliva content is a sign of major oral health issues [72,73]. 
For instance, saliva content is altered in individuals with metabolic 
diseases such as type II diabetes and obesity, who present oral health 
issues at higher frequency, including xerostomia [74,75]. Acinar cells in 
the SGs (submandibular, sublingual, and parotid glands and minor SGs) 
are responsible for the production and secretion of salivary protein 
components such as amylase (crucial for digestion), mucins (crucial for 
lubrication), and immunoglobulins (crucial for immunity) [76]. This 
secretion process can be stimulated by both sympathetic and para-
sympathetic nerves, although it is constitutively active at low levels in 
the absence of stimulation [77,78]. The secretion process called 
exocytosis includes secretory vesicle (SV) trafficking, docking, priming, 
and membrane fusion [78]. A failure in any step of exocytosis results in 
altered secretion of salivary proteins, leading to a failure in the digestion 
of foods, lubrication, prevention of infection (dental caries and peri-
odontal diseases), and halitosis (bad breath) [74,75]. In addition, exo-
somes, which contain cytosolic and endosomal proteins, microRNAs, 
and autoantigens are released from acinar cells into the mucosal lumen 
[79–81]. Recent studies indicate that salivary protein secretion is altered 
in individuals with metabolic syndromes, type II diabetes, and obesity 
[82–84], suggesting a potential link and/or association between salivary 
protein secretion (including exocytosis and exosomal secretion) and an 
abnormal metabolism. Indeed, exocytosis defects and aberrant salivary 
protein secretion, as well as altered exosome contents, have been iden-
tified in acinar cells of the SGs in SjD patients and mouse models [85, 
86].

Proteomics analysis and subsequent bioinformatic analyses using SG 
epithelial cells showed that cholesterol metabolism, as well as several 
basic metabolic pathways, is significantly upregulated in primary SjD. 
Interestingly, the bioinformatic analysis showed that proteins related to 
membrane trafficking, exosome-mediated transport, and exocytosis 
were significantly abundant, whereas proteins related to vesicle trans-
port were significantly fewer in patients with SjD compared to patients 
who have xerostomia without matching the criteria for SjD [21]. These 
findings are supported by pathohistological investigations; for example, 
SNARE proteins (STX3, STX4, SNAP23, and VAMP8) are dislocated from 
the apical side to the basal side of SGs, and mucins are abnormally 
deposited in the extracellular matrix (ECM) in SjD [87].

The release of the vesicle contents from acinar cells is a Ca2+- 
dependent process. Synaptotagmin-1 (SYT1), a transmembrane SV 
protein, acts as a Ca2+ sensor and initiates membrane fusion to open a 
pore. The expression of SYT1 at both mRNA and protein levels is 
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upregulated in labial SGs, and SYT1 colocalizes with STX4 at the baso-
lateral membrane of acinar cells in primary SjD [88]. Three-dimensional 
(3D) cultures with acinar cells from human submandibular glands 
(SMGs) confirmed that SYT1 overexpression can accelerate exocytosis, 
and TNFα stimulation alters cellular polarity so that SV secretion dis-
locates from the apical side to the basolateral side. In addition, serous 
acinar cells in patients with primary SjD accumulated MUC7-containing 
SVs throughout the cytoplasm and showed abnormal distribution of 
RAB3D from the apical side to the entire cytoplasm [89]. Other studies 
also showed that acinar cells in patients with SjD contain enlarged, 
accumulated SVs prior to the onset of overt SjD symptoms [85,90]. 
These dislocations are also observed in the LGs in male NOD mice, a SjD 
model [91]. Thus, defects in salivary protein secretion might be a 
dysfunction related to the onset of SjD.

There are some evidences that membrane cholesterol amount plays a 
crucial role in exocytosis. In primary rat lactotroph cultures, depletion of 
membrane cholesterol by methyl-β-cyclodextrin (MβCD) increases 
fusion pore conductance and pore radius, whereas high cholesterol level 
decreases them, suggesting that cholesterol amount affects exocytosis 
through the regulation of fusion pore size [92]. On the other hand, 
cholesterol can stabilize a fusion pore, which is formed by v-SNARE 
synaptobrevin/VAMP2, syntaxin-1A, and SNAP25, at the opening stage 
of exocytosis by altering membrane bending rigidity [93,94]. Moreover, 
in pancreatic beta cells, excessive cholesterol suppresses 
glucose-stimulated SV fusion via incomplete compound fusion (kis-
s-and-run fusion), which results in a decrease in insulin exocytosis [95]. 
Taken together, these findings suggest that excessive cholesterol may 
lead to abnormal SV fusion and exocytosis, which can trigger SjD 
(Fig. 1).

2.3. Mouse models for SjD

Since most patients with SjD are diagnosed at the late stages of the 
disease, the pathological changes occurring prior to clinical manifesta-
tions remain unclear. Therefore, animal models are essential to identify 
the pathogenic mechanism, especially at early stages of the disease 
(Fig. 2). Although substantial advancements have been made through 
the analysis of various mouse models [96], one of the current limitations 
is that the majority of mouse models for SjD develop SjD-like phenotypes 
due to mutation(s) in genes expressed in immune cells and alterations in 

the immune system [96,97]. Therefore, it is critical to develop new 
models for SjD without defects in immune cells.

We have recently reported that ectoderm-derived cell-specific con-
ditional knockout mice for the Atg7 and Atg3 genes (Atg7F/F;K14-Cre 
mice [hereafter Atg7 cKO mice], and Atg3F/F;K14-Cre mice [hereafter 
Atg3 cKO mice]) show phenotypes that recapitulate primary SjD (e.g. 
immune cell infiltration, acinar cell death, hyposalivation, and presence 
of anti-Ro/SSA and anti-La/SSB antibodies) [98]. Interestingly, 
pro-inflammatory cytokines such as IL6, IL12, and 
granulocyte-macrophage colony-stimulating factor are significantly 
upregulated in the SMGs in these mutant mice, which is observed as 
early as inflammatory cell infiltration occurs. Mice with a deficiency in 
the exocytosis process [Noc2 [99,100], Rab3d [101,102], Rab27a [102, 
103], Rab27b [102,103], and Vamp8 [104]] exhibit enlarged and 
accumulated SVs in the SGs and LGs and decreased total amount protein 
amount in saliva and tears. In agreement with these findings in mouse 
models, data from patients [85, 87, 89, 105] showed alterations in 
exocytosis in acinar cells (e.g. ectopic exocytosis, accumulation of SV 
contents in the ECM), which trigger inflammation and autoimmunity.

3. Conclusions

The secretion of salivary proteins is important for the maintenance of 
oral health. Individuals with metabolic syndromes show altered salivary 
protein content and have a higher risk of developing oral diseases 
[82–84]. The number of individuals with obesity and hypercholester-
olemia, which contribute to the development of oral diseases, is 
increasing in the US; therefore, there is an urgent need to take measures 
against oral diseases caused by these metabolic syndromes. In this re-
view, we summarized the current knowledge on the associations be-
tween cholesterol metabolism aberrations and SjD, as well as potential 
cellular mechanisms in SjD. The identification of the underlying mech-
anism(s) will provide new insights into the role of cholesterol meta-
bolism in SjD pathogenesis.

Ethic approval and consent to participate

Not applicable.

T

Fig. 1. Potential mechanism for SjD related to lipid/cholesterol metabolic aberrations. Cholesterol overload induces both cellular disfunctions and immune cell 
activation. The cellular disfunctions result in cell death, leading to autoantigen release. Inflammation in the glands will destroy acinar and duct cells as often seen in 
the late/severe stage of Sjogren’s disease.
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