
cancers

Article

The Metallophosphoesterase-Domain-Containing
Protein 2 (MPPED2) Gene Acts as Tumor Suppressor
in Breast Cancer

Simona Pellecchia 1,2 , Romina Sepe 1,2 , Antonella Federico 1,2, Mariella Cuomo 1,2,
Sara Carmela Credendino 2, Pasquale Pisapia 3 , Claudio Bellevicine 3, Pedro Nicolau-Neto 4 ,
Mariana Severo Ramundo 4, Elvira Crescenzi 1,2, Gabriella De Vita 2 , Luigi Maria Terracciano 5,
Lorenzo Chiariotti 1,2, Alfredo Fusco 1,2,* and Pierlorenzo Pallante 1,2,*

1 Institute for Experimental Endocrinology and Oncology (IEOS) “G. Salvatore”, National Research
Council (CNR), Via Sergio Pansini 5, 80131 Naples, Italy; simona.pellecchia@gmail.com (S.P.);
romina.sepe@unina.it (R.S.); anfederi@unina.it (A.F.); cuomomariella.91@gmail.com (M.C.);
e.crescenzi@ieos.cnr.it (E.C.); chiariot@me.com (L.C.)

2 Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples “Federico
II”, Via Sergio Pansini 5, 80131 Naples, Italy; credendinosara@gmail.com (S.C.C.); gdevita@unina.it (G.D.V.)

3 Department of Public Health, University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy;
pasqualepisapia89@gmail.com (P.P.); claudiobellevicine@gmail.com (C.B.)

4 Instituto Nacional de Cancer, 37908, Laboratorio de Carcinogênese Molecular, Rua Andre Cavalcanti 37,
Centro, Rio de Janeiro 20231-050, Brazil; pedronicolau.n@gmail.com (P.N.-N.);
marianasevero@gmail.com (M.S.R.)

5 Institute of Pathology, Molecular Pathology Division, University of Basel, Schönbeinstrasse 40, 4031 Basel,
Switzerland; luigi.terracciano@usb.ch

* Correspondence: alfusco@unina.it (A.F.); pallante@ieos.cnr.it (P.P.)

Received: 1 April 2019; Accepted: 6 June 2019; Published: 8 June 2019
����������
�������

Abstract: Background: We have recently reported the downregulation of the Metallophosphoesterase-
domain-containing protein 2 (MPPED2) gene and its cognate long non-coding RNA, MPPED2-AS1, in
papillary thyroid carcinomas. Functional studies supported a tumor suppressor role of both these
genes in thyroid carcinogenesis. We then decided to investigate their role in breast carcinogenesis.
Methods: In order to verify MPPED2 expression, 45 human breast carcinoma samples have been
investigated by quantitative real-time polymerase chain reaction (qRT-PCR). Then, MPPED2 has
been transfected in several human breast carcinoma cell lines, analyzing its role in cell proliferation,
migration and invasion. To study the regulation of MPPED2 expression the methylation of its promoter
was investigated by targeted bisulfite sequencing. Results: MPPED2 expression was decreased in
breast cancer samples, and this was confirmed by the analysis of data available in The Cancer Genome
Atlas (TCGA). Interestingly, the hypermethylation of MPPED2 promoter likely accounted for its
downregulation in breast cancer. Additionally, MPPED2-AS1 was also found downregulated in
breast cancer tissues and, intriguingly, its expression decreased the hypermethylation of the MPPED2
promoter by inhibiting DNA methyltransferase 1 (DNMT1). Furthermore, the restoration of MPPED2
expression reduced cell proliferation, migration and invasion capability of breast carcinoma cell lines.
Conclusion: Taken together, these results propose MPPED2 downregulation as a critical event in
breast carcinogenesis.

Keywords: MPPED2; MPPED2-AS1; methylation; breast cancer; long non-coding RNA; tumor
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1. Introduction

The Metallophosphoesterase-domain-containing protein 2 (MPPED2) belongs to the Class III of cyclic
nucleotide phosphodiesterases (PDEs) and represents the first evidence of Class III-PDE identified in
mammals [1]. This family of enzymes cleaves 3′,5′-cyclic phosphate nucleosides into 5′-phosphate
nucleosides, regulating the cellular abundance of these cyclic second messengers and their degradation
rates [2]. It has also been reported that MPPED2 protein exhibits low phosphodiesteric activity against
cyclic adenosine 3′,5′-monophosphate (cAMP) and cyclic guanosine 3′,5′-monophosphate (cGMP),
due to an aminoacidic replacement in the highly conserved catalytic site at position 252, where a
glycine residue replaces a histydine [3]. This unique substitution allows the active site of MPPED2 to
retain AMP or GMP with strong affinity, leading the protein to have low catalytic efficiency [4].

The human MPPED2 gene is located between FSHB and PAX6 genes on 11p13 chromosomal region,
whose deletion has been found associated with WAGR syndrome, a pathological condition characterized
by the presence of Wilms tumor, aniridia, genitourinary anomalies and mental retardation [5].
Interestingly, MPPED2 is highly conserved throughout the evolution with orthologs going from worms
to humans supporting the critical role of this gene in biological functions [6]. Furthermore, it has been
reported that MPPED2 mRNA is highly expressed in foetal brain, suggesting its involvement in the
development of the nervous system [7].

Although it has been reported that several PDE members are upregulated in cancer and have
oncogenic activity [8,9], MPPED2 was found to be downregulated in several cancer types, such as
neuroblastoma [10], cervical cancer [11] and oral squamous carcinomas [12]. Recently, our group has
reported that MPPED2 is downregulated in benign and malignant thyroid neoplasia, and that its
restoration in thyroid carcinoma cell lines reduced cell proliferation and migration [13]. Moreover, a
positive correlation was also reported between MPPED2 and MPPED2 antisense RNA1 (MPPED2-AS1,
previously indicated as RP5-1024C24.1), a long non-coding RNA (lncRNA) gene located on the same
chromosomal region in antisense position with respect to the MPPED2 gene.

Therefore, in order to verify whether MPPED2 downregulation was a more general event in
cancer, we evaluated MPPED2 expression in breast cancer (BC), aiming also to identify new players in
breast carcinogenesis that might represent useful diagnostic markers.

BC is the most common female cancer worldwide and remains a leading cause of death for cancer
among women both in developed and developing regions with an estimated 2.1 million of new cancer
cases diagnosed in 2018 [14]. BC is subdivided into several subtypes defined by the presence/absence
of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2
(HER2), key genes that play crucial roles in mammary oncogenesis [15,16]. The molecular BC subtypes
are classified in luminal A (Lum A: ER+ and/or PR+, HER2–), luminal B (Lum B: ER+ and/or PR+,
HER2+), HER2 enriched (HER2: ER–, PR–, HER2+) and triple-negative breast cancer (TNBC: ER−,
PR−, HER2−) subtypes. TNBC subtype is additional subdivided in basal-like (enriched with basal
marker) and claudin-low (overexpressing genes correlated with aggressive behavior) subtypes [17–19].
However, despite considerable improvement in screening, diagnosis and therapy, the molecular bases
of BC development remain unknown.

In the present study we show that MPPED2 expression was decreased in BC samples, likely
due to its hypermethylated promoter, reflecting data available on The Cancer Genome Atlas (TCGA).
Intriguingly, the downregulation of MPPED2-AS1 was also observed in BC. In this context, we
report that MPPED2-AS1 interacted with DNA methyltransferase 1 (DNMT1), thus modulating the
methylation of MPPED2 promoter. To further characterize MPPED2 role we performed functional
assays in MDA-MB-231 (claudin-low), SKBR3 (HER2) and MDA-MB-468 (basal-like) [17–19], being
cell lines in which MPPED2 showed the lowest expression levels with respect to the other cell
lines analyzed (MCF7, Lum A and BT-474, Lum B). Additionally, MCF7 cells were also used to
analyze the role of MPPED2 in less aggressive BC cells. Functional assays clearly demonstrated that
MPPED2 overexpression reduced cell proliferation, migration and invasion capability, thus supporting
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a critical role of MPPED2 downregulation in breast carcinogenesis where MPPED2 would act as tumor
suppressor gene.

2. Results

2.1. MPPED2 and MPPED2-AS1 Are Downregulated in Human Breast Carcinoma Tissues

We evaluated MPPED2 mRNA levels in a panel of 45 human BC tissues by quantitative
real-time polymerase chain reaction (qRT-PCR). The results, shown in Figure 1A, evidenced a drastic
downregulation of MPPED2 expression in 44 out of 45 human BC samples when compared to normal
breast tissues, with an average relative expression value of 0.10 (**, p = 0.0027). Then, we also evaluated
MPPED2 expression in both paired and non-paired BC tissues in a dataset available in the TCGA
database. Accordingly, MPPED2 expression was significantly lower in 260 primary BC samples in
comparison with normal breast tissues (****, p < 0.0001), as well as in 61 BC samples in comparison
with matched breast normal tissues (****, p < 0.0001) (Figure 1B). In addition, MPPED2 expression
levels were also analyzed in the different BC molecular subtypes of the TCGA cohort (Lum A, Lum B,
HER2 and TNBC): as reported in Figure 1C, MPPED2 was found to be downregulated in all molecular
subtypes (****, p < 0.0001), in particular in HER2 and in TNBC ones. Moreover, MPPED2 reduction
resulted even lower in ER- respect to ER+ BC samples (Supplementary Materials Figure S1C).

Subsequently, we assessed the MPPED2-AS1 expression levels in the same set of BC samples by
qRT-PCR. Interestingly, MPPED2-AS1 levels were downregulated in 43 out of 45 analyzed samples,
with an average relative expression value of 0.05 (*, p = 0.0199) (Figure 1D). Furthermore, we evaluated
the MPPED2-AS1 levels in the same TCGA cohort utilized for MPPED2 and, we observed that
MPPED2-AS1 was downregulated in both paired (****, p < 0.0001) and non-paired (****, p < 0.0001)
BC samples. Moreover, in a large number of samples MPPED2-AS1 levels were not detectable at all
(Supplementary Materials Figure S1A). However, considering only the samples in which MPPED2-AS1
expression was detectable, we still found a significant downregulation in both paired (****, p < 0.0001)
and non-paired (****, p < 0.0001) BC samples (Figure 1E). Besides, MPPED2-AS1 expression was also
analyzed in the BC molecular subtypes of the TCGA cohort, even though any significant difference
was found among the groups (Supplementary Materials Figure S1B).

Then, we investigated whether a possible correlation between MPPED2 and MPPED2-AS1
expression occurred. As expected, a significant positive correlation (****, p < 0.0001) was found in BC
samples analyzed by qRT-PCR (Figure 1F). These results suggest that the co-regulation of MPPED2
and MPPED2-AS1 genes also occurs in BC.

Finally, we evaluated MPPED2 protein expression in a tissue microarray (TMA) containing
breast carcinoma tissues (n = 38), metastases (n = 10) and normal adjacent breast tissues (n = 6) by
immunohistochemical (IHC) staining with a specific antibody against MPPED2. A gross view of IHC
staining of TMA slide is shown in Figure 2A. The results of the IHC were summarized in Table 1 and
two representative IHC stainings are shown in Figure 2B. The intensity of the signal corresponding
to MPPED2 was reduced in matched breast carcinoma samples (center upper panel, score 2+; center
lower panel, score 1+) and metastases (right upper panel, score 2+; right lower panel, score 1+) when
compared to the normal adjacent tissues (left, upper and lower panel, score 3+). For each spot, we also
evaluated the percentage of positive cells and this parameter was combined with the intensity score
to calculate H-score (Materials and Methods). H-score analysis confirmed that MPPED2 expression
was significantly reduced in tumor tissues (***, p < 0.001) and metastases (**, p < 0.01), compared with
normal adjacent breast tissues (Figure 2C). No significant association was found between MPPED2
expression and tumor size, histological grade, lymph node, TNM stage and the status of ER, PR and
HER2 (Supplementary Materials Table S1), while a significant one was found with age (Fisher’s exact
test, p = 0.0002, Supplementary Materials Table S1).
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Figure 1. Expression of MPPED2 and MPPED2-AS1 in human breast carcinoma tissues. (A) MPPED2 
expression levels were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR) in 
45 breast carcinoma tissues. The dashed line represents the average relative expression value of the 
analyzed samples (p = 0.0027). Data are reported as 2−ΔΔCt values ± standard deviation (SD), compared 
to the mean of breast normal tissues, set equal to 1. (B) MPPED2 expression levels were evaluated in 
a dataset available in The Cancer Genome Atlas (TCGA). Paired (left panel) and non-paired (right 
panel) breast cancer samples were analyzed. t-test: ****, p < 0.0001 (primary tumors vs. normal tissues 
in both paired and non-paired samples). (C) MPPED2 expression levels were evaluated in the 
molecular subtypes of breast carcinoma tissues (Lum A, Lum B, HER2 and TNBC) in the TCGA 
dataset. Box and whiskers: Min to max. One-way analysis of variance (ANOVA) test: ****, p < 0.0001. 
(D) MPPED2-AS1 levels were evaluated in 45 breast carcinoma tissues by qRT-PCR. The dashed line 
represents the average relative expression value of the analyzed samples (p = 0.0199). Data are 
reported as 2−ΔΔCt values ± SD, compared to the mean of breast normal tissues, set equal to 1. (E) 
MPPED2-AS1 expression levels were evaluated in the TCGA dataset. Paired (left panel) and non-

Figure 1. Expression of MPPED2 and MPPED2-AS1 in human breast carcinoma tissues. (A) MPPED2
expression levels were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR) in
45 breast carcinoma tissues. The dashed line represents the average relative expression value of the
analyzed samples (p = 0.0027). Data are reported as 2−∆∆Ct values ± standard deviation (SD), compared
to the mean of breast normal tissues, set equal to 1. (B) MPPED2 expression levels were evaluated
in a dataset available in The Cancer Genome Atlas (TCGA). Paired (left panel) and non-paired (right
panel) breast cancer samples were analyzed. t-test: ****, p < 0.0001 (primary tumors vs. normal
tissues in both paired and non-paired samples). (C) MPPED2 expression levels were evaluated in
the molecular subtypes of breast carcinoma tissues (Lum A, Lum B, HER2 and TNBC) in the TCGA
dataset. Box and whiskers: Min to max. One-way analysis of variance (ANOVA) test: ****, p < 0.0001.
(D) MPPED2-AS1 levels were evaluated in 45 breast carcinoma tissues by qRT-PCR. The dashed line
represents the average relative expression value of the analyzed samples (p = 0.0199). Data are reported
as 2−∆∆Ct values ± SD, compared to the mean of breast normal tissues, set equal to 1. (E) MPPED2-AS1
expression levels were evaluated in the TCGA dataset. Paired (left panel) and non-paired (right panel)
breast cancer samples were evaluated and only samples in which MPPED2-AS1 was detectable were
considered for the analysis. t-test: ****, p < 0.0001 (primary tumors vs. normal tissues in both paired
and non-paired samples). (F) Correlation scatter plot (Spearman’s Rank) between qRT-PCR levels of
MPPED2 and MPPED2-AS1 analyzed in 45 breast carcinoma samples (r = 0.6646; ****, p < 0.0001).
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Figure 2. MPPED2 protein expression in human breast carcinoma tissues. (A) Gross view of 
immunohistochemical staining of a tissue microarray (TMA) slide. Scale bar, 2.5 mm. (B) 
Representative immunohistochemical staining of MPPED2 protein in normal adjacent tissue (left), 
breast primary tumor (center) and metastatic tissue (right) derived from two different patients (upper 
and lower panel), respectively. MPPED2 signal is strong in normal adjacent tissue (score 3+) and 
moderate (score 2+) or weak (score 1+) in primary tumor or metastatic tissues (magnification 200×). 
Scale bar, 250 µm. (C) Intensity of the staining and the percentage of positive cells were combined to 
obtained H-score. Box and whiskers: 10–90 percentile; Mann–Whitney test: ***, p < 0.001 (primary 
tumor vs. normal adjacent); **, p < 0.01 (metastasis vs. normal adjacent); ns, not significant (primary 
tumor vs. metastasis). 

Figure 2. MPPED2 protein expression in human breast carcinoma tissues. (A) Gross view of
immunohistochemical staining of a tissue microarray (TMA) slide. Scale bar, 2.5 mm. (B) Representative
immunohistochemical staining of MPPED2 protein in normal adjacent tissue (left), breast primary
tumor (center) and metastatic tissue (right) derived from two different patients (upper and lower panel),
respectively. MPPED2 signal is strong in normal adjacent tissue (score 3+) and moderate (score 2+)
or weak (score 1+) in primary tumor or metastatic tissues (magnification 200×). Scale bar, 250 µm.
(C) Intensity of the staining and the percentage of positive cells were combined to obtained H-score. Box
and whiskers: 10–90 percentile; Mann–Whitney test: ***, p < 0.001 (primary tumor vs. normal adjacent);
**, p < 0.01 (metastasis vs. normal adjacent); ns, not significant (primary tumor vs. metastasis).
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Table 1. MPPED2 protein expression evaluated by immunohistochemistry in breast cancer (BC)

Histological Type MPPED2 Staining Score a, n (%)

0 1+ 2+ 3+

Normal adjacent
tissues (n = 6) 0 (0) 0 (0) 0 (0) 6 (100)

Primary BC tissue
(n = 38) 3 (7.8) 10 (26.3) 12 (31.5) 13 (34.2)

BC metastatic
carcinoma (n = 10) 0 (0) 3 (30) 4 (40) 3 (30)

a 0, no signal; 1+, weak signal; 2+, moderate signal; 3+, strong signal.

2.2. Hypermethylation of MPPED2 Promoter Accounts for MPPED2 Downregulation in Breast Cancer

In order to unveil the mechanisms leading to the reduced MPPED2 expression in BC tissues we
evaluated the methylation of a CpG island located upstream of the transcriptional start site (TSS) of the
MPPED2 gene. We carried out next generation sequencing on 16 genomic DNAs deriving from matched
tumoral and normal breast tissues, after treatment with bisulfite. As shown in Figure 3A, 17 CpG
sites were strongly hypermethylated in tumoral samples. Furthermore, 14 out of 16 tumoral samples
(87.5%) analyzed showed a strong hypermethylation of the analyzed CpG sites when compared to
the matched normal tissues (Figure 3B,C). Then, we evaluated the methylation of MPPED2 promoter
on the same TCGA BC cohort previously considered for MPPED2 gene expression. Consistently,
we found that MPPED2 promoter was strongly methylated in 152 tumoral samples compared to 39
normal ones (Figure 3D). Intriguingly, from the TCGA analysis it was also clear that the suppression
of MPPED2 expression was more pronounced in tumors with CpG hypermethylation. In fact, as
shown in Figure 3E, we observed a significant negative correlation between MPPED2 expression
and promoter methylation (r = −0.1709; *, p < 0.0353). Therefore, these results suggest that MPPED2
expression might be mainly regulated through the methylation of its promoter. To validate this
hypothesis, MPPED2 expression levels were evaluated by qRT-PCR in a panel of BC-derived cell
lines, including MDA-MB-231 and MDA-MB-468 (TNBC), SKBR3 (HER2), MCF7 (Lum A) and BT-474
(Lum B) (Supplementary Materials Figure S2). MDA-MB-231 and SKBR3 cells, in which MPPED2
expression was extremely low (Supplementary Materials Figure S2), were treated for 120 h with
5-Aza-2′-deoxycytidine (5-Aza-dC) and levels of MPPED2 mRNA were then evaluated. Consistent
with our hypothesis, re-expression of MPPED2 was obtained in MDA-MB-231 (*, p < 0.05) and SKBR3
(**, p < 0.01) cells after 5-Aza-dC treatment (Figure 3F,G), confirming that the downregulation of
MPPED2 expression in BC could be mainly due to the hypermethylation of MPPED2 regulatory regions.
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Figure 3. MPPED2 methylation status in normal and tumoral samples. (A) Methylation levels of CpG 
sites in the MPPED2 promoter. Each histogram represents the mean value of each CpG site in the 
whole cohort analyzed. White and black bars represent normal and breast cancer tissues, respectively. 
t-test: *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001. (B) Methylation levels of the MPPED2 
promoter in each sample. Histograms represent the mean methylation value of all CpG sites in each 
sample. White and black bars represent normal and breast cancer tissues, respectively (S1–S16, 
different patient samples). t-test: *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001; ns, not significant. 
(C) Percentage of methylation of each tumoral sample compared to matched normal sample. t-test: 
****, p < 0.0001. (D) MPPED2 methylation levels were evaluated in a dataset available at The Cancer 
Genome Atlas (TCGA) comprising 152 primary breast tumors and 39 normal breast samples. t-test: 
****, p < 0.0001. (E) Correlation scatter plot (Spearman’s Rank) analysis between MPPED2 methylation 
values and expression levels in the TCGA cohort (r = −0.1709; p < 0.0353). (F,G) MPPED2 expression 
levels were evaluated by qRT-PCR (upper panel) in MDA-MB-231 and SKBR3 cell lines after 2 µM 5-
Aza-dC or dimethyl sulfoxide (DMSO) treatment for 120 h. Data were reported as mean ± SD. t-test: 
*, p < 0.05 (5-Aza-dC vs. DMSO, MDA-MB-231); **, p < 0.01 (5-Aza-dC vs. DMSO, SKBR3). MPPED2 
protein expression was also evaluated by Western blot (lower panel). Densitometric analysis of a 
representative experiment was performed by using ImageJ software. MPPED2 protein expression in 
5-Aza-dC treatment was compared to DMSO treatment, set equal to 1. Original blots were shown in 
Supplementary Materials Figure S4.  

Figure 3. MPPED2 methylation status in normal and tumoral samples. (A) Methylation levels of CpG
sites in the MPPED2 promoter. Each histogram represents the mean value of each CpG site in the
whole cohort analyzed. White and black bars represent normal and breast cancer tissues, respectively.
t-test: *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001. (B) Methylation levels of the MPPED2
promoter in each sample. Histograms represent the mean methylation value of all CpG sites in each
sample. White and black bars represent normal and breast cancer tissues, respectively (S1–S16, different
patient samples). t-test: *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001; ns, not significant.
(C) Percentage of methylation of each tumoral sample compared to matched normal sample. t-test:
****, p < 0.0001. (D) MPPED2 methylation levels were evaluated in a dataset available at The Cancer
Genome Atlas (TCGA) comprising 152 primary breast tumors and 39 normal breast samples. t-test:
****, p < 0.0001. (E) Correlation scatter plot (Spearman’s Rank) analysis between MPPED2 methylation
values and expression levels in the TCGA cohort (r = −0.1709; p < 0.0353). (F,G) MPPED2 expression
levels were evaluated by qRT-PCR (upper panel) in MDA-MB-231 and SKBR3 cell lines after 2 µM
5-Aza-dC or dimethyl sulfoxide (DMSO) treatment for 120 h. Data were reported as mean ± SD. t-test:
*, p < 0.05 (5-Aza-dC vs. DMSO, MDA-MB-231); **, p < 0.01 (5-Aza-dC vs. DMSO, SKBR3). MPPED2
protein expression was also evaluated by Western blot (lower panel). Densitometric analysis of a
representative experiment was performed by using ImageJ software. MPPED2 protein expression in
5-Aza-dC treatment was compared to DMSO treatment, set equal to 1. Original blots were shown in
Supplementary Materials Figure S4.
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2.3. MPPED2-AS1 Modulates MPPED2 Expression through DNA Methylation

Since MPPED2 and MPPED2-AS1 expression levels were downregulated and positively correlated
in BC samples, we hypothesized that MPPED2 expression can be regulated by MPPED2-AS1 through
an epigenetic mechanism. To this end, we restored MPPED2-AS1 expression in both MDA-MB-231 and
SKBR3 cells (Figure 4A), testing them for MPPED2 expression by qRT-PCR. As shown in Figure 4B,
a significant increase of MPPED2 mRNA levels were observed after MPPED2-AS1 overexpression,
confirming that the lncRNA plays an important role in MPPED2 regulation. Then, we investigated
the methylation of the CpG island located upstream of the MPPED2 TSS. The data showed that the
overexpression of MPPED2-AS1 leads to a reduction of MPPED2 promoter methylation in both BC cell
lines, suggesting that this lncRNA may control MPPED2 methylation (Figure 4C).
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obtained from SKBR3 cells transfected with MPPED2-AS1 overexpressing vector or the empty vector 
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Figure 4. MPPED2-AS1 interacts with DNMT1 decreasing MPPED2 promoter methylation.
(A) qRT-PCR analysis of MPPED2-AS1 expression levels in MDA-MB-231 and SKBR3 cells transfected
with MPPED2-AS1 overexpressing vector or the empty vector (EV). Data are reported as 2−∆∆Ct values±
SD, compared to the EV, set equal to 1. (B) qRT-PCR analysis of MPPED2 mRNA levels in MDA-MB-231
and SKBR3 cells transfected with MPPED2-AS1 overexpressing vector or the empty vector (EV). Data
are reported as 2−∆∆Ct value ± SD, compared to EV, set equal to 1. t-test: *, p < 0.05 (MDA-MB-231 and
SKBR3). (C) MPPED2 promoter methylation levels were evaluated in MDA-MB-231 and SKBR3 cells
transfected with MPPED2-AS1 overexpressing vector or the empty vector (EV). t-test: ***, p < 0.001
(MDA-MB-231); **, p < 0.01 (SKBR3). (D) RNA immunoprecipitation was performed on extracts
obtained from SKBR3 cells transfected with MPPED2-AS1 overexpressing vector or the empty vector
(EV), using an anti-DNMT1 antibody or a pre-immune (IgG) serum, as control. Immunoprecipitated
MPPED2-AS1 RNA was quantified by qRT-PCR. RNA levels were reported as percentage of input and
were calculated with the 2−∆Ct formula.

Since DNMT1 is a crucial factor for mammary carcinogenesis, being involved in several aspects of
tumorigenesis [20–22], we verified whether MPPED2-AS1 acts via DNMT1. In order to analyze the
physical interaction between MPPED2-AS1 and DNMT1, RNA immunoprecipitation (RIP) assay was
performed by using a specific anti-DNMT1 antibody in SKBR3 cells. Consistently, MPPED2-AS1 was
enriched after DNMT1 immunoprecipitation, compared to the control group (IgG), confirming that
this lncRNA physically interacts with DNMT1 (Figure 4D). Taken together, these results show that
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the interaction between MPPED2-AS1 and DNMT1 may prevent the methylation of CpG islands in
MPPED2 promoter region, thus avoiding its reduction.

2.4. Restoration of MPPED2 Expression Reduces Cell Growth Rate and Colony Formation in Human Breast
Cancer Cell Lines

To define the role of MPPED2 downregulation in breast carcinogenesis we investigated the
effects of MPPED2 overexpression in cell proliferation and cell-cycle regulation. To perform growth
curve analyses and colony formation assays, we restored MPPED2 expression in MDA-MB-231 and
SKBR3 cells, confirming its overexpression by qRT-PCR and Western blot (Figure 5A,B). As shown
in Figure 5C,D, MPPED2 stably transfected cells grew significantly more slowly than the control
cells transfected with the empty vector (EV). Consistently, colony assay experiments confirmed that
MPPED2 overexpression inhibited the formation of colonies (Figure 5E,F).

Moreover, we performed growth curve assay also in MDA-MB-468 and MCF7 cells transiently
transfected with MPPED2 to determine whether MPPED2 could affect also less aggressive BC cell lines.
After confirming by qRT-PCR and Western blot analyses the MPPED2 overexpression in transiently
transfected cells (Supplementary Materials Figure S3A,B), we observed that the restoration of MPPED2
was able to inhibit the growth in both cell lines when compared to the control cells (Supplementary
Materials Figure S3C), leading us to consider that its tumor suppressor activity is not restricted to the
more aggressive behavior of BC cells.
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Figure 5. MPPED2 reduces cell proliferation of breast carcinoma cell lines. (A,B) qRT-PCR (left panel)
performed in MDA-MB-231 and SKBR3 cells stably expressing MPPED2 or carrying the corresponding
empty vector (EV). Data are reported as 2−∆∆Ct values ± SD, compared to the EV, set equal to 1. Western
bot (right panel) analysis confirming the expression of MPPED2. β-actin was used to normalize the
amount of loaded protein (left panel). Densitometric analysis was performed by using ImageJ software
to evaluate MPPED2 protein expression compared to EV, set equal to 1. Original blots were shown in
Supplementary Materials Figure S5. (C,D) Cell growth analysis of MDA-MB-231 and SKBR3 cells stably
expressing MPPED2 or carrying the corresponding empty vector (EV). Cell number was evaluated
at 24 h, 48 h, 72 h and 96h after seeding. Values were obtained from three independent experiments
performed in duplicate. Data are reported as mean ± SD. 2-way ANOVA test (Bonferroni post-test:
MPPED2 vs. EV, 96 h and 72 h, ***, p < 0.001). (E,F) Representative colony assays performed in
MDA-MB-231 and SKBR3 cells transiently transfected with MPPED2 or the corresponding empty
vector (EV). Cell were stained with crystal violet after 3 weeks of selection with hygromycin.

Finally, flow cytometry analysis was performed to investigate whether MPPED2 overexpression
influenced cell cycle. As shown in Figure 6A,B (right panel), MPPED2 overexpression induced a
significant increase in G1 phase of MDA-MB-231 (74.4% vs. 54.15%; *, p = 0.0286, MPPED2 vs. control)
and SKBR3 (69.82% vs. 51.88%; **, p = 0.0079, MPPED2 vs. control) cell number. The profile of a
representative experiment is shown in Figure 6A,B (left panel). Furthermore, in accordance with flow
cytometry data, reduced cyclin D1 and cyclin E protein levels were observed in both MDA-MB-231
and SKBR3 cells overexpressing MPPED2 compared with the control cell transfected with the empty
vector (Figure 6C). Therefore, these results confirmed that MPPED2 was able to negatively regulate BC
cell proliferation through the accumulation of cells in the G1 phase of the cell cycle.
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Figure 6. MPPED2 inhibits cell cycle progression of breast carcinoma cell lines. (A,B) Representative
experiments of cell cycle analysis performed in MDA-MB-231 and SKBR3 cells stably transfected with
MPPED2 or the corresponding empty vector (EV) are shown in left panel. Values shown in the right
panel were obtained from three independent experiments. t-test: *, p = 0.0286 (MPPED2 vs. EV,
MDA-MB-231 G1 phase); **, p = 0.0079 (MPPED2 vs. EV, SKBR3 G1 phase). (C) Western blot analysis of
cyclin D and cyclin E expression in MD-MBA-231 (left panel) and SKBR3 (right panel) stably expressing
MPPED2 or carrying the corresponding empty vector (EV). β-actin was used to normalize the amount
of loaded protein. Densitometric analysis was performed by using ImageJ software to analyse protein
expression compared to the EV, set equal to 1. Original blots were shown in Supplementary Materials
Figure S6.

2.5. MPPED2 Expression Suppresses Cell Migration and Invasion

Next, to determine whether MPPED2 expression may affect cell migration and invasion, we
performed transwell and Matrigel invasion assays on MDA-MB-231 and SKBR3 cells stably transfected
with MPPED2. Indeed, MPPED2 overexpression reduced cell migration and invasion ability of about
40% (**, p < 0.01) and 32% (*, p < 0.05), respectively in MDA-MB-231 (Figure 7A). These data were also
confirmed in SKBR3 overexpressing MPPED2, where migration and invasion were reduced of about
60% (*, p < 0.05) and 50% (*, p < 0.05), respectively (Figure 7B). Reduction of migration ability was also
confirmed in MDA-MB-468 and MCF7 cells (Figure S3D).
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Figure 7. MPPED2 reduces cell migration and invasion of breast carcinoma cell lines.
(A,B) Representative images of migration and invasion assays performed in MDA-MB-231 and
SKBR3 cells stably transfected with MPPED2 or the corresponding empty vector (EV) (upper panel).
Magnification 40×. Migrated or invaded cells were fixed with crystal violet solution. After elution
from transwell, it was quantified by reading its absorbance at 590 nm. Crystal violet absorbance values
were divided by corresponded cell titer values (Materials and Methods) and were plotted in y-axis.
Data obtained from three independent experiments carried out in MDA-MB-231 and SKBR3 cells are
shown in the lower panel. Values are reported as mean value ± SD, compared to the EV, set equal to 1.
t-test: *, p < 0.05, ** p < 0.01. (C) Western blot analysis of ZEB1 and E-cadherin in MD-MBA-231 (left
panel) and SKBR3 (right panel) cells stably expressing MPPED2 or carrying the corresponding empty
vector (EV). β-actin was used to normalize the amount of loaded protein. Densitometric analysis was
performed by using ImageJ software to evaluate protein expression compared to EV, set equal to 1.
Original blots were shown in Supplementary Materials Figure S7.
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Finally, to explain the mechanism by which MPPED2 affects migration and invasion, we performed
Western blot analyses of ZEB1 and E-cadherin proteins, two important epithelial–mesenchymal
transition (EMT) markers [23–25]. Interestingly, we found that the restoration of MPPED2 in
MDA-MB-231 and SKBR3 cells led to the reduction of ZEB1 and to the increase of E-cadherin
protein levels (Figure 7C). Thus, we can speculate that MPPED2 expression reduces BC cell migration
and invasion in vitro through the modulation of these canonical EMT markers, further supporting its
anti-oncogenic role played in breast carcinogenesis.

3. Discussion.

The aim of this study was to investigate whether the tumor suppressor role of MPPED2 described
by our group in thyroid neoplasia could be extended to BC. The results reported here clearly indicate
that the MPPED2 gene plays an anti-oncogenic role in human BC. Indeed, we demonstrated that
MPPED2 was strongly downregulated in almost all BC samples analyzed with respect to the normal
breast tissues. This result was even confirmed on a larger number of cases through the evaluation of data
available in the TCGA database. MPPED2 expression did not correlate with any clinico-pathological
feature of BC patients and this excludes the possibility of using MPPED2 detection as prognostic
marker. However, its detection through qRT-PCR and IHC might represent a new tool for the diagnosis
of breast neoplasia.

Epigenetic alterations, including DNA methylation, represent one of the greatest molecular
changes that occur in several malignancies, including BC [26]. In fact, CpG islands located upstream of
the promoter regions of tumor suppressor genes are generally hypermethylated in tumoral cells. This is
frequently observed in several human cancers including BC, and it is responsible for the transcriptional
silencing of these genes. Therefore, this occurrence prompted the scientific community to considerer
the hypermethylation of CpG islands as target for clinical strategies [27,28]. Considering this, we have
investigated the possible mechanism responsible for the downregulation of MPPED2 expression by
analyzing the methylation of its promoter. Hypermethylation of the promoter was detected in 14
out of 16 BC cases analyzed, and this finding was also confirmed through analysis of data available
in TCGA database. Consistently, the treatment of BC cells with the demethylating agent 5-Aza-dC
restored MPPED2 expression, supporting the hypothesis that MPPED2 hypermethylation accounted
for its downregulation in BC. Interestingly, we also reported that the lncRNA MPPED2-AS1 expression
was downregulated and positively correlated with MPPED2 in BC, as already demonstrated by our
group in papillary thyroid carcinomas. Here, we demonstrate that the overexpression of MPPED2-AS1
was able to reduce the methylation levels of MPPED2 promoter in MDA-MB-231 and SKBR3 cells.
Additionally, we also demonstrate that MPPED2-AS1 was able to bind DNMT1, inhibiting its activity.
Then, the MPPED2-AS1 reduced expression would lead to an increased methyltransferase activity,
with a consequent hypermethylation of the MPPED2 promoter. However, we cannot exclude that
other epigenetic mechanisms might be involved in the regulation of the MPPED2 gene expression.

Subsequently, functional studies demonstrated that the restoration of MPPED2 in BC cells, in
which its expression was very low, significantly reduced cell growth rate arresting the cells in the G1
phase, with a reduced cyclin D and cyclin E expression. Moreover, MPPED2 expression negatively
affected BC cell migration and invasion, supporting the anti-oncogenic role of MPPED2 in breast
carcinogenesis. Interestingly, to determine whether MPPED2 could impact on migration and invasion
through the modulation of EMT proteins, we found that its restoration was able to reduce ZEB1 and to
increase E-cadherin protein levels, thus suggesting that MPPED2 could exert its action through this cell
signaling pathway [23–25]. However, the mechanism by which MPPED2 exerts its tumor suppressor
activity requires further studies.

Previous studies have evidenced MPPED2 downregulation also in neuroblastoma [10], cervical
cancer [11], oral squamous carcinoma [12] and thyroid cancer [13], indicating that its tumor suppressor
activity is not confined to few neoplastic histotypes. Noteworthy, preliminary results obtained by our
research group have reported analogous results also in human glioblastomas and colorectal carcinomas



Cancers 2019, 11, 797 14 of 20

(data not shown) (S.P. (DMMBM, Naples, Italy); P.P. (IEOS-CNR, Naples, Italy); A.F. (DMMBM, Naples,
Italy). Personal communication, 2019). However, we could exclude MPPED2 downregulation as
a feature of all human malignancies, since liver, lung and prostate carcinomas did not display any
decrease of MPPED2 expression, as evaluated on TCGA dataset. Finally, the physiological role of
MPPED2 during normal development and in adult tissues is still far from being defined: the generation
of knock out mice for the MPPED2 gene would surely give more information about the physiological
role of MPPED2 and may even validate its tumor suppressor role.

4. Materials and Methods

4.1. Human Breast Tissue Samples

Normal and neoplastic human breast tissues were obtained from surgical specimens and
immediately frozen in liquid nitrogen. Breast samples were kept frozen until required for nucleic
acid extraction. Breast tissue samples were collected at the Institute of Pathology, University of Basel,
Switzerland. The study was conducted under the approval of the local ethical committee (#78-09).
Informed consent was obtained from all patients.

4.2. Cell Culture and Transfection

Human breast cancer cell lines MDA-MB-231, SKBR3, MDA-MB-468 and MCF7 were cultured in
Dulbecco’s Modified Eagle Medium (DMEM) (Sigma-Aldrich, St. Louis, MO, USA) supplemented with
10% foetal bovine serum (FBS) (Euroclone, Milan, Italy), 1% L-glutamine, 1% penicillin/streptomycin
(Sigma-Aldrich). Cells were kept at 37 ◦C under 5% CO2 atmosphere. Lipofectamine 2000 (Life
Technologies, Grand Island, NY, USA) reagent was used to transfect the cells according to the
manufacturer’s instructions. The stably MDA-MB-231 and SKBR3 transfected cells were selected in a
medium containing 600 µg/mL and 100 µg/mL of hygromycin (Sigma-Aldrich), respectively.

4.3. Plasmids

The expression vector encoding human MPPED2 gene was generated by cloning cDNA sequence
in the pcDNA3.1/Hygro (+) vector (Life Technologies) using HindIII and NotI restriction sites. After
cloning, the plasmid was subjected to sequencing (Eurofins Genomics, Vimodrone, Italy) and MPPED2
expression was validated by qRT-PCR and Western blot analyses. The expression vector encoding
human MPPED2-AS1 was obtained by cloning the lncRNA sequence in the pCMV6-AC-GFP vector
(Origene Technologies, Rockville, MD, USA) using the HindIII and XhoI restriction sites [13].

4.4. The Cancer Genome Atlas (TCGA) Database

MPPED2 expression data for BC samples were obtained from The Cancer Genome Atlas (TCGA)
by using web-based software Wanderer [29]. From the whole cohort, a total of 260 primary BC and 61
normal breast surrounding tissues were considered for this study. Patients were classified based on the
BC subtype (Lum A, n = 108; Lum B, n = 65; HER2, n = 35; TNBC, n = 52). For the methylation analysis
n = 39 normal tissues and n = 152 primary tumors were examined. MPPED2-AS1 expression data for
BC samples were obtained from TCGA repository (https://portal.gdc.cancer.gov/repository), using the
same BC cohort utilized for the evaluation of MPPED2 expression levels. A total of 250 primary BC
and 61 normal breast adjacent tissues were considered for this study. Patients were classified based on
the BC subtype (Lum A, n = 103; Lum B, n = 62; HER2, n = 35; TNBC, n = 50).

4.5. 5-Aza-2′-deoxycytidine (5-Aza-dC) Treatment

1 × 105 breast cancer cells were seeded into a 60 mm plate 12 h before treatment. Cells were
treated with 5-Aza-2′-deoxycytidine (A3656, Sigma-Aldrich) at a concentration of 2 µM in the growth
medium. The growth medium and 5-Aza-dC treatment were refreshed every 24 h for a total of 120 h.

https://portal.gdc.cancer.gov/repository
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4.6. Amplicon-Based Library Preparation and Targeted Bisulfite Sequencing

Genomic DNA (1 µg) was converted by sodium bisulfite treatment with EZ DNA Methylation
Kit (Zymo Research, Irvine, CA, USA) according to the manufacturer’s instructions. A first
amplification step was carried out on bisulfite DNA using the following MPPED2 specific
primers: Forward (Fw) = 5′aaaTTaatTTaaagtagagaat 3′; Reverse (Rv) = 5′cttttatAcccacttccaAttac
3′. Capital letters are referred to the C or G after bisulfite treatment. At each primer
overhang adaptor sequences (Fw: 5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-3′; Rv:
5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-3′) were added. The PCR reaction was
conducted according to the following conditions: denaturation at 95 ◦C for 2 min; 35 cycles of
denaturation at 95 ◦C for 30 s, annealing at 52 ◦C for 40 s, and extension at 72 ◦C for 50 s. Final
elongation at 72 ◦C was conducted for 6 min. A second PCR step was performed to add Illumina
multiplexing indices (“Nextera XT” primers, Illumina, San Diego, CA, USA) that allow samples
identification after sequencing. Two purification steps were performed using AMPure magnetic
beads (Beckman-Coulter, Brea, CA, USA) following the manufacturer’s protocol. After amplicons
quantification using Qubit® 2.0 Fluorometer (Life Technologies), an equimolar library of bisulfite-treated
amplicons was prepared and then diluted to final concentration of 8 picomolar. To increase diversity
in base calling during sequencing, Phix control library was added [8% (v/v)]. Amplicons library was
subjected to sequencing using V2 reagents kits on Illumina MiSeq system (Illumina). Paired-end
sequencing was performed in 250 cycles per read (250 × 2). An average of 200,000 reads for sample
were obtained. For the bioinformatics analyses, paired-end reads were assembled together with a
minimum of 40 overlapping residues as threshold with the PEAR tool [30]. FASTQ assembled reads
were then converted in FASTA format using the PRINSEQ tool [31]. To analyze the methylation status
of each amplicon, we used AmpliMethProfiler pipeline software [32,33], a phyton-based pipeline
specifically designed for deep-targeted bisulfite amplicon sequencing. AmpliMethProfiler produces
quality filtered FASTA and directly extracts average methylation comparing each sequence with a
gene-specific reference file in the FASTA format.

4.7. RNA Immunoprecipitation (RIP) Assay

RIP experiments were performed using the Magna RIP™ RNA-Binding Protein
Immunoprecipitation Kit (Millipore, Billerica, MA, USA) according to the manufacturer’s protocol.
Briefly, SKBR3 cells were harvested and lysed in complete RIP lysis buffer. 5 µg of human anti-DNMT1
antibody (#ab13537, Abcam, Cambridge, UK) and normal mouse IgG (Millipore), used as negative
control, were incubated with magnetic beads for 30 min. Then, 100 µL of whole lysates were incubated
overnight on a rocking platform at 4 ◦C. Next day, samples were incubated with Proteinase K buffer
at 65 ◦C for 30 min and then immunoprecipitated RNA was purified. Purified RNA was reverse
transcribed into cDNA by using random primer with the QuantiTect Reverse Transcription Kit (Qiagen,
Hilden, Germany), and analyzed by qRT-PCR.

4.8. Immunohistochemical Evaluation of A Breast Tissue Microarray (TMA)

A human breast cancer TMA was purchased from Super Bio Chips (Super Bio Chips Laboratories,
Seoul, Korea). The TMA section was deparaffinized in xylene (2 × 10 min) and re-hydrated in ethanol
solutions at decreasing concentration (from 100% to 50%). The TMA slide was then permeabilized in
phosphate-buffered saline (PBS)-0.2% triton (5 min), washed 2 × 5 min with PBS and, subsequently, it
underwent unmasking treatment in citrate buffer (0.01 M pH6) for 15 min in microwave. Endogenous
peroxidases were then blocked with methanol and 1.5% oxygen peroxide and tissues were once again
permeabilized with PBS-0.2% triton for 5 min, washed 2 × 5 min in PBS and blocked in blocking
solution (5% normal goat serum, 3% BSA, 20 mM MgCl2, 0.3% tween 20 in PBS) for 1 h at RT. The
rabbit polyclonal MPPED2 antibody (H00000744-D01P, Abnova, Taipei City, Taiwan) was used 1:50 in
blocking solution overnight at 4 ◦C. The section then underwent the following protocol: PBS-0.2%
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triton for 5 min, PBS 2 × 5 min, 1 h biotinylated α-rabbit IgG, H+L secondary antibody (BA-1000,
Vector Laboratories, Burlingame, CA, USA) 1:100 in blocking solution for 1 h at RT, PBS-0.2% triton for
5 min, PBS 2 × 5 min, ABC (SK-4000, Vector Laboratories) for 30 min at RT, PBS-0.2% triton for 5 min,
PBS 3 × 5 min, DAB substrate (SK-4100, Vector Laboratories). The slide was then de-hydrated and
covered with glass using D. P. X. mountant liquid (GRM655, Sigma-Aldrich) and finally acquired with
a NanoZoomer Digital Pathology System (Hamamatsu, Shizuoka, Japan). TMA comprised n = 59 total
cases including, n = 40 primary tumor samples, n = 10 metastatic samples and n = 9 normal adjacent
tissues. However, only n = 54 samples, including n = 38 primary tumors, n = 10 metastases, n = 6
normal adjacent tissues were evaluable. Two pathologists evaluated slide independently. For each
tissue spot, intensity of the staining and percentage of positive cells were recorded. The intensity of the
staining was scored from 0 to 3+, where 0 is no staining, 1+ is weak staining, 2+ is moderate staining
and 3+ is strong staining. H-score was calculated according to the following formula: 1 × (% of 1+

cells) + 2 × (% of 2+ cells) + 3 × (% of 3+ cells), to assign to each sample an expression value based on
the percentage of MPPED2 expressing cells and the intensity of staining [34,35].

4.9. RNA Extraction and Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

Total RNA from breast tissues and cell lines was extracted using Trizol reagent (Life Technologies).
1 µg of total RNA from each sample was used to obtain double strand cDNA with the QuantiTect
Reverse Transcription Kit (Qiagen). qRT-PCR was performed with the CFX96 thermocycler (Bio-Rad,
Hercules, CA, USA) in 96-well plates. For each PCR reaction, 10 µL of 2× Sybr Green (Bio-Rad), 200
nM of each primer and 20 ng of the cDNA, previously generated, were used. The oligonucleotides for
qRT-PCR, encompassing exon-exon junctions, were purchased from Integrated DNA Technologies
(San Diego, CA, USA) and designed with Primer-BLAST software. Sequences are as follows:

• MPPED2 Fw: 5′-GCTTCAAAGAGTGGGCTGTG-3′, Rv: 5′-GAGGGTTGGTCGGTTGAAAG-3′

• RP18S Fw: 5′-TGCGAGTACTCAACACCAA-3′, Rv: 5′-TTGGTGAGGTCAATGTCTGC-3′

• MPPED2-AS1 Fw: 5′-TGGTGCAGGGATTGTTGCAT-3′, Rv: 5′-TGAACGACTGCAACTGCTTTG-3′.

Relative gene expression was determined using comparative C(t) method, as described
elsewhere [36,37]. RP18S was used as housekeeping gene.

4.10. Western Blot

Cells were homogenized in RIPA lysis buffer (20 mM Tris-HCl pH 7.5, 5 mM
Ethylenediaminetetraacetic acid (EDTA), 150 mM NaCl, 1% Nonidet P40, and a mix of protease
inhibitors). Cell protein lysates were then subjected to sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE) and transferred onto Immobilon-P transfer membranes (Merck Millipore,
Burlington, MA, USA). Membranes were blocked with 5% non-fat milk and probed with the indicated
antibodies at the appropriate dilutions: MPPED2 (1:500; NBP1-80499, Novus Biologicals, Centennial,
CO, USA), cyclin D1 (1:1000; sc-718, Santa Cruz Biotechnology, Santa Cruz, CA, USA), cyclin E (1:1000;
sc-248, Santa Cruz Biotechnology), ZEB1 (D80D3) (1:500, #3396S, Cell Signaling, Danvers, MA, USA),
E-cadherin (24E10) (1:500; #3195, Cell Signaling), β-actin (1:5000; A5441, Sigma-Aldrich) and α-tubulin
(1:10,000; T6074, Sigma-Aldrich). Membranes were incubated with horseradish peroxidase-conjugated
secondary antibody (1:3000) for 60 min at RT. Signals were finally detected with chemiluminescent
detection system (ECL) (Thermo Fisher Scientific, Waltham, MA, USA), and films were developed with
a semiautomatic developing machine (Cawomat IR 2000, CAWO Photochemisches, Schrobenhausen,
Germany). Densitometric analyses of the Western blot bands were evaluated by using ImageJ 1.43
software (NIH, Bethesda, MD, USA).

4.11. Flow Cytometry

Flow cytometry analyses were performed as previously described [38]. Briefly, breast cancer
cells, seeded into a 100 mm plate, were trypsinized, washed twice in cold PBS and fixed with 70%
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ethanol, after 96 h. After centrifugation at 1200 rpm for 10 min at 4 ◦C, cells were treated with 50 µg/mL
propidium iodide and 25 µg/mL RNase DNase-free (Roche, Basel, Switzerland) in PBS for 20 min at RT,
safe of light. For each measurement 10,000 events were analyzed by employing a BD AccuriTM C6 flow
cytometer (BD Biosciences, Franklin Lakes, NJ, USA) and cell cycle data were analyzed with the BD
Accuri C6 Software in a semiautomatic analysis procedure.

4.12. Cell Migration and Invasion Assays

Migration and invasion assays were performed using transwell chamber (8 µm pores). Invasion
was estimated by using Matrigel (BD Biosciences). Briefly, human breast cancer cells (3 × 104 for
migration and 1 × 105 for invasion) were plated in the upper transwell chamber in serum-free medium.
Then, 0.3 mL complete medium were added in the lower chamber as chemoattractant. After 24 h
(migration) and 48 h (invasion) of incubation, migrated or invaded cells on the membrane of the
chambers were fixed and stained with crystal violet solution (crystal violet 0.05%, methanol 20%). After
acquisition of images, crystal violet in the chamber was de-stained with PBS-0.1% SDS solution and was
read at 590 nm in a microplate reader (LX800, Universal Microplate Reader, BioTek Instruments, Inc.,
Winooski, VT, USA). Breast cancer cell lines were also seeded in a 96 well plate to normalize the number
of used cells. After two hours, the absorbance at 490 nm was read using cell titer (Promega, Fitchburg,
WI, USA). Results were obtained by normalizing the crystal violet values to cell titer ones [13].

4.13. Colony Formation Assay

MDA-MB-231 and SKBR3 cells at 80% of confluency in 100 mm plate were transfected with
pCDNA3.1-EV and pCDNA3.1-MPPED2. 24 h after transfection, cells were treated with 600 µg/mL
and 100 µg/mL hygromycin, respectively. Medium containing hygromycin was refreshed every two
days and, after 3 weeks of hygromycin selection, cells were fixed and stained with a solution containing
crystal violet.

4.14. Growth Curve Assay

For the growth curve assay, 3 × 104 breast cancer cells were plated in a 60 mm plate. Cells were
counted in triplicate with Burker hemocytometer chamber to evaluate cell growth rate for 5 days.

4.15. Statistical Analysis

All results were reported as mean ± standard deviation (SD). Data were analyzed by Student’s
t-test, Mann–Whitney’s test and ANOVA test, when required. The correlations were evaluated through
non-parametric Spearman’s rank correlation coefficient with 95% confidence interval. To assess the
relationship between protein expression levels and clinico-pathological features, Fisher’s exact test
was used. Statistical analyses were carried out using GraphPad Prism software 6.0 and the difference
was considered significant when p < 0.05.

5. Conclusions

In conclusion, the results presented here support a tumor suppressor role of MPPED2 in breast
carcinogenesis and propose the hypermethylation of its promoter as one of the main mechanisms
accounting for its downregulation in BC. Intriguingly, reduced expression levels of MPPED2-AS1
lncRNA let to increase the activity of DNMT1, which in turn is responsible of the hypermethylation of
MPPED2 promoter.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/6/797/s1:
Figure S1: Analysis of MPPED2 and MPPED2-AS1 expression in the TCGA dataset. (A) MPPED2-AS1 expression
levels were evaluated in The Cancer Genome Atlas (TCGA) dataset. Paired (left panel) and non-paired (right
panel) breast cancer samples were evaluated. t-test: ****, p < 0.0001 (primary tumors vs. normal tissues in both
paired and non-paired samples). (B) MPPED2-AS1 expression levels were evaluated in the molecular subtypes
(Lum A, n = 23; Lum B, n = 6; HER2, n = 6; TNBC, n = 9) of the TCGA dataset. No statistical significance was

http://www.mdpi.com/2072-6694/11/6/797/s1
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observed among the groups (One-way ANOVA, p = 0.29). (C) MPPED2 expression levels were evaluated in
the TCGA dataset. ER+ (n = 172), ER− (n = 88) and normal (n = 61) breast samples were evaluated. One-way
ANOVA: ****, p < 0.0001 (ER+ vs. normal and ER− vs. normal); ***, p < 0.001 (ER+ vs. ER−), Figure S2: Expression
analysis of MPPED2 in human breast carcinoma cell lines. qRT-PCR analysis of MPPED2 mRNA levels in a panel
of human breast carcinoma cell lines, including MDA-MB-231, SKBR3, MDA-MB-468, BT-474 and MCF7. Data are
reported as 2−∆Ct values ± SD, Figure S3: MPPED2 reduces proliferation and migration of breast carcinoma cell
lines. (A,B) qRT-PCR performed in MDA-MB-468 and MCF7 cell lines transiently transfected with MPPED2 or
carrying the corresponding empty vector (EV) (left panel). Data are reported as 2−∆∆Ct values ± SD, compared to
the EV, set equal to 1. Western bot analysis confirming the expression of MPPED2 (right panel). β-actin was used
to normalize the amount of loaded protein. Densitometric analysis was performed by using ImageJ software to
evaluate MPPED2 protein overexpression compared to EV, set equal to 1, after normalization. Original blots were
shown in Figure S8. (C) Cell growth analysis was performed in MDA-MB-468 (left panel) and MCF7 (right panel)
cells transiently expressing MPPED2 or carrying the corresponding empty vector (EV). Cell number was evaluated
at 24 h, 48 h and 72 h after seeding. Values were obtained from three independent experiments. Data were reported
as mean ± SD. 2-way ANOVA test (Bonferroni post-test: MPPED2 vs. EV, 72 h, ***, p < 0.001) (D) Representative
images of migration assays performed in MDA-MB-468 and MCF7 cells transiently transfected with MPPED2 or
the corresponding empty vector (EV). Magnification 40×, Figure S4: Original blots for Western blot analyses to
Figure 3: (A,B) Western blot images of Figure 3F relative to MPPED2 and α-tubulin in MDA-MB-231, respectively.
(C,D) Western blot images of Figure 3G relative to MPPED2 and to α-tubulin in SKBR3, respectively. Figure S5:
Original blots for Western blot analyses to Figure 5: (A,B) Western blot images of Figure 5A relative to MPPED2
and β-actin in MDA-MB-231, respectively, (C,D) Western blot images of Figure 5B relative to MPPED2 and β-actin
in SKBR3, respectively. Figure S6:Original blots for Western blot analyses to Figure 6: (A,B,C) Western blot images
of Figure 6C relative to β-actin, Cyclin D and Cyclin E in SKBR3, respectively, (D,E,F) Western blot images of
Figure 6C relative to β-actin, Cyclin D and Cyclin E in MDA-MB-231, respectively. Figure S7: Original blots for
Western blot analyses to Figure 7: (A) Western blot image of Figure 7C relative to β-actin in SKBR3 (upper panel),
Western blot image of Figure 7C relative to β-actin in MDA-MB-231 and SKBR3 cells (lower panel), (B) Western blot
image of Figure 7C relative to E-cadherin in SKBR3 (upper panel), Western blot image of Figure 7C relative to ZEB1
in MDA-MB-231 and SKBR3 cells (lower panel), (C,D) Western blot images of Figure 7C relative to E-cadherin
and β-actin in MDA-MB-231, respectively. Figure S8: Original blots for Western blot analyses to Figure S3: (A,B)
Western blot image of Figure S3A and Figure S3B relative to β-actin and MPPED2 in MCF7 and MDA-MB-468
cells, respectively. Table S1: Association of MPPED2 expression and TMA breast cancer characteristic.
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