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Abstract
Cytokinins have been implicated in normal plant growth and development. These bioactive

molecules are essential for cell production and expansion in higher plants. Carrot is an Apia-

ceae vegetable with great value and undergoes significant size changes over the process

of plant growth. However, cytokinin accumulation and its potential roles in carrot growth

have not been elucidated. To address this problem, carrot plants at five stages were col-

lected, and morphological and anatomical characteristics and expression profiles of cytoki-

nin-related genes were determined. During carrot growth and development, cytokinin levels

were the highest at the second stage in the roots, whereas relatively stable levels were

observed in the petioles and leaves. DcCYP735A2 showed high expression at stage 2 in

the roots, which may contribute largely to the higher cytokinin level at this stage. However,

expression of most metabolic genes did not follow a pattern similar to that of cytokinin accu-

mulation, indicating that cytokinin biosynthesis was regulated through a complex network.

Genes involved in cytokinin signal perception and transduction were also integrated to nor-

mal plant growth and development. The results from the present work suggested that cytoki-

nins may regulate plant growth in a stage-dependent manner. Our work would shed novel

insights into cytokinin accumulation and its potential roles during carrot growth. Further

studies regarding carrot cytokinins may be achieved by modification of the genes involved

in cytokinin biosynthesis, inactivation, and perception.

Introduction
Hormones are intrinsic plant growth regulators that act in response to environmental cues
[1,2]. Among them, cytokinins (CKs) are a group of phytohormones that are involved in vari-
ous aspects of plant growth, including reproductive development, seed germination, leaf
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senescence, photomorphogenesis, and meristem activity [3–5]. Naturally occurring CKs
include isoprenoid CKs and aromatic CKs, although whether aromatic CKs are ubiquitous in
all plants remains unclear [6].

The CK biosynthesis, degradation, and signaling pathways have been extensively studied in
Arabidopsis [7,8] (Fig 1). Biosynthesis of iP-CKs (iP) and tZ-CKs (tZ) is initiated by a rate-lim-
iting step, which is catalyzed by isopentenyl transferases (IPTs) [9,10]. Consequently, iP-nucle-
otides (iPRTP, iPRDP, and iPRMP) are converted to the corresponding tZ-nucleotides
(tZRTP, tZRDP, and tZRMP) by cytochrome P450 monooxygenases (CYP735As) [11]. The

Fig 1. Proposedmodule of GA biosynthesis, inactivation, and perception in Arabidopsis.

doi:10.1371/journal.pone.0134166.g001
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conversion of active free bases is catalyzed by CK nucleoside 50-monophosphate phosphoribo-
hydrolases (LOGs) using monophosphates (iPRMP or tZRMP) as substrates [12]. iP and tZ are
recognized as the most active CKs in most plants, including Arabidopsis. However, in some
plant species, such as maize or rice, cis-zeatin CKs (cZ) that utilize tRNAs as prenyl acceptors
are the major CK metabolites [13]. These bioactive CKs can be inactivated by CK dehydroge-
nases (CKXs) [14] (Fig 1A). In recent years, the CK signaling pathway has been proposed
based on the identification of Arabidopsismutants [15]. As previously described, CK conveys
information through a complex two-component system [16]. In this model, CK binds to a
CHASE domain of histidine kinase receptors (AHKs) and triggers a phosphorelay [17]. First,
autophosphorylation occurs within the AHK receptor. The phosphoryl group is then trans-
ferred to nuclear response regulators (ARRs) via five histidine phosphotransfer proteins
(AHP1–AHP5) [18]. AHP6, a pseudo AHP, impairs phosphotransfer by competing with
AHP1–AHP 5 [19]. Two types of ARRs, type-A and type-B, exist. The phosphorylated type-B
ARRs can bind DNA and activate the transcription of CK-regulated targets, including the
type-A ARRs, which act as negative regulators of CK signaling [20] (Fig 1B).

Numerous studies have indicated that plant growth can be controlled by regulating the CK-
related genes [21–23]. Carrot (Daucus carota L.) is an Apiaceae plant with great value [24].
CarrotDB, a genomic and transcriptomic database has been well established [25,26]. Carrot
development involves successive changes in organ size, metabolism, and physiological pro-
cesses [27,28]. This process is essential for carrot production and quality and has been an area
of increasing interest [29]. CK is necessary for cell division of early embryogenesis, and it is
believed to play important roles in anthocyanin accumulation, senescence, and root enlarge-
ment in carrot [30–33]. However, CK biosynthesis, inactivation, and response during carrot
growth and development remain unclear.

The present work aimed to investigate CK accumulation during carrot growth and develop-
ment. Morphological characteristics, anatomical structure, and expression levels of genes
involved in CK metabolism and signaling were analyzed and discussed to comprehensively elu-
cidate CK roles in carrot growth and development. The results from our work would provide
novel insights into CK-mediated plant growth.

Materials and Methods

Plant material
D. carota L. cv. ‘Kurodagosun’ was selected and cultivated in an artificial chamber at the Nan-
jing Agricultural University (32°040N, 118°850E). Plants were grown in a mixture of vermiculite
and organic soil (1:1; v/v). The artificial environment was maintained at 25°C for 16 h with a
light intensity of 300 μmol m-2s-1 during daytime followed by 18°C for 8 h in the dark. Carrot
plants were sampled at 25 (stage 1), 42 (stage 2), 60 (stage 3), 75 (stage 4), and 90 (stage 5) days
after sowing. The developmental stages were classified based on morphological characteristics
and dates. For biochemical and molecular analyses, various tissues including roots, petioles,
and leaves at different development stages were harvested, frozen, and stored at −80°C.

Anatomical structure analysis
Samples were harvested at 25, 42, 60, 75, and 90 days after sowing for anatomical structure
analysis. We cut fresh samples into small pieces and immediately stored them in phosphate
buffer (pH 7.2) with 2.5% glutaraldehyde. For safranin O/fast green staining, the slices were
first deparaffinized in xylene and dehydrated with ethanol. After dewaxing, we stained the sam-
ples with 1% safranin O for 2 h and rinsed off the excess stain with water. Subsequently, slices
were dehydrated in a series of ethanol and counterstained with 0.5% fast green for 15 s.
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Afterward, we washed out excess stain with ethanol and sealed the samples with neutral bal-
sam. The presence of lignin was considered when the tissue sections were stained with red
staining under a light microscope and fiber tissues were stained with green staining.

Assay of bioactive CK levels
Sample grinding was performed in a mortar with 10 mL of 80% methanol extraction solution
containing 1 mM butylated hydroxytoluene. The mixture was incubated at 4°C for 4 h. After-
ward, the samples were centrifuged at 3500 g for 10 min and the supernatants were passed
through a C18 Sep-Pak cartridge (Waters, Milford, MA). Efflux was collected and dried with
N2. Residues were dissolved in PBS solution containing 0.1% (v/v) Tween 20 and 0.1% (w/v)
gelatin (pH 7.5). To determine endogenous levels of bioactive CKs, including iP and ZT, indi-
rect enzyme-linked immunosorbent assay (ELISA) was carried out as previously described
[34,35]. The quantification of bioactive CKs by ELISA was performed at the Phytohormones
Research Institute, China Agricultural University, Beijing, China.

Total RNA isolation and cDNA synthesis
The total RNAs of carrot roots, petioles, and leaves were extracted using an RNA extraction kit
(Tiangen, Beijing, China) according to the manufacturer’s instructions. RNA quality was then
assessed with a One-Drop spectrophotometer. Total RNA was incubated at 42°C for 2 min
with gDNA Eraser (TaKaRa, Dalian, China) to remove genomic DNA contamination. cDNA
synthesis was strictly carried out as described in PrimeScript RT reagent kit (TaKaRa, Dalian,
China). Finally, cDNA was diluted 15-fold, and 2 μL of this diluted cDNA was used for quanti-
tative real-time PCR (qRT-PCR) analysis.

Gene expression analysis by qRT-PCR
To identify the genes involved in CKmetabolism and perception, CK-related genes of Arabidop-
siswere aligned with the sequences in CarrotDB, a genomic and transcriptomic database for car-
rot (Lab of Apiaceae Plant Genetics and Germplasm Enhancement, http://apiaceae.njau.edu.cn/
carrotdb/index.php) [26]. The gene sequences were listed in Figures A-U in S1 File. The primers
of each gene were shown in Tables 1 and 2. qRT-PCR was carried out in a Bio-Rad IQ5 real-
time PCR System (Bio-Rad, CA, USA) using TaKaRa SYBR Premix Ex Taq (TaKaRa, Dalian,
China). Each PCRmixture comprised a total volume of 20 μL, which contained 10 μL of SYBR
Premix Ex Taq, 7.4 μL of sterile deionized water, 2 μL of diluted cDNA strand, and 0.4 μL of
each primer. PCR was conducted following the manufacturer’s specifications. The conditions
were controlled as follows: 95°C for 30 s, followed by 40 cycles at 95°C for 5 s and 60°C for 30 s.
The raw data were listed in Table A in S1 File. The relative expression levels were normalized
against those of the carrot reference gene, DcACTIN [36]. Data fromDcIPT3 in carrot leaves at
60 days after sowing were selected as standards for gene expression analysis.

Statistical analysis
Differences in CK accumulation and gene expression during carrot development were detected
by Duncan’s multiple-range test at a 0.05 probability level.

Results

Plant growth analysis
Roots, petioles, and leaves from 25-, 40-, 60-, 75-, and 90-day-old carrots were sampled (Fig 2).
Root and shoot weights, along with root—shoot ratio, were measured to characterize plant
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Table 1. Description of genes involved in cytokinin biosynthesis and inactivation.

Gene
symbol

Molecular function Homologous locus in
Arabidopsis

Primer sequences (forward/reverse)

DcIPT3 Adenylate isopentenyltransferase AT3G63110 GAATGGAATGGTAGATGAGGCAAGACA/
TCTCTAACTGGCGGCAGGCTAG

DcIPT5 Adenylate isopentenyltransferase AT5G19040 TTTGGATGCGACCGAGGCTTT/
GCCGATAGTGCCGAATCTTCTTC

DcIPT9 tRNA isopentenyltransferase AT5G20040 GTAGACTCGCACTTGAACTCGCTAA/
GGACAACGAAGGCTTGGCAGAA

DcCYP735A1 Cytokinin hydroxylase AT5G38450 CTTGTCGGAGACGCACCTGATAA/
CAATGTGACGCTGATGATACCAATCG

DcCYP735A2 Cytokinin hydroxylase AT1G67110 ATATGGAGGATGCGAACACAAGATGG/
TGTAGAAAGGTGAAAGCGAGAACGAAA

DcLOG1 Cytokinin riboside 5'-monophosphate
phosphoribohydrolase

AT2G28305 CTATTATGATAGCCTGCTTGCCTTGTT/
AGCCTCTAATGATTGGTCCACTTCC

DcLOG3 Cytokinin riboside 5'-monophosphate
phosphoribohydrolase

AT2G37210 CAGAGATGGCTAGGCACTCAGATG/
AAGAGTTGTAGTATCCGTCCACATTGA

DcLOG8 Cytokinin riboside 5'-monophosphate
phosphoribohydrolase

AT5G11950 GATTGACTTGGTGTATGGTGGTGGTAG/
TTACATCTCCAACAGTCTCGCCAGA

DcCYX1 Cytokinin dehydrogenase AT2G41510 GCCACATTACCACAAGCAAGAAGAGT/
TCCAGGAGCAAGAAGTGCCAGAG

DcCYX7 Cytokinin dehydrogenase AT5G21482 TCTGTACTGTCTGGAGGTCGCATT/
CCGTTAGCTCTAGCTTGTTGTTCGT

doi:10.1371/journal.pone.0134166.t001

Table 2. Description of genes related to cytokinin perception.

Gene
symbol

Molecular function Homologous locus in
Arabidopsis

Primer sequences (forward/reverse)

DcHK2 Histidine kinase AT5G35750 TGAAGTCTCCACAGTACCGTCCAA/
AGAAGCATACGCAGAATCCAGAGTC

DcHK3 Histidine kinase AT1G27320 GATGCTAATTGGCGATCCTGGAAGAT/
ACAAGATGGACCGTTACGAAGATATGC

DcHP1a Histidine-containing
phosphotransfer protein

AT3G21510 AGCATTGGAGCACAAAGAGTTCAGA/
ATCCACCAGCAGCCACAAGTTG

DcHP1b Histidine-containing
phosphotransfer protein

AT3G21510 TTCGTGGCTTCTGCGATGAACA/ CTTCCACAATCTGCCGCTCCAA

DcHP3 Histidine-containing
phosphotransfer protein

AT5G39340 CGATGCCTGTGTTCACCAATTCAAG/
CATCTCAAGCACCCTTCCAAGTTCT

DcRR-B1 Two-component response
regulator

AT4G16110 CACCGCAGAGGAACCGATGATG/
AGCTCCACCGACCAGACTACAC

DcRR-B2 Two-component response
regulator

AT4G16110 CAAGCAGCCCTAGTTCAACAAAGC/
GCATATTCCTGTGTCCATTCTCTTCCA

DcRR-B3 Two-component response
regulator

AT1G67710 GAAGGCAACCAGCAGTTCAGGAG/
GGTCGAGATCAGGCAATGACAGATG

DcRR-B4 Two-component response
regulator

AT2G25180 TTCAATACTGCTCAGATGCCTCCTAAC/
CCGCCTTGGTGTTCTCCTCTTG

DcRR-A1 Two-component response
regulator

AT3G57040 GCAGAACAGGAGGAAGTATCATCACA/
TTCTCTTCGTGTTATTGCCGTCATCT

DcRR-A2 Two-component response
regulator

AT3G57040 GATGTTTAGAGGAAGGAGCAGATGAGT/
TGCTTCTTGCTGTAATGACTGAATCAC

doi:10.1371/journal.pone.0134166.t002
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growth during carrot development. The fresh weight of shoots was way above that of roots at
stage 1. After 15 days, an orange color first appeared on the root surface. Shoot and root
weights evidently increased at stage 2, whereas the root—shoot ratio was not significantly
changed. The roots kept on enlarging, and root weight was approximately equal to shoot
weight at the third stage. Finally, shoot weight was far less than that of root weight, and this
trend was maintained at the final stage (Fig 3).

Fig 2. Growth status of carrots from five different developmental stages. A: Stage 1, 25-day-old. B: Stage 2, 40-day-old. C: Stage 3, 60-day-old. D:
Stage 4, 75-day-old. E: Stage 5, 90-day-old. Black lines in the lower left corner of each plant represent 5 cm in that pixel.

doi:10.1371/journal.pone.0134166.g002

Fig 3. Characterization of root weight and shoot weight during carrot growth and development. Error
bars represent standard deviation among three independent replicates. Data indicate mean ± SD of three
replicates.

doi:10.1371/journal.pone.0134166.g003
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Anatomical structure in the roots, petioles, and leaves
In the roots. At stage 1, protoxylem (Px), vascularcambium (VC), primary phloem (PP),

and epidermis were observed in the basic root structure, and no significant thickness was
detected at this stage (Fig 4A). After 15 days, the secondary phloem (SP) region appeared
between VC and PP (Fig 4B). Subsequently, parenchymalcells became larger, and the roots
continued to enlarge (Fig 4C, 4F and 4I).

In the petioles. The petiole diameter increased over the process of carrot growth (Fig 5).
Interestingly, the number of vascular bundles in the petioles also significantly increased, sug-
gesting a constant thickness during this process.

Fig 4. Structural changes in the carrot roots from stage 1 (A), stage 2 (B), stage 3 (C, D, and E), stage 4
(F, G, and H), and stage 5 (I, J, and K). Epidermis (Ep), parenchymalcell (PC), phellogen (Ph), primary
phloem (PP), protoxylem (Px), secondary phloem (SP), vascularcambium (VC), and vessel (Ve) are marked
in the Figure. Scale bars in A, B, D, E, G, H, J, and K are 100 μm in length, whereas scale bars in C, F, and I
are 1 cm in length.

doi:10.1371/journal.pone.0134166.g004
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In the leaves. Palisade and spongy tissues are the main tissue types in mesophyll, which
allow plant photosynthesis and gas exchange. At stages 1 and 2, the numbers of palisade and
spongy cells were limited (Fig 6A and 6B). The palisade cells in the leaf obviously increased,
and the ratio of palisade tissue to spongy tissue was high (Fig 6C, 6D and 6E).

Changes in bioactive CKs
The levels of bioactive CKs (iP and ZT) in roots, petioles, and leaves at different developmental
stages were measured (Fig 7). In the roots, both iP and ZT levels were highest at stage 2 but
suddenly decreased at stage 3. In the petioles, iP and ZT levels showed a similar pattern, which
had the highest level at stage 4. The iP content in the leaves showed a trend similar to that in
the petioles, whereas ZT was maintained at a relatively stable level during carrot growth. For
each plant, both iP and ZT contents in the roots were lower than those in the petioles and
leaves, except at stage 2. In addition, the ZT content during all stages was greater than the iP
content.

Expression profiles of genes involved in CK biosynthesis and
inactivation
DcIPT3, DcIPT5, DcIPT9, DcCYP735A1, DcCYP735A2, DcLOG1, DcLOG3, DcLOG8, DcCYX1,
and DcCYX7 were involved in CK biosynthesis and degradation, as revealed by CarrotDB
(Table 1). The transcript levels of these selected genes were evidently altered in response to car-
rot growth and development (Fig 8).

Fig 5. Structural changes in the carrot petioles from stage 1 (A), stage 2 (B), stage 3 (C), stage 4 (D),
and stage 5 (E).Collenchyma (C), epidermis (Ep), exodermis (Ex), phloem (P), and xylem (X) are marked in
the Figure. Scale bars in A, B, C, D, and E are 100 μm in length.

doi:10.1371/journal.pone.0134166.g005
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In the roots, two gene copies of IPT, namely, DcIPT3 and DcIPT5, showed higher expression
at the first stage (stage 1) and relatively low expression at other stages. By contrast, an opposite
trend was detected in the DcIPT9 gene that encodes tRNA-IPT. DcCYP735A1 showed the low-
est expression at stages 2 and 3, whereas DcCYP735A2 that encodes CK hydroxylase was highly
expressed at stage 2. Transcript levels of DcLOG1 and DcLOG8 were higher at the first stage,
whereas DcLOG3 displayed high expression at the third stage and consistently low expression

Fig 6. Structural changes in the carrot leaves from stage 1 (A), stage 2 (B), stage 3 (C), stage 4 (D), and stage 5 (E). Epidermis (Ep), palisade tissue
(Pt), spongy tissue (St), and vascular tissue (V) are marked in the Figure. Scale bars in A, B, C, D, and E are 100 μm in length.

doi:10.1371/journal.pone.0134166.g006

Fig 7. Bioactive CK levels in different tissues during carrot growth and development. Error bars represent standard deviation among three
independent replicates. Data indicate mean ± SD of three replicates. Different lowercase letters indicate significant differences at P < 0.05.

doi:10.1371/journal.pone.0134166.g007
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at other stages. In the petioles, the expression profiles of DcIPT3, DcIPT5, and DcIPT9 differed
from one another during plant growth. The mRNA levels of DcCYP735A1 and DcCYP735A2
were the highest at the third stage. A large amount of DcLOG1 transcript was detected at stage
2, whereas DcLOG3 was higher at the last stage. DcCYX1 showed high expression at the last
stage, but low expression at stages 2 and 4. In the leaves, DcIPT9 showed high expression at
stages 1, 2 and 5, and low expression at other stages. Conversely, DcIPT5 was highly expressed
at stages 3 and 4. Expression of DcIPT3 and DcCYP735A1 in the leaves was similar to that in
the petioles. High transcript levels of DcCYP735A2 and DcLOG1 were detected at stage 2,
whereas DcCYX7 was highly expressed at the last stage.

Interestingly, some analyzed genes were expressed in a tissue-specific manner. For instance,
mRNA abundances of DcIPT3 and DcCYX7 were higher in the leaves than in the roots and pet-
ioles, whereas an opposite trend was detected in DcCYX1 expression (Fig 8).

Expression of CK-responsive genes during carrot growth and
development
CK signal perception and transduction are essential components in the CK network. Thus, the
dynamics of CK receptors should be identified to fully understand CK roles during carrot
growth. The expression of genes involved in CK response, namely, DcHK2, DcHK3, DcHP1a,
DcHP1b, DcHP3, DcRR-B1, DcRR-B2, DcRR-B3, DcRR-B4, DcRR-A1, and DcRR-A2, were all
different from one another (Fig 9).

In the roots, mRNA abundance of DcHP1b and DcRR-A1 showed a pattern similar to that
of iP accumulation in the roots. DcHP3 expression remained relatively stable during plant
growth. DcRR-B2 and DcRR-B4 exhibited high expression at stages 1 and 2, and low expression
at the last stage. DcHK2 and DcHP1a were highly expressed at stage 2, whereas high transcript
levels of DcHK3 and DcRR-B1 were detected at the third stage. Transcription of DcRR-B3
decreased over the process of root development. The expression of DcRR-A2 at stages 1, 2 and
5 was higher than at other stages. In the petioles, high transcript levels of DcHK2, DcHK3, and
DcRR-B1 were detected at the third stage. Expression of DcHP1b showed a pattern opposite to
those of iP and ZT. Transcription of DcRR-B2 increased over the first three stages, and slightly
changed at the last two stages. By contrast, the mRNA level of DcRR-A1 was higher at the first
two stages and relatively low at the last three stages. DcRR-A2 was the only gene that exhibited
decreased expression over the developmental stages. In the leaves, mRNA abundance of
DcHK2 was higher at the first two stages. Transcription of DcHP3 remained relatively low at
the first three stages. Conversely, DcHP1a and DcRR-B4 were highly expressed at the first three
stages. DcRR-B1 showed high expression at stage 1 and consistently low expression at other
stages. DcRR-B3 was highly expressed at the third stage, whereas expression of DcRR-A1 was
lowest at this stage. DcRR-A2 was the only gene that was highly expressed at the last stage.

Discussion
Plant growth and development is under tight control of both environmental signals and intrin-
sic cues [37]. Hormones are a class of molecules that can serve as important signals and lead to
the induction or repression of the target genes, thereby regulating plant growth [1,38,39].
Among them, CKs can promote cell division in plant roots and shoots, which is mainly achieved
by stimulating the production of proteins needed for mitosis [11,40,41]. Thus, a better under-
standing of CK accumulation and its potential roles during plant growth is of vital importance.

Carrot is a vegetable crop with high nutritional value. ‘Kurodagosun’ is a carrot variety with
high and stable production worldwide and has been extensively used in molecular and genetic
studies [27,42]. ‘Kurodagosun’ undergoes evident size change during plant growth, which may
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require the involvement of hormones. However, only limited information regarding CK has
been documented in carrot. The results from the current study would substantially improve
the understanding of CK accumulation and potential during carrot growth.

As a whole, CK levels differed from different developmental stages and various tissues, indi-
cating that CKs may regulate plant growth in a stage-dependent and tissue-specific manner
[10,43]. CKs are assumed to be synthesized not only in the meristem of the roots but also in the
shoots [44]. Once CK has been produced, it is translocated to other regions of the plant where
continuous growth occurs [45]. CKs are necessary for cell division and may play important
roles in vascular development [46,47]. In the present work, we found that CKs were present in
all tissues, which may provide constant support for structure formation and development. Our

Fig 8. qRT-PCR analysis of genes involved in CK biosynthesis and inactivation among different
tissues during carrot growth and development. Error bars represent standard deviation among three
independent replicates. Data indicate mean ± SD of three replicates. Different lowercase letters indicate
significant differences at P <0.05.

doi:10.1371/journal.pone.0134166.g008
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results also showed that higher levels of iP and ZT occurred at the second stage in the roots.
Anatomical structure analysis revealed obvious enlargement at this stage (Fig 4). These results
led us to hypothesize that the second stage was crucial to root growth, and CKs may play
important roles at this stage.

All analyzed genes were expressed among different tissues, supporting the idea that various
tissues can produce CKs [10]. The expression of most genes did not follow a pattern similar to
that of iP and ZT accumulation. However, these genes are believed to be essentially required
for CK accumulation. For example, transcription of DcCYP735A2 was higher at stage 2 in the
roots, which may largely contribute to higher levels of CKs at this stage. Furthermore, CK

Fig 9. qRT-PCR analysis of genes involved in CK perception among different tissues during carrot
growth and development. Error bars represent standard deviation among three independent replicates.
Data indicate mean ± SD of three replicates. Different lowercase letters indicate significant differences at P
<0.05.

doi:10.1371/journal.pone.0134166.g009
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biosynthesis is regulated not only by transcriptional mechanisms but also by post-translational
events [48,49]. Some tissue-specific genes, such as DcIPT3, DcCYP735A1, and DcCYX7, were
also identified. All these results suggested that a complex regulatory network for CK metabo-
lism in carrot.

In comparison with biosynthetic routes, CK signal perception and transduction are equally
important [50–52]. In Arabidopsis, the transcriptional levels of ARR-A and AHP can be rapidly
induced by changes in CK levels, whereas those of others cannot [53,54]. Similarly, DcHP1b
and DcRR-A1 showed a pattern similar to that of CK accumulation in roots, whereas transcrip-
tion of genes encoding type-B RRs was not well correlated with CK accumulation. However,
such genes are still integral to the whole pathway. Collectively, the genes encoding the receptors
are important to CK signal transduction and normal plant growth and development [52].

Conclusions
As a carrot grows, significant alterations occur in its morphological and anatomical structure,
CK accumulation, and gene expression. CK plays important roles in carrot plant growth, and it
may be particularly crucial to root enlargement at the second stage. CK biosynthesis is a com-
plex regulatory network that needs the involvement of many genes. Genes involved in CK per-
ception and transduction are also indispensable to normal plant growth. The current work has
substantially improved the understanding of CK accumulation and its potential roles during
carrot development.
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