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Abstract

Autism spectrum disorder (ASD) is a brain disorder that involves changes in neuronal connections. Abnormal
morphology of dendritic spines on postsynaptic neurons has been observed in ASD patients and transgenic mice
that model different monogenetic causes of ASD. A number of ASD-associated genetic variants are known to
disrupt dendritic local protein synthesis, which is essential for spine morphogenesis, synaptic transmission, and
plasticity. Most of our understanding on the molecular mechanism underlying ASD depends on studies using
rodents. However, recent advance in human pluripotent stem cells and their neural differentiation provides a
powerful alternative tool to understand the cellular aspects of human neurological disorders. In this review, we
summarize recent progress on studying mRNA targeting and local protein synthesis in stem cell-derived neurons,
and discuss how perturbation of these processes may impact synapse development and functions that are relevant
to cognitive deficits in ASD.

Background
Autism spectrum disorder (ASD) is a neurodevelopmen-
tal disorder characterized by social interaction failure,
anxiety, intellectual disability, and repetitive behavior.
According to the statistics from the Centers for Disease
Control and Prevention, 1 in 59 children is diagnosed
with ASD which affects all ethnic and socioeconomic
groups [1]. ASD is 4 times more common among boys
than girls and can be diagnosed as early as age of 2. The
exact cause of ASD is still unclear, but the occurrence of
ASD is highly associated with both genetic and environ-
mental risk factors. Fragile-X syndrome (FXS), tuberous
sclerosis complex (TSC), and Rett syndrome are among
some of the common syndromic ASD which are caused
by monogenetic defects, and the corresponding genes
that cause FXS (FMR1), TSC (TSC1 and TSC2), and Rett

syndrome (MECP2) have been identified [2]. However, it
is now clear that genetic variants of an extensive net-
work of genes are involved as contributing factors for
ASD, and more than 1000 human ASD-risk genes have
been reported in the Simons Foundation Autism Re-
search Initiative (SFARI) database. Notably, many ASD-
risk genes seem to converge onto common signaling
pathways that perturb specific neuronal functions [3, 4].
One major cellular process that is disrupted in ASD is
the development of excitatory synapses.

Dendritic spines and autism spectrum disorder
Most excitatory synapses are located on dendritic spines
of the postsynaptic neuron. These small (typically <
1 μm) yet dynamic dendritic protrusions exist as various
morphologies [5]. These include the mushroom spines
containing large “mushroom-shaped” heads that are sep-
arated from the dendrite by well-defined spine necks,
the stubby spines which are short and lack of spine neck,
and the thin spines which have long spine necks and
small bulbous heads. There is a fourth type of dendritic
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protrusions called filopodia which are more abundant
during early stage of neuronal development. Filopodia
are long and thin without distinct spine head, and they
are believed to actively search for presynaptic partners
to initiate the formation of neuronal connections during
synaptogenesis [6].
Spine morphology is a crucial determinant of struc-

tural stability and functions of the synapse. Mushroom
spines have better synaptic efficacy than thin spines be-
cause of the positive correlation between spine size and
synaptic strength [7, 8], in which the number of postsyn-
aptic receptors and the size of the postsynaptic density
(PSD) depend on the spine head volume [9]. As neurons
mature, the mushroom spines become more abundant
and replace the immature filopodia [10]. This transition
of dendritic spine morphology is required for higher
cognitive functions such as learning and memory forma-
tion. On the other hand, the width of the spine neck is
crucial for compartmentalization of synaptic signals [11],
while the length of dendritic spine can alter many
physiological properties such as synaptic membrane ten-
sion which regulates the insertion of glutamate receptors
[12]. The tight regulation of dendritic spine morphology
is therefore crucial for synaptic function and plasticity.
Alteration of spine number and morphology is be-

lieved to underlie many neurological disorders including
ASD [13]. Analysis of postmortem brain samples indi-
cates higher dendritic spine densities in cortical neurons
from ASD patients [14]. Dendritic spine defects are also
associated with other autism-related monogenetic disor-
ders. In FXS, high portion of immature filopodia is ob-
served as compared to control individuals [15]. Two-
photon imaging of cortical neurons in FXS mouse model
further shows delay in spine maturation and downregu-
lation of spine turnover during the first two postnatal
weeks [16]. In Rett syndrome, the spine density is re-
duced and is coupled with lower proportion of mush-
room spines. For TSC, there are fewer spines during
spinogenesis, but higher spine density is observed during
spine maintenance [17]. Cultured neurons that model
TSC display early defects during spinogenesis which is
characterized by overabundance of filopodia [18, 19],
while spine pruning is impaired which leads to higher
spine densities [20].
Dendritic spines are rich in filamentous actin. Spine

morphology and number are intricately controlled by
signaling pathways that involve multiple small GTPases
(such as those belong to the Rho, Ras, and Rap families),
which act on various actin-binding proteins to modulate
actin dynamics. The activities of the small GTPases in
turn depend on guanine nucleotide exchange factors
(GEFs) and GTPase-activating proteins (GAPs), which
regulate their GTP loading state and hence activation of
the downstream targets. Dysfunction of GEFs and GAPs

that act upstream of Ras and Rap is associated with
ASD. For example, truncated form of SynGAP, which is
a major neuronal GAP that controls the activity of Ras,
is expressed in individuals with ASD and intellectual im-
pairment [21, 22]. On the other hand, the missense mu-
tation on the Rap-GEF Epac2 resulting in the G706R
substitution is detected in individuals with ASD [23].
Other strong ASD candidate genes that control the actin
cytoskeleton include CYFIP1 and CTTNBP2. Therefore,
alteration in actin dynamics and the subsequent den-
dritic spine defects are one of the major underlying
causes for ASD and other ASD-related disorders.

Local protein synthesis and dendritic spine
morphogenesis
The discovery that polyribosomes are dendritically local-
ized in the granule cells of the rat dentate gyrus [24]
raises the intriguing possibility that protein synthesis can
occur on dendrites. This is further supported by the ob-
servation that synapse-enriched fractions containing
dendritic fragments without the cell body are able to
synthesize proteins [25]. Protein synthesis taken place
on dendrites allows higher degree of flexibility towards
local changes in synaptic composition and responses to
neuronal activity, which helps to shape brain connec-
tions according to need [26]. Local protein synthesis
near synapses is possible only if mRNAs can be trans-
ported from soma to distal dendrites. Dendritic mRNA
transport is first validated by the detection of mRNAs
encoding microtubule-associated protein 2 (MAP2) in
the dendrites of cultured hippocampal neurons [27]. The
transport of mRNA transcripts depends on specific
RNA-binding proteins (RBPs), which form ribonucleo-
protein complexes with the dendritic mRNAs and trans-
ported to the distal dendrites via the action of motor
proteins such as kinesin and dynein [28–32]. RBPs pro-
vide tight regulation in dendritic mRNA transport by
repressing the translation during trafficking and release
the transcripts at the endpoint for translation in re-
sponse to neuronal activity [33].
Local dendritic protein synthesis is crucial for control-

ling spine size and morphology. The increasing spine
head volume in CA1 pyramidal neurons of hippocampal
slices during to synaptic plasticity such as long-term po-
tentiation (LTP) is attenuated by the application of pro-
tein synthesis inhibitors [34]. Messaoudi et al. further
showed that the early synthesis of Arc is required for the
expression of LTP. Knockdown of Arc leads to dephos-
phorylation of cofilin and loss of nascent F-actin at syn-
aptic sites [35]. This study suggests a model in which
dendritic synthesis of Arc promotes filamentous-actin
expansion and triggers the structural changes of synap-
ses that underlie stable LTP. It is generally believed that
the cis-acting elements located in the 3′-untranslated
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region (3′-UTR) are responsible for dendritic
localization of mRNAs. These include the Bdnf and
CaMkIIα transcripts, two of the best characterized den-
dritic mRNAs [36–38]. Notably, transgenic mice with
disrupted 3′-UTRs of those transcripts but normal cod-
ing regions exhibit abnormal spine maturation, synaptic
dysfunction, and impaired spatial memory [39, 40]. Fur-
thermore, the Val66Met polymorphism of BDNF, which
is associated with anxiety and depression [41], also im-
pairs the dendritic targeting of Bdnf transcripts [42]. It
therefore appears that local protein synthesis is essential
and cannot be compensated by delivery of protein prod-
ucts derived from somatic mRNA translation, and this
compartment-specific synthesis of new proteins regu-
lates dendritic spine development for proper cognitive
functions.
The identities of dendritic mRNAs were elucidated by

multiple large-scale transcriptomic studies. Deep se-
quencing analysis by Cajigas et al. revealed the local
transcriptome of the synaptic neuropil in adult hippo-
campus. More than two thousand mRNA transcripts
have been identified, most of which encoded synaptic
proteins such as receptors, scaffold proteins, and signal-
ing proteins [43]. Other high-throughput RNA sequen-
cing studies also revealed nearly 2000 dendritically
localized mRNAs [44, 45]. Through characterizing the
proteins encoded by dendritically localized transcripts,
novel regulatory pathways that control postsynaptic de-
velopment may be identified, which potentially provide
new insights into the pathophysiology of brain disorder
[46–48]. With regard to ASD, it is noteworthy that
ASD-risk transcripts such as Shank and Cyfip have been
identified as transcripts in the neuropil in those high-
throughput studies. Shank is a scaffold protein present
in the excitatory PSD. In human, the proteins are
encoded by SHANK genes (SHANK1, SHANK2, and
SHANK3) and their mutations are strongly associated to
ASD [49]. Overexpression of Shank3 mutants (R12C and
R300C) in cultured hippocampal neurons causes Shank3
dysfunction and disrupts spine induction and maturation
[50]. CYFIP1 (cytoplasmic FMRP-interacting protein 1)
is a binding partner of FMRP, and it represses mRNA
translation through binding to the translational initiation
factor eIF4E [51]. Interestingly, CYFIP1 is also part of
the WAVE complex that promotes actin polymerization
by interacting with the Arp2/3 complex, thereby likely
contributing to the abnormal spine morphogenesis in
FXS. Copy number variations on CYFIP1 have recently
been associated with ASD and are believed to alter the
balance between synaptic excitation and inhibition [52].

Aberrant protein synthesis and mRNA processing in ASD
Dysregulated protein synthesis is a plausible mechanism
underlying the synaptic deficits in ASD [53, 54], and

correction of protein synthesis has been implicated as a
potential therapeutic approach [55, 56]. FXS is caused by
loss of the RBP Fragile-X mental retardation protein
(FMRP), which is resulted from expansion of CGG re-
peats in the promotor of the FMR1 gene, leading to
hypermethylation and silencing of transcription. The loss
of FMRP production affects dendritic mRNA transport
and translational regulation as well as dendritic spine
maturation [57]. For example, in FMRP knockout neu-
rons, there is increased expression of the bone morpho-
genetic protein type II receptor (BMPR2) which
activates the kinase LIMK1 to increase phosphorylation
and inhibition of the actin-depolymerization factor cofi-
lin, thereby altering actin dynamics and spine growth
[58]. Many FMRP targets are mRNAs that are encoded
by ASD candidate genes listed in the SFARI database
[59, 60], underscoring the important link between
FMRP-mediated control of local protein synthesis and
ASD.
Disrupted control of mRNA translation also causes

spine defects and autistic behaviors [53, 56, 61, 62]. TSC,
another syndromic form of ASD, is caused by the muta-
tion of TSC1 or TSC2 genes which fail to control the ac-
tivity of mammalian target of rapamycin (mTOR).
Alteration in mTOR pathway leads to exaggerated pro-
tein translation in dendrites and resulting in intellectual
disability [63, 64]. Interestingly, a recent study shows
that splicing of transcripts encoding the translational
regulator CPEB4, which is present at postsynaptic sites
to promote translation of dendritic mRNAs through
polyA elongation, is affected in idiopathic ASD and leads
to reduced expression of many ASD-risk genes [65].
Therefore, in addition to syndromic ASD such as FXS
and TSC, local dendritic mRNA translation may also be
disrupted in the more common idiopathic ASD.
Emerging studies reveal that besides translation, other

aspects of post-transcriptional regulation of RNA pro-
cessing such as RNA splicing and editing are also dys-
regulated in ASD [66–68]. Given that alternative splicing
which generates distinct 3′-UTRs and RNA editing can
both affect dendritic mRNA localization [69, 70], it is
plausible that aberrant RNA splicing and editing ob-
served in ASD will lead to alteration in the dendritic
transcriptome and subsequently affecting local protein
synthesis.

Dendritic mRNA and protein synthesis in pluripotent
stem cell-derived neuron
Most of our knowledge on the physiology of neurodeve-
lopmental disorders such as ASD depends on rodent
animal models. While rodent animal models can be con-
veniently used to screen molecular targets for various
neurological disorders, it has limitations in mimicking
the complex genetic background in human. Examination

Lo and Lai Molecular Autism           (2020) 11:40 Page 3 of 9



of postmortem human brain samples offers some in-
sights on the abnormal neuronal properties such as den-
dritic spine number and morphology in neurons of ASD
patients, but postmortem samples do not allow mechan-
istic studies which involve manipulation of living neu-
rons. The development of induced pluripotent stem cell
(iPSC) technology was introduced in 2006 which allows
the conversion of adult somatic cells into pluripotent
stem cells [71]. Recent literature has discussed the pro-
tocols for effective generation of iPSC-derived neural
stem cells and neuronal differentiation [72]. The study
of iPSC-derived neurons from somatic cells of healthy
individuals and diseased subjects can help to broaden
our understanding on human physiology and disease
therapeutics. Apart from iPSCs, human embryonic stem
cells (hESC) have been frequently used for differenti-
ation into human neurons. Despite the blossoming of
studies in recent years on iPSC- or ESC- (collectively re-
ferred to as pluripotent stem cells or PSCs) derived neu-
rons and their use in modeling neurodevelopmental
diseases, there are relatively few studies that focus on
mRNA targeting and regulation of protein synthesis in
stem cell-derived neurons. Given the strong association
between ASD and dysregulation of mRNA translation
discussed above, it is important to understand whether
mRNAs are similarly transported to neurites of stem
cell-derived neurons as in rodent primary neurons,
followed by characterization of local translation in iPSCs
from ASD patients. In this section, we will summarize
the recent findings reporting the axonal and dendritic
mRNA localization as well as local protein translation in
stem cell-derived neurons.
Using the compartmentalized microfluidic chambers

to evaluate the axonal transcriptome of hESC-derived
glutamatergic neurons, large number of mRNAs (3696
transcripts) are found to be expressed in the distal
axonal projections of hESC-neurons, and this axonal
transcriptome is largely similar to the primary rat cor-
tical neurons counterparts [73]. However, this study has
also identified transcripts, such as those encoding oxyto-
cin, that may be uniquely localized to axons of human
but not mouse neurons, indicating that human neurons
might possess mechanisms of mRNA targeting distinct
from rodent. Further evidence for mRNA targeting and
local translation has been gained in a recent high-
throughput study of mouse ESC-derived neurons, which
were obtained through exogenous expression of the pro-
neuronal factor ASCL1. The neurons were cultured on
microporous membrane in order to separate the neuritic
compartments from the soma [74]. Through analysis of
the two fractions by mass spectrometry, RNAseq and
ribosome profiling, the authors show that about half of
the proteins enriched in the axons and dendrites of
ESC-derived neurons originate from locally translated

mRNAs. Puromycin-proximity ligation assay was further
performed to demonstrate local translation of selected
transcripts in the dendrites. This study therefore conclu-
sively shows that local dendritic translation is a promin-
ent process in stem cell-derived neurons that
contributes substantially to the neuronal polarity and
asymmetric distribution of proteins. It would be import-
ant for similar high-throughput study to be performed
in human stem cell-derived neurons and determine if
the neuritic transcriptome is similar across the two
species.
Does dendritic local translation affect synapse func-

tions in human iPSC-derived neuron? Olfactory placodal
neurons differentiated from patient-derived iPSCs carry-
ing microdeletions of the SHANK3 gene show abnormal
morphology, including smaller soma and more neurites,
prior to synaptogenesis. This is followed by decrease in
pre- and postsynaptic puncta number in the more ma-
ture neurons, indicating the crucial role of SHANK3 in
neuronal development and synapse formation [75].
iPSC-derived cortical neurons isolated from four ASD
patients harboring the autism risk gene SHANK3 de
novo heterozygous truncating mutations also display sig-
nificant reduction in SHANK3 mRNA levels and a de-
crease in dendritic spine density and spine head volumes
[76]. Using single-molecule fluorescence in situ
hybridization (smFISH), it was found that SHANK3
mRNA puncta were visible in both cell soma and neur-
onal processes of human iPSC-derived cortical neurons,
while SHANK3 protein expression is only dendritically
localized [77]. This is consistent with previous findings
of the direct visualization of Shank dendritic transcripts
from rodent neurons [78], in which the 3′-UTR of
Shank1 transcripts contains a dendritic targeting elem-
ent that mediates dendritic localization. Interestingly,
cortical neurons differentiated from iPSC of ASD pa-
tients with SHANK3 heterozygous deletion showed ~
50% reduction in SHANK3 mRNA only within neuronal
processes but not in the cell soma [77]. Therefore, key
genes that control synapse development such as
SHANK3 are likely to undergo local translation in neur-
onal dendrites, and deficiency of the local translation
alone is sufficient to lead to synaptic changes in ASD.
One important question that has not been well-

addressed is whether aberrant protein synthesis is ob-
served in human stem cell-derived neurons modeling
ASD. While study that specifically examines dendritic
local protein synthesis is not yet available, global protein
synthesis as measured by metabolic labeling with
radioactive-labeled Cys/Met is downregulated in human
ESC-derived neurons that model Rett syndrome through
knockout of the MECP2 allele [79]. This is surprising
given that the lack of MECP2 in Rett syndrome is ex-
pected to disrupt transcription rather than translation,
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and the result is possibly explained by the reduced tran-
scription of genes encoding ribosomal proteins as well
as BDNF, one of the major growth factors that induces
neuronal protein synthesis through the Akt/mTOR path-
way. Notably, knockdown of PTEN, a negative regulator
of PI3K acting upstream of the Akt/mTOR signaling,
can reverse the defective neuronal morphology in the
MECP2 knockout ESC-derived neurons, indicating that
correction of aberrant protein synthesis is a promising
therapeutic strategy for ASD. While Rett syndrome neu-
rons may represent one end of the ASD spectrum show-
ing reduced protein synthesis, it is anticipated that
human PSC-derived neurons that model ASD from FXS,
TSC, or eIF4E mutations will display elevated protein
synthesis. Elegant approaches involving super-resolution
live imaging have been developed to monitor the synthe-
sis of nascent polypeptides in rodent primary neurons
[80]. Examining protein synthesis in real time and eluci-
dating the spatial and temporal changes in protein syn-
thesis in stem cell-derived neurons that model ASD
should represent an exciting research area to pursue in
the near future.

Synaptic defects of human PSC-derived neurons carrying
mutations that affect mRNA translation
Although direct examination on the effect of ASD muta-
tions on dendritic mRNA localization or protein synthe-
sis in human stem cell-derived neurons is lacking,
synaptic deficits have been observed in human stem cell-
derived neurons harboring ASD-related gene mutations
that are expected to perturb mRNA targeting and/or
translation. TSC is a disorder that is associated with syn-
dromic form of ASD. In TSC2-deleted human iPSC-
derived neurons, hyperactive mTOR signaling leads to
reduced excitability and excitatory postsynaptic currents
(EPSCs), and the defects are corrected by the mTOR in-
hibitor rapamycin [81]. Similarly, cerebellar Purkinje
cells differentiated from TSC patient-derived iPSCs also
displayed hypoexcitability, decreased expression of syn-
aptic markers, and miniature EPSCs [82]. Interestingly,
these patient-derived iPSCs with heterozygous TSC2
mutation also show reduced expression of transcripts
encoding dendritic RNA-binding proteins including
FMRP, suggesting that the absence of TSC2 can disrupt
dendritic mRNA transport and protein synthesis which
may subsequently contribute to the synaptic deficits. Re-
cent study also reports differential effects of single or
biallelic mutation on the TSC2 gene on patient-derived
iPSC neurons, with increased synchrony of neuronal ac-
tivity only observed in TSC−/− neurons [83].
FMRP is crucial for dendritic protein synthesis by

transporting the mRNA cargoes and regulating their
translation [84]. Multiple studies have characterized FXS
patient-derived stem cells and the differentiated neurons.

Neurite outgrowth during early differentiation is im-
paired in iPSC-derived neurons originated from FXS pa-
tients [85, 86], indicating that FMRP is crucial for the
initial early development and making it difficult to con-
clude the specific role of FMRP in synapse development.
On the other hand, neurons differentiated from ESCs of
FXS blastocysts have normal neurite outgrowth, but they
are less mature than the wild-type counterparts by dis-
playing abnormality in action potential and reduction of
spontaneous synaptic activity which is associated with
decrease in presynaptic functions [87]. Interestingly, by
comparing iPSC-derived neurons from a female premu-
tation carrier which contains mixed populations of cells
with different lengths of the CCG repeats, it was found
that the presence of extended CCG repeats in the FMR1
gene promotor without change in FMRP protein expres-
sion can negatively affect neurite growth and synapse de-
velopment [88], indicating gain-of-toxicity effect of
FMR1 mRNA on neuronal function. Furthermore, FMRP
plays multi-faceted roles in neuron. Besides mRNA
transport and translational regulation, FMRP is also cru-
cial for epigenetic control, chromatin stability, and DNA
damage response [84]. Therefore, the causative link be-
tween synaptic defects in FXS patient-derived neurons
and protein synthesis should be interpreted with care, as
the phenotype may be caused by dysregulation of other
cellular processes besides local protein synthesis.
Although overproduction of immature spines has been

one of the major phenotypes in neurons lacking FMRP
in both knockout mice and FXS patients [15], thus far
the studies on iPSC- or ESC-derived neurons from FXS
patients have not examined the number and morphology
of dendritic spines. However, insights on the potential
role of FMRP signaling in spine morphogenesis of hu-
man neuron may be indirectly provided through the
study on CYFIP1, which interacts with FMRP and medi-
ates the translation repression by FMRP as well as regu-
lating actin dynamics through Rac1 and the WASP
family member (WAVE) complex [89]. Disruption of
CYFIP expression is associated with intellectual disability
and ASD. Human iPSCs and iPSC-derived neurons with
autism-risk copy number variation on chromosome
15q11.2 show reduction in CYFIP1 gene expression [90],
and these neurons display 7.5-fold increase in filopodia
density compared to neurons from control individual
[91]. It should be noted that the micro-deletion on
chromosome does not only affect the CYFIP1 gene but
also the neighboring genes NIPA1, NIPA2, and
TUBGCP5, which encode proteins for Mg2+ transport
and tubulin-interacting protein, respectively. Future
work on human iPSCs with CYFIP1 deletion generated
by genome editing should validate the specific role of
this protein in the control of actin dynamics and spine
maturation.
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Challenges and promises of iPSC-derived neurons in the
study of protein synthesis and dendritic spine
morphogenesis
In this review, we have summarized the recent attempts
to examine mRNA targeting, protein synthesis, synaptic
transmission, and dendritic spine morphogenesis using
human pluripotent stem cell-derived neurons that
should have important implications in future study of
ASD. There are potential advantages and pitfalls in the
study of local protein synthesis and dendritic spine
morphology defects in human pluripotent stem cell-
derived neurons. On one hand, the culture of patient-
derived iPSCs can be scaled up to provide enough quan-
tity of RNAs and proteins that are essential for high-
throughput transcriptomic and proteomic studies. Ribo-
some profiling and RNAseq of neurites versus cell soma
[74] in human stem cell-derived neurons from patients
with monogenetic ASD-related disorders such as FXS
and TSC as well as idiopathic ASD will be crucial to ad-
dress how local protein synthesis is disrupted in ASD.
These neurons can also be used to test the validity of
correcting protein synthesis as a feasible strategy to re-
verse defects in neuronal properties such as synaptic
transmission and dendritic spine morphology. On the
other hand, the number of patient lines studied in iPSC
studies are not large and may not be sufficient to valid-
ate the hypothesis linking protein synthesis with den-
dritic spine morphogenesis. Towards this end, it would
be desirable to confirm findings of monogenetic ASD
patient-derived iPSC by generating isogenic iPSCs that
harbor the particular gene mutations, which can now be
readily achieved by genome editing such as CRISPR-
Cas9. Furthermore, the maturity of dendritic spines
formed in cultured human stem cell-derived neurons
may also be a concern for detailed study of dendritic
spine morphology defects in ASD [90, 91], although the
presence of mature spines in iPSC-derived neurons has
been recently demonstrated [76]. Synapse maturation
may be enhanced by co-culture between human iPSC-
derived neurons and mouse hippocampal neurons in
slices, in which the human neurons can be integrated
into the preexisting neural circuits in a region-specific
manner. This co-culture allows efficient and specific dif-
ferentiation of transplanted iPSC-derived neurons and
the formation of more mushroom spines [92]. Moreover,
organoids which are self-organized three-dimensional
tissue derived from stem cells are well-suited to mimic
the complexity of human organs. With the technological
advancement of 3D printing, miniaturized spinning bio-
reactor has been developed to generate forebrain, mid-
brain, and hypothalamus organoids from human iPSCs
[93]. The development of human brain organoids that
are maintained for extended period (more than 9
months) allows the development of mature dendritic

spines with presynaptic contacts [94]. Synaptosome can
be isolated from human brain organoid [95], which can
be a useful source for future identification of synaptic
mRNAs that undergo local translation in hiPSC-derived
neurons [96, 97]. The advancement of organoids would
promise to be an exciting tool for exploring the link be-
tween postsynaptic developmental defects and dysregu-
lated local protein synthesis in human ASD neurons.

Conclusion
ASD is strongly associated with aberrant protein synthe-
sis which can lead to impairment of dendritic spine de-
velopment. Application of human iPSCs has greatly
enhanced the generation of human cellular models to
unravel the causes and mechanisms that underlie inher-
ited neurological disorders like ASD. Synaptic deficits
are observed in ASD patient-derived iPSC neurons that
carry mutations to disrupt mRNA translation, support-
ing the causal link between uncontrolled protein synthe-
sis and ASD. Nonetheless, there are limited studies on
dendritic mRNA targeting and protein synthesis in hu-
man pluripotent stem cell-derived neurons. In addition,
technical difficulties of obtaining those neurons that pos-
sess mature dendritic spines remain. It is anticipated
that the rapid advance of imaging, transcriptomic ana-
lysis, and development of brain organoids will soon fa-
cilitate the exploration on dendritic protein synthesis in
human neurons, which allow us to understand how its
regulation is altered in different ASD patients.
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