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Capsule Networks have shown great promise in image recognition due to their ability to recognize the pose, texture, and
deformation of objects and object parts. However, the majority of the existing capsule networks are deterministic with limited
ability to express uncertainty. Many of them tend to be overconfident on out-of-distribution data, making them less trustworthy
and hence reducing their suitability for practical adoption in safety-critical areas such as health and self-driving cars. In this work,
we propose a capsule network based on a variational mixture of Gaussians to train distributions of network weights as opposed to
a single set of weights and enable the model to express its predictive uncertainty on out-of-distribution data. Training distributions
of weights have the added advantage of avoiding overfitting on smaller datasets which are common in health and other fields.
Although Bayesian neural networks are known to exhibit slow training and convergence, experimental results show that the
proposed model can retrieve only relevant features, converge faster, is less computationally complex, can effectively express its
predictive uncertainties, and achieve performance values that are comparable to the state-of-the-art models. This is an indication
that CapsNets can exhibit the transparency, credibility, reliability, and interpretability required for practical adoption.

1. Introduction

Recently, there has been an upsurge in the adoption of
Deep Learning (DL) to perform complex tasks such as
Visual Question Answering [1], and plant disease detection
[2], among others, due to their excellent performance in
terms of speed and accuracy compared to humans. Capsule
Networks [3, 4], for example, have demonstrated the ability
to recognize the pose, texture, and deformation of an object
and its parts. They have thus been proposed for use in
sensitive areas such as health [5, 6] and agriculture [7, 8],
among others. Irrespective of the sensitivity of the appli-
cation area, capsule networks (just like many other deep
learning models) do not incorporate uncertainties in their
predictions. The inability to model uncertainties leads to
model over/under confidence [9]. We propose a Bayesian

Capsule Network (BCN) motivated by [10, 11] and on the
background that the Bayesian framework provides the
capability for modeling uncertainties in neural network
predictions [12]. Bayesian Neural Networks (BNNs) esti-
mate uncertainties by defining a distribution over the
network weight parameters whose posterior weight dis-
tribution p (. | x) permits the BNN to capture the prediction
uncertainties.

BNNs are known to have a longer convergence time
during training [11] since training occurs on larger distri-
bution parameters compared to single points in deterministic
models. However, the choice of appropriate normalization
and weight initialization schemes can allow the network to
converge faster. Since Bayesian models replace the fixed
weights with probability distributions, they are capable of
training on smaller datasets without overfitting.
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This work, therefore, proposes a Variational Mixture of
Gaussian-based capsule network (CapsNet) that will contribute
to solving problems such as those caused by the lack of huge
datasets in critical areas (e.g., in health). Additionally, we aim at
reducing model complexity, reducing convergence time, and
improving accuracy on difficult datasets that are small and
imbalanced. These are difficult targets for a Bayesian model
known for its complexity, and inability to converge faster to
achieve. We also aim to leverage the ability of the BNN to model
uncertainties and introduce some form of reliability in the
predictions of the model on input images. The motive is to
enable such models to gain the confidence of the practitioner for
practical adoption in safety-critical areas such as autonomous
cars and medicine. The lack of sufficient training data is a major
limiting factor to the adoption of deep learning in areas such as
health due to concerns related to overfitting. This work,
therefore, uses Bayesian NNs to elegantly avoid this problem by
acting on the distributions weights as opposed to deterministic
models which train on a single set of weights. For instance, the
parameter 6 of a distribution on the weights p (w | 6) is learned
by Variational Inference leading to the minimization of
Kullback-Leibler (KL) divergence. This method provides a
principled framework for the usage of model components
leading to better monitoring of model complexity and avoiding
its associated problems such as overfitting. In addition, regu-
larization is natural to BNNs such that the regularization pa-
rameters get consistent treatment in the Bayesian setting thus
eliminating the need for techniques such as cross-validation
[13]. Perhaps, one of the main benefits of our method to the
health and other critical sectors is the model’s ability to avoid
overconfident predictions in regions of sparse data.

Experimental results show that our proposed Variational
Mixture of Gaussians Routing (VMGs-Routing) achieves a
significant reduction in model complexity while achieving
competitive results compared to the state-of-the-art models.
Our routing algorithm improves upon similar existing routing
algorithms by training and learning faster to achieve con-
vergence within a few epochs (approximately 100 epochs).
This method further reduces the infinite likelihood and zero
variance problem inherent in Maximum Likelihood solutions
caused by Gaussian clusters that try to take sole possession of
data points (also known as polarization in Capsules).

The contributions of this paper can be summarized as
follows:

(1) We propose a routing method from a variational
mixture of Gaussians that clearly relies on the
maximization of the evidence lower bound (ELBO)
to activate a capsule.

(2) We provide empirical results that are comparative to
state-of-the-art previous works on Bayesian and
deterministic capsules to demonstrate that our ap-
proach does not result in the loss of any of the in-
herent strengths of capsules such as viewpoint-
invariance, robustness.

(3) We show that our proposed Bayesian CapsNet is not
overconfident and is reliable from the high uncer-
tainty it expresses on out-of-distribution data.
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(4) The proposed model is less computationally complex
and performs comparatively well with deep Bayesian
CapsNet models from the literature in terms of ac-
curacy, uncertainty estimation, and prediction. Com-
paratively, our model achieves better speedup during
training and testing without performance degradation.

(5) We provide extensive visualizations of layer activation
maps, and predictive uncertainty plots, among others
in an attempt to increase the interpretability of our
model which is presumed (as a Bayesian model) to be
a complex probabilistic ‘black box” model.

The rest of the paper is organized in the following way:
Section 2 presents the related works in the literature followed
by Section 3 which discusses the Bayesian methods adopted
for this work. Section 4 presents the experiments and ex-
perimental results after which the paper is concluded in
Section 5.

2. Related Work

Some works in the literature have relied on variational in-
ference to propose capsules to solve varied problems. Smith
et al. [14] proposed a probabilistic capsule (CapsNet) to
encode the capsule assumptions and separate the generative
and inference parts from each other. They showed that their
model can generalize well on out-of-distribution data, but
did not express the uncertainty of their model. Ribeiro et al.
[11] proposed a Bayesian CapsNet routing algorithm based
on a mixture of transforming Gaussians to address the
variance collapse problem and to model the uncertainty of
the pose parameters. However, experimental results of the
uncertainty of the pose parameters were not provided. In
this implementation, a parent capsule j is activated if there is
an agreement between the votes of adjacent capsules. The
agreement is measured by the entropy of the multivariate
Gaussian distribution. A conditional variational CapsNet
[15] was proposed to detect classes that are not known
during training as a contribution to the open set recognition
problem. To this end, they adopted the variational
autoencoder approach enabling similar features to assume
the shape of a Gaussian, such that each unique feature as-
sumed a different Gaussian. A flow-based model with a long
flow structure is capable of finding the approximate pos-
terior probability compared to utilizing a simple family of
distributions to approximate the intractable posterior.
However, as the data increase in dimensionality, this so-
lution gives rise to huge computational complexity and
variance. To address this shortcoming, Hua et al. [16] uti-
lized a dynamic routing flow with variational inference to
achieve a shorter flow structure and a significant im-
provement in precision and accuracy. To introduce routing
uncertainties in CapsNet, Ribeiro et al. [17] proposed a
global view of the local iterative routing between capsules of
adjacent layers, enabling them to capture the uncertainty in
the assignment of parts to objects. Compared to the two
previous works mentioned earlier, this partial Bayesian
CapsNet produced results on out-of-distribution predictive
entropies that were consistent with uncertainties of model
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predictions. To avoid the singularity problem caused by
maximum likelihood estimation (MLE), a variational
routing CapsNet [18] has been proposed to utilize the
variational distribution and integrate the prior distribution
for automatic determination of the class of data and avoid
overfitting. A Bayesian capsule encoder [19] was proposed to
regulate the standard deviation and mean in latent space.
The authors argue that it is a better approach for the retrieval
of relevant features and image reconstruction from latent
space. To demonstrate that deep variational CapsNets can
achieve better performance on image synthesis and analysis,
Huang et al. [20] proposed a variational model in which the
divergence between a capsule and a given prior distribution
defines the presence of different entities in an object.

Traditionally, uncertainty is modeled with probability
theory and is increasingly becoming more relevant due to
the adoption of deep learning (DL) models in practical and
safety-critical applications such as medicine and self-driving
cars. This type of modeling uses a single probability dis-
tribution to capture the required knowledge and struggles to
express the two types of uncertainties in a DL model [21].
Aleatoric uncertainty arises from the element of randomness
due to the variability of the outcome of events, while epi-
stemic uncertainty measures the modeler(s) inability to
design the best model for the task at hand. In the literature,
Bayesian networks with latent variables have been proposed
[22] to measure both the predictive aleatoric and epistemic
uncertainties. This approach played a significant role in the
interpretability of the model, which, like other neural net-
work models is perceived to be a “black box.” With the
inherent advantages of CapsNets over other neural net-
works, our work proposes a variational mixture of Gaussians
routing-based capsules to effectively capture the predictive
uncertainty on the in and out-of-distribution data to im-
prove reliability, interpretability, and model confidence for
safety-critical applications.

3. Proposed Methods

In this section, we outline a brief introduction to the con-
cepts of Variational Inference and Gaussian mixture models
on which our routing algorithm is based.

3.1. Bayesian Mixture of Gaussians. Suppose X assumes a
Gaussian distribution; a linear combination of these Gau-
ssians forms the basis for the formulation of a mixture of
probabilistic (Gaussian) models known as a mixture of
Gaussians [10]. This convex combination creates the op-
portunity to adjust the means, covariances, and coeflicients
as a basis for approximating any continuous density func-
tion to arbitrary accuracy. Considering a superposition of
K-Gaussian densities taking the form of the joint probability
p(x,z) = p(x|2)p(2), z can be marginalized out to give
p(x) =YX, p(x,2) =YX, p(2)p(x|2). Realizing that the
mixing coeflicient 7, = p(z) = 1/K (K is a one-hot-vector)
is the probability of choosing one cluster out of K clusters,
the marginal probability can be rewritten in the form of a
Gaussian Mixture Model (GMM), shown in equation (1):

K
P(x) = ) o (x| o Zp): (1)

k=1

The Gaussian density (also called component) in the
above expression has its own mean y; and covariance .

Since routing in capsules operates on the concept of
clustering, they can naturally be modeled via a mixture of
transforming Gaussians [11].

3.2. Variational Bayes. Bayesian algorithms perform infer-
ence on unknown random variables by finding a posterior
probability density [23] in situations where the posterior is
intractable to compute. Approximate inference (using
Variational Inference (VI)) provides a reasonable approxi-
mation to the problem compared to Markov Chain Monte
Carlo (MCMC) methods that provide an exact solution but
with slow convergence time.

Using the Bayes theorem, the posterior probability
density can be computed as follows:

P (9, x)
p(x)

_p&19)p®)
p(x)

_p(x19)p(®)
[op(x,9)d9

where I oP (x,9)dI is the marginal probability (also called
the evidence). This term is intractable, requiring the use of
approximate solutions such as VI. VI does this by searching
a family of distributions Q for the distribution g that is
closest to the posterior p(.|x). The distance between the
variational (“nice”) distribution g and the true posterior

p1x) =

(2)

p(.1x); is measured by the Kullback-Leibler (KL)
divergence.
KLlalp( 1] = [ a(9log L a9
p(91x)
_ q(d)
~ 8 91 )
_ ) p(x,9)
= log p (x) Jq(S)log 2 dd.

Therefore, minimization of the KL over g now becomes
maximization of the Evidence Lower Bound (ELBO)

ELBO = Z[q] (x)

B p(x,9) @)
= Jq(S)log—q(S) dy,

to avoid the intractability issues of the true posterior p (9] x).
To maximize the ELBO, the vector of hidden random
variables 0 = (0,,0,,...,0,) (distributed according to the



variational distribution ¢g) are assumed to be made up of
independent random variables allowing their joint distri-
bution to be obtained from the product of their marginal
distributions.

q(0) =q(6,,0,,...6,)
= H%‘(Gi)
i=1

This mean-field (MF) approximation makes it possible to
obtain a free-form optimization of the ELBO Z[gq] with
respect to all the distributions g; (6,) by optimizing each of
the factors in turn. When the £[q] is fully described by the
MF distribution, every data point described by a variational
distribution will have its own free parameters. The task is to
then find the free parameters that will maximize Z[q].

In this study, it is assumed that data points, which are the
realization of the random variables X; ,..., Xy, are taken
from the m-dimensional Euclidean space RP. Thus, the
dataset X = (X,,...,Xy) is a vector with RP-valued ran-
dom coordinates that are to be classified into K clusters with
random centroids Hj,... , Hi that are multinormally dis-
tributed, i.e., Hi~N (4. A,;l), where k=1,.., Ky is the 1 xD
mean-vector and A;' the D x D covariance matrix. In what
follows, f; will be written for the density of N (yy, Ar').
Whenever the random variable X,, is in the k™ cluster, it then
assumes the distribution of the centroid of that cluster. Thus,
each data point X,, is distributed according to N (., A;), for
some = 1,.., K. In the sequel we denote by C,, the cluster label
of the random variable X,, for n=1,..., N. To each data
point X,,, corresponds a latent variable Z,, that is a 1-of-K
binary vector with ;. being the probability Z,, = 1, for some
k=1,.., K. Therefore, m= (my,..., Tx), called the vector of
mixing coefficients, is a probability vector and N=(Nj,.. .,
Yo)=Z,+Z,+ ... + Zy is a random vector with K non-
negative coordinates that sum up to N. In fact, Y is mul-
tinomially distributed with parameters N and m. Observe
that for any n=1,.. ., N, the probability that Z, = z, is given
by the following equation:

(5)

K
p(z) =[] (6)
k=1

Putting 0 = (Z, n, w,A), with Z=(Z,,..., Zx), p=(p,
Yoo o i) and A= (A1, A »,. . ., A k), the joint distribution of
X and 0 can be written as follows:

p(X,0) = p(X| Z,y, N)p(Z | 71, pt, N)p (7 [, A)p (| A)p(A)
=p(X| Z,u, Np(Z|m)p(m)p (u| A)p (A).
(7)

The second equality of equation (7) uses that
p(Z|m,u,A) = p(Z|n) and p(n|u, ) = p(m). We assume
further that conditioning on 6, the components of X are
independent. Similarly, given 7 and A, the components of Z
and p are respectively independent. Furthermore, the
components of A are also independent. In addition to the
above prescription, we use the plate notation (directed
graph) [10, 24] to derive our priors and put the problem in a
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Bayesian setting. Thus, using the conjugate priors of
,Aand m, and the above-given result in

7 ~ SymDir (K, o),

,,,,,,

Yk=1,..K ~ N((#o)» (ﬁoAk)il)’ (8)
Y= (Yy,...,Yg) ~ Mult(N, ),

Xis1, N~ N(Hci’AE,l)’

Therefore,
N K
p(xlzuA) =[] fi(x)™ (9)
n=1 k=1
N K
p(zlm) =]_[<]_[(nk)z"k>, (10)
n=1 k=1
T(Kocy) B act
p(ﬂ) = - K m' > (11)
I'( OCO)K E ¢
K
pulN) =TT 12 (), (12)
k=1
K
p(A) = wi(ay), (13)
k=1
where
i) =5 e 5 ) G|

S0) = s e {3 (=) Bo (1)

27”7 | (ByAg) |

Wi(Ay)=B(Wq,vy) | Ay (VO‘D‘1)/zexp(—§Tr(W;1Ak)),

i=1

D -l
_y v _ +1-
B(Wo,vy) = |W,| "/2{2"’3’27#’(” “’ﬂ‘[r(L : ’)} .

(14)

From the joint distribution in (7), we identify the pos-
terior and variational (‘nice’) distributions as p (Z, y, A, w| X)
and q(Z,p, A, n) ie., the p(6|X) and q(6) respectively,
providing the ingredients for the computation of
KL{q(Z,u, A, m)llp(Z, u, A, w| X)]. Accordingly, the varia-
tional distribution (VD) is factorized based on the MF
approximation method to obtain q(Z,u, A, m) =q(Z)q
(4, A, ). Meanwhile, from the MF approximation, it can be
shown that the best distribution g, for maximizing the ELBO
is qj (.]x), satistying In q;f (z]x) = lnp(zj, Xx) + constant.
We consequently model the joint distribution in (7)
according to the aforementioned best variational distribu-
tion. Initial calculations involve the determination of
q"* (z| x) followed by g* (m, y, A). In other words,
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logq” (z|x)=E () [l0g (p (x12,,8) p (z|7) p () p (11, )]
&9; +const.

(15)

Pushing the variables not dependent on =z (ie.

p(m)p(p, A)) into the constant, we obtain the following

equation:

logq" (z|x) = Eq(mpun) [log(p(x1z,u, A)p(z|m))] + const
(16)

Substituting (9) and (10) into the expression for
logg* (z | x), produces

N K
logq’ (z|x) = Z Z Zlog (pux (x,)) + const, (17)
n=1 k=1

where

logp,i (x,,) = Egm [log (m)] = 4 [log(“\;l | )]

D
- 5108(275) - E[E X — ) Ay (x,, - /"k)]'

(18)

q (o) [ (

Exponentiating logg* (z | x) and normalizing it to let p,,;
sum to 1 over all the values of k produces

q (zIx)-HHr k(%) (19)

n=1 k=1

where

pnk( n) _ FnkA\Tn)
ZJ:I Pn]( n)

The best q* (2] x), therefore, is a product of categorical
distributions for each latent variable having r, for
k=1,2,...,K as parameters.

On the other hand, the best variational distribution
q* (m,p, A) can be divided into two components g* () and
q* (4, A). It follows from the product rule, the deductions
leading to equations (15), (9) and (10) that g* () satisfies

Tk (xn) -

(20)

logq” (7) =log p(m) + Eyz) [log p(z | 7)] + const

= —1)21nnk+ZZznklnnk+const

n=1k=1

= (0p—1) Z Inm, + Z v, In 7, + const.
k=1 =1

(21)

Taking exponentials of both sides of the above expression
and taking care of the normalizing term result in

q" (m) =Dir(K, ay,. .., ax)

K (22)

a1
> OCK) ﬂ:kk >
k=1

=C(ay, ...

where

o = oy + yand

N
Vi = Z Zpk-
n=1

(23)

Upon some computations, the variational distribution
q* (4, A) for the joint distribution g(u, A) takes the form

log(q" (u,A)) =log (p (4, M) + E ) [log (p (x| 2,4, A))] +const

kZ [log(fk ‘uk)) +log(Wi (Ak))] + const,

(24)

where f9 and Wi are respectively the Gaussian and Wishart
densities (see equations (12) and (13)) with parameters
My, B> W, and v,. These parameters are given as follows:

B = Bo + Yo

1 _
my = /3_k (Boto + YiXi)s

Wi = Wi S+ P (R o) (Fe - )
k 0o T Viok /30+yk(k #o)(k .“o)

Ve =Yot Vi

N
Vi = Z Znko>
n=1

(25)

Z ZukXn>

yknl

—\T
Zznk - %) -

yknl

To evaluate r,, the quantities in p,; are expressed as
follows:

Eg (o) [ (60— 1) Mg (x, —ﬂk)] =D +vy (x,—my) Wy (x,—my),

1-
InA, =E[In|A,1] = Zq/(”k* >+Dln2+ln|Wk|,

i=1

lnﬁkE[E[lnlﬂk”_W(“k)_‘V(Z‘xi)’

i=1

(26)

where v is the log derivative of the multinomial gamma
function.
After the substitutions, p,; becomes,
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D 1-i
Zu/(u)ﬁLDanHnIWkl]

= Lyl -v @)+ [ Y (2,

_gln (2m) —% [D/j;l +v(x,— mk)TWk (x,— mk)]

(27)
18 1-i\ 1
Inp,y =y () =y (%) *5 Z ‘/’(yk : 1) +§Dl"2
1 D 1 1
+Eln|Wk | —Eln (2m) —ED[Sk1 —5% (x,—m) W (x,—my),
where Zfi 1 & = &;. There is a circular dependency between Applying the product rule, we obtain the following
these variational parameters requiring » iterative updates equation:
'Ic)}:)zisie:ir:)ssre the algorithm converges to an approximate % = {Elln p(X| Z s A)] + Elln p(Z | m)]
Using equation (7), the ELBO for a VGM model is +E[ln p(m)] + E[ln p (4, A)]} (29)
obtained as follows: —{[E [lnq(z)] - E [lnq(ﬂ)] _E [lnq(y, A)]},
Z=E[l X, Z,mu, N)] - E[I Z, 1, 4, \)]. 28
[Inp( ot V)] [Ing(ZmuA)] 28) and substituting the following expressions,
1 & . ) _ Te —
Efln p(X| 2,4 M)] = Y Vi {In A - DB = w Tr (W) = vy (3 - my)' W (3, — my.) - Din(2m)},
k=1
N K
Ellnp(Z|m] =) Y zuln,
n=1 k=1
Elln p(7)] = InC () + (o — Z In 77,
1§ Df, r
Elln p(u, A)] =5 Z Dln +lnAk —ﬁ——ﬂovk(mk my) W (my — my) (30)
k=1 k
-D-1) v, ~ 1o .
+ KInB(W, v,) + % Z InA; — 3 Z var(W()ka),
k=1 k=1
N K
E[lng(2)] = ) Y z,lnr,,
n=1k=1
K
E[lng(m] = (& - 1)In7; + InC(a),
k=1
and where 7 [q(A})] is the entropy of the Wishart distribution.
K (1 D (B b & then becomes the objective function to maximize and is
S N el P Ot 1Y A Dt iven by the followi tion:
Ellng(u,A)] _kZ_;{ZlnAk+ 5 ln<2ﬂ) 5 %"[q(Ak)]}, given by the following equation

(31)
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Yi{ln&y - DB’ = vT, (SeWi) = v (i — me) Wi (K —my) - Dln(2n)}]

+ i i rnklnf[k:| + |:lnC(0c0) + (o - 1) é l”ﬁk}

=1k=1

" [5 Z{Dln<ﬁ°) +InA, —% = Bovi( (my —my) Wi (my, - ””0))}

k=1

+ KInB (W, vy) + (VO

where

In7 = E[lnm]

v+1
5vDI2_D(D-1)/4 F(
[

(-9}

B(W,v) = IWIV/Z{

- I'(@)
C(a) = m and
Z[A] = -InB(W,v) —WE[MAH +§

(33)

In this paper, we implement the maximization of
equation (32) through the iterative updates of the GMM
parameters mentioned earlier.

3.3. Variational Mixture of Gaussians (VMGs) Routing-Based
Capsule Network. Motivated by [10, 11], and [4] based on
the discussions in Sections 3.1 and 3.2, we let &, and &,
respectively, represent capsules at the lower and higher-level
layers. Let X, € R** matrix represent the show of simi-
larity between the features of a lower-level capsule 7 to a
higher-level capsule k, with x;, € R” as its vectorized
version (i.e. X; |, is a flattened vector of the matrix X; |, with
= 16). A higher-level capsule’s pose matrix M 3 € R*™ is
ﬂattened to obtain capsule k’s pose vector g, € RP. For ease
of computations, we use the precision matrix A, instead of
the covariance matrix %, and use A, € RP to represents the
diagonal entries of A;. As mentioned earlier, r,; represents
the vector form of the routing responsibilities while 7, is the
mixing coeflicient used for a single one-hot-vector repre-
sentation (1/k) necessary for indicating the choice of a
cluster(capsule). On a larger scale, z is a latent variable that
serves as a collection of one-hot-vectors with similar features

(32)

-D-1\' & - 1 & _
T) PWIIEEDY va,(wolwk)]
k=1 k=1

- 1)lnm + lnC(cx):|

signifying the preference of each lower-level capsule feature
to a corresponding higher-level capsule Gaussian cluster of
features. Finally, we compute the activation probability a,, to
represent the likelihood that cluster k is activated by
computing the ELBO (equation (32)) and paying a fixed cost
of B, as indicated in [4]. Based on the above-given dis-
cussions, we derive Algorithm 1 as the routing procedure
between capsules.

3.4. Uncertainty Estimation. Aleatoric and epistemic un-
certainties are common with neural network models.
Randomness is a property that characterizes aleatoric un-
certainty [21]. For this type of uncertainty, there is sufficient
variability in the outcome of events as a result of a random
phenomenon. Epistemic uncertainty, on the other hand,
expresses the uncertainty resulting from the designer’s lack
of knowledge of the best design choices leading to the de-
velopment of the best model. Both uncertainties together
form the total uncertainty of the model. Several other
methods exist for finding the total uncertainty of a model,
but there is no consensus on which method is the best [25].

In this work, we experimentally determine the aleatoric
and epistemic uncertainties of our model on some of the
datasets. Since a deterministic model has no epistemic
uncertainty [25], we determine its aleatoric uncertainty on
the in and out-of-distribution data. For our Bayesian model,
we determine both uncertainties.

4. Experiments

The experiments in this work were carried out using PyTorch
1.7 GPU version on a 64 bit NVIDIA GeForce GTX 1060
Windows machine. Each model was trained for 100 epochs
using a learning rate of 0.001, 3 routing iterations, and
patience of 10,000. During training, the best model is saved
to be wused for inference. The code wused in our
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ALGORITHM 1: Variational mixture of Gaussians routing.
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FIGURE 1: Architecture of the proposed VMG CapsNet model.

implementation is a modification of the code in [11], which
can be found in [26].

4.1. Loss Function. We adopted the spread loss in [4] as well
as the negative likelihood loss as used in [11].

4.2. Model Architecture. Our model begins with a 2 x 2-filter
convolutional layer to perform convolutions on a 32 x 32 x 1
input image with a stride of 2. This layer precedes three
capsule layers and the ensuing VMG routing layers before
the final class capsule layer which produces one capsule for
each capsule class. Each capsule layer converts its respective
filters into a 4 x4 p; capsule pose matrix and activation. The
final layer broadcasts its weight matrices to produce a
capsule p, per class for each category in the dataset. Taking

the filter f and the capsule types p; produced by each capsule
layer into consideration, the network for the model can be
represented as [ f, p;, p,» P3» P4l The complete architecture
is shown in Figure 1.

4.3. Datasets and Data Preprocessing. Three popular com-
puter vision datasets and one health-related dataset were
adopted to experimentally evaluate the methods proposed in
this paper. MNIST [27] is a handwritten dataset consisting of
70,000 28 x 28 grayscale images commonly partitioned into
60,000 training and 10,000 test sets. Comparatively, this
dataset is less complex but effective and very popular for
testing the performance of computer vision algorithms.
Fashion-MNIST [28] is another dataset obtained from
70,000 greyscale fashion products. The original partition into
training and test sets is similar to MNIST. This dataset is
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FIGURE 2: Training/validation accuracy/loss curves for the proposed model. The model learns and converges on (b) Fashion-MNIST and (c)
MNIST as early as epoch 30. Learning takes time for (a) CIFAR-10 and (d) COVID-19 Radiography images but achieves convergence at
epoch 90. We notice that the model converges faster for the images that are less complex compared to CIFAR-10 and COVID-19.

relatively complex to MNIST. The third and most complex
dataset among the three is CIFAR-10 [29]. This dataset is
very challenging to most computer vision algorithms due to
the presence of background as well as background objects.
Each of the aforementioned datasets is made up of ten classes
and was partitioned into 55000 training, 5000 validation,
and 10,000 test sets.

The fourth dataset is a COVID-19 Radiography dataset
[30-32] collected from four countries by a team of doctors. It
consists of three classes of infected chest X-ray images and one
class of healthy X-rays. This dataset is highly imbalanced and
for purposes of this work, was partitioned into 16,952 training,
2,000 validation, and 4,227 test images. Even though the
performance of some machine vision algorithms largely de-
pends on extensive preprocessing to obtain high informative
image data, we did not employ any of these preprocessing
algorithms irrespective of the fact that digital images contain
Gaussian noise introduced by the limitations of the acquisition
sensor/camera during image capturing. Fortunately, there are
techniques to reduce its effect [33]. However, we evaluated the
model on the raw images, enabling us to understand the actual
extent to which the model can recognize real-life digital images
(such as the COVID-19 images) without human interference.

4.4. Experimental Results. The results presented in this
section are from the implementation of our model (Vari-
ational Mixture of Gaussians Routing model-VMG-

Routing), the baseline Multilane LBP-Gabor Capsule (ML)
network [32], and the VB-Routing [11] {64, 8, 16, 16, #c}
architecture; where #c is the number of output classes.
However, our GPU device could not run the higher ar-
chitectures of the other VB-Routing models, consequently,
for those models, we reported the results from the work in
[11].

4.4.1. Model Learning and Convergence. The training and
validation curves in Figure 2 show the proposed model’s
ability to learn and converge faster. For less complex
images such as MNIST and Fashion-MNIST, the model
converges as early as epoch 30. For relatively complex and
imbalanced images such as CIFAR-10 and COVID-19
Radiography, the model attains an accuracy approxi-
mately equal to the final accuracy at epoch 90. Our VMG-
Routing learns faster compared to the models in [11]
which only show stability beginning from epoch 150. Fast
learning and convergence are desirable attributes for
image recognition systems applied in critical areas such as
self-driving cars where every passing minute counts and is
valuable.

Table 1 reports a comparison of the error rates of the
VMG-Routing capsule and the other capsule network
(CapsNet) models. Even with the moderate (shallow) size of
the VMG-Routing model, it performs comparatively well
with the deep and multilane models. The difference in
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TaBLE 1: Comparison of the error rates between the VMG-Routing model and some models from the literature. (*) indicates the models that
our device could not implement due to memory limitations. The values reported here were thus obtained from the literature. (-) indicates
unavailable values. (#c) represents the number of classes in the dataset.

Error rate (%)

Algorithm . )
CIFAR-10 Fashion-MNIST MNIST COVID-19 radiography
VB-routing {64, 8, 16, 16, #c} [11] 13.10 5.46 0.99 8.01
VB-routing * {64, 16, 32, 32, #c} [11] 11.2 +.09 5.61 — —
VB-routing * {64, 16, 16, 16, #c} [11] 12.40 52 +.07 - -
EM-routing * {64, 16, 16, 16, #c} [4] — 6.14 — —
EM-routing * {64, 16, 32, 32, #c} [4] 11.2 +.09 — — —
Multi-lane LBP-gabor capsule [32] 11.43 5.17 1.00 8.04
Dynamic routing [3] 35.57 22.45 0.25 8.09
VMG-routing {32, 4, 8, 8, #c} (ours) 12.19 5.38 1.00 7.01

TaBLE 2: Comparison of the number of parameters generated by each model. The VMG-Routing model produced the least number of
parameters with the ML producing the largest number of parameters. (*) indicates the models that our device could not implement due to
memory limitations. The values reported here were thus obtained from the literature. (-) indicates unavailable values. (#c) represents the

number of classes in the dataset.

Number of parameters

Algorithm . .
CIFAR-10 Fashion-MNIST MNIST COVID-19 radiography
VB-routing {64, 8, 16, 16, #c} 145K 145K 145K 120K
VB-routing * {64, 16, 32, 32, #c} 323K 323K — —
VB-routing * {64, 16, 16, 16, #c} 172K 172K — —
EM-routing = {64, 16, 16, 16, #c} — 323K — —
EM-routing * {64, 16, 32, 32, #c} 323K — — —
Multi-lane LBP-gabor capsule 410M 410M 410M 3.70 M
Dynamic routing 9.3 M 8.2M 8.2M 9.8 M
VMGe-routing {32, 4, 8, 8, #c} (ours) 14K 155K 14K 10.2K

TaBLE 3: Results of testing on 10,000 sample images of MNIST, CIFAR-10, and Fashion-MNIST dataset. 4,227 samples were used for testing

the models on the COVID-19 Radiography dataset.

Fashion-MNIST (%) COVID-19 Radiography Average time

Algorithm MNIST (%) CIFAR-10 (%)
VB-routing {64, 8, 16, 16, #c} 98.53 85.06
Multi-lane LBP-gabor capsule 98.89 86.97
Dynamic routing 99.21 65.11
VMG-routing {32, 4, 8, 8, #c} (ours) 98.96 86.82

92.97 90.92% 30s, 14ms
94.00 91.09% 18s, 25ms
76.32 90.02% 20s, 11ms
93.71 92.15% 15s, 23 ms

accuracy on CIFAR-10 between the proposed VMG-Routing
CapsNet and the largest model is only 1.07% with our model
having an added advantage of being less computationally
complex.

4.4.2. Model Complexity. The VMG-Routing CapNet pro-
duced fewer parameters compared to its counterparts in the
literature as can be seen in Table 2. This makes the VMG-
Routing model less computationally complex and increases
its potential for implementation on embedded and mobile
devices that naturally have limited memory. In addition,
model complexity poses a threat of overfitting [34] that
ultimately leads to poor performance.

4.4.3. Inference. To test the models’ generalizability on
unseen images, we used the trained (saved) models to
perform inference, respectively, on 10,000 and 4,227 sample
images from MNIST, CIFAR-10, Fashion-MNIST, and the
COVID-19 Radiography datasets. A comparison of the test

accuracies is reported in Table 3. The average time for each
model to perform inference on the sample images is also
reported in Table 3. It can be observed that the VMG-
Routing model produced results that compare favorably well
with the results of other state-of-the-art models.

We further performed inference on individual in-dis-
tribution images for both models to determine the level of
confidence/certainty each model places on its prediction
probabilities. Figure 3 shows that the deterministic model is
overconfident in its predictions (column 3) while the VMG-
Routing CapsNet exercises some caution in the confidence it
imposes on its predictions (column 2).

4.4.4. Model Uncertainty. Daily scenarios involve decision-
making influenced by the level of uncertainties/certainties
prevailing at the time. Depending on the field under con-
sideration, uncertainty estimation can be a critical part of the
decision-making process. For instance, the reliability and
efficacy of a deep learning model for medical applications
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F1GUre 3: Comparison of the prediction probabilities of the VMG-Routing CapsNet and the Multi-lane LBP-Gabor Capsule model on in-
distribution COVID-19 and MNIST test images. These results express the certainty of each model in its prediction of the test image. Notice
that the deterministic model produces higher probabilities as a way of expressing overconfidence.

such as Artificial Intelligence (AI) assisted surgery depends
on the uncertainty with which it identifies the medical
condition correctly. Bayesian methods have advantages over
other neural networks as they provide the avenue to ef-
fectively model uncertainty [12]. The inability of machine
learning applications to provide reliable uncertainty esti-
mates is a potential limiting factor in their acceptability and
widespread adoption for critical tasks.

To demonstrate the reliability of the uncertainty esti-
mates of our VMG-Routing model, we present a comparison
of experimental results from the prediction of both in-
distribution (Figure 4) and out-of-distribution (Figure 5)
images for the VMG-Routing model and the baseline de-
terministic ML-LBP capsule model.

We use p,,, to express the aleatoric uncertainty shown
by the distribution across the classes for the deterministic
model. This uncertainty assumes a value of zero if a class gets
a probability of one and all other classes obtain a probability
of zero. Since deterministic CapsNets have fixed weights,
they cannot express epistemic uncertainties [25] and will
produce the same output when inference is carried on the
same input image N times. The output of the SoftMax layer
Pout (see Figure 3) sums up to one and measures the certainty
(certainty = p_,) of the model in its predictions. We obtain
the aleatoric uncertainty of the deterministic CapsNet from
the same quantity p,, by computing the negative log
likelihood (NLL) or the entropy of the predictions.

#c
entropy = - )" p;log(p;),
i=0

(34)
aleatoric uncertainty = NLL

= _log (Pout)’

where 0<i<#c and #c is the number of classes in the
dataset under consideration.

On the other hand, our VMG-Routing CapsNet replaces
the fixed weights with Gaussian distributions giving it the
ability to express both epistemic and aleatoric uncertainties
in its predictions. The aleatoric uncertainty is expressed in
the distributions similar to the deterministic CapsNets,
except that it is based on average prediction probabilities.
Meanwhile, the epistemic uncertainty is measured in the
spread of the inference probabilities and is zero for a zero
spread. For this scenario, N different multinomial condi-
tional probability distribution p(¥|x,w,) conditioned on
the weight distribution w,, are obtained out of N predictions
on the same input image. The mean probability pJ, is
computed for each class i and the maximum mean condi-
tional probability is chosen as the predicted class of the input
image.

1 Ni
Pout =5 2. Pouy (35)
ou N i:() ou

and
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filters for each layer.

pi*nf = ma“x(p:ut)' (36)

The averaging in the measure in equation (35) ensures
that the epistemic uncertainty in the model is captured.
Subsequently, NLL* = —log (p},;) is possible to compute. In
addition, the uncertainty based on the entropy and total
variance obtained from the averaging naturally follows from
the following expressions:

#c
entropy* == Z p;utlog (p:ut)’
i=0

(37)
2 a3 2 & 1 R *\2
or = U(Pi)ZZNZ(Pm—Pi)-
i=0 i=0 n=0

Figure 5 shows the uncertainty of both models on the
respective out-of-distribution images. The spread of the pre-
diction probabilities of a given class expresses the epistemic
uncertainty while the distribution across the different classes
epitomizes the aleatoric uncertainty of the models [25].

Even though both models produce wrong predictions for
the out-of-distribution images, the VMG-Routing CapsNet
produces predictive probabilities (Figure 5, column 2) that
significantly vary in the distribution and spread of the N =
100 predictive runs. The VMG-Routing CapsNet, therefore,
can express both uncertainties. On the contrary, the de-
terministic model cannot express epistemic uncertainty
since performing N = 100 predictive runs on the same input
image produces the same probabilities (Figure 5, column 3).
The ability of a model to express its uncertainty is a desirable
property since it can be shown that models that produce
higher uncertainties are likely to produce accurate

predictions [25]. Finally, the shape of the VMG-Routing
CapsNet’s predictive probability distribution has some
semblance to that of the Gaussian distribution which may be
attributed to the model being driven by a variational mixture
of Gaussians.

4.4.5. Model’s Ability to Extract Relevant Features. To enable
us to understand and tune the VMG-Routing model for
further performance improvement, we investigated the
ability of the layers in the model to extract the relevant
features. Through experimentation via this approach, re-
dundant layers were eliminated, resulting in a reduction in
the model size/complexity, convergence time, and excessive
oscillations during training. More specifically, we visualized
the output (feature maps) of the layers by feeding an input
image into the trained (best saved) model. The feature maps
for the various layers are shown in Figure 6. It can be ob-
served that the layers of the model can extract the most
relevant features from the input images.

4.4.6. Threats to Validity. Deep Learning (DL) is capable of
learning and modeling real-life scenarios when extreme care
is taken, during the design and development stages, to
consider all the factors that have the potential to prevent the
model from achieving optimal performance. For instance,
the choice of hyperparameters and their values is an im-
portant exercise that has a direct impact on the validity of the
model outputs. For stochastic gradient descent (SGD)-based
methods and their variants, a fraction of the dataset used for
training are organized into batches whose size is relevant to
the computation of the gradient. Practically, larger batch
sizes reduce the quality of the model during generalization
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[35]. This work, therefore, sampled from 16-32 data points
for the experiments as batch sizes. We also avoided the
sorting of the dataset and introduced randomization of
batches in a bid to prevent the possibility that a given batch
will have the same labels. In addition, the learning rate
controls the rate at which the model should be modified in
response to the error anytime there is an update in the model
weights. We chose a smaller learning rate to allow the model
to learn the optimal set of weights even though this has the
potential to increase training time and the risk of overfitting.
Other methods for solving this include implementing a
learning rate decay function which returns an updated
learning rate value that drops by half every n number of
epochs. Furthermore, nonlinear activation functions are
useful for DL to effectively model real-life scenarios which
are nonlinear. The choice of the appropriate activation
function determines the speed of computations necessary to
speed up the training process as well as the ability to reduce
the likelihood of generating vanishing gradients and im-
prove performance [36]. To introduce nonlinearity and
activate the capsule, we adopted the Sigmoid activation
function since it encourages unambiguous predictions with
1 or 0, plus the fact that it can return a value between 0 and 1
when used with (—oo0, +00).

Another scenario that poses a threat to the validity of the
Bayesian model outputs is the covariate shift, where the
distributions of training and target data are different [37].
Covariate shift may also occur due to pixelate-corrupted test
data, spurious correlations, and domain shift. This problem
is well pronounced with Bayesian models that make use of
unconstrained A (covariance matrix) and is worsened when
there exists linear independence in the features. In this work,
we employed mean-field variational inference (MFVI)
which constraints the A to be a diagonal matrix, limiting the
effect of linear dependence in the features [38] and hence the
impact of covariate shift.

5. Conclusion and Future Work

In this work, we proposed a capsule network based on a
variational mixture of Gaussian routing to express the
uncertainties associated with performing predictions on out-
of-distribution data. The results show that a Bayesian capsule
can be less computationally complex, converge faster, and
outperform both the state-of-the-art deterministic and
probabilistic models during inference. Furthermore, our
work demonstrates that Bayesian capsules may have ad-
vantages over their deterministic counterparts since they
have a bigger potential to exhibit transparency, credibility,
reliability, and interpretability required to gain the confi-
dence of industry players.

In the future, we intend to carry out a full investigation
into Bayesian capsule interpretability in a quest to unravel
the “black box” concept.

Data Availability

The data used to support the findings of this study can be
accessed in the following repositories: 1. http://yann.lecun.

Computational Intelligence and Neuroscience

com/exdb/mnist/ 2. https://www.cs.toronto.edu/~kriz/cifar.
html 3. https://www.kaggle.com/datasets/zalando-research/
fashionmnist 4. https://www.kaggle.com/datasets/
preetviradiya/covid19-radiography-dataset.
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