Review of the existing maximum residue levels for thiram according to Article 12 of Regulation (EC) No 396/2005

European Food Safety Authority (EFSA),
Maria Anastassiadou, Giovanni Bernasconi, Alba Brancato, Luis Carrasco Cabrera, Lucien Ferreira, Luna Greco, Samira Jarrah, Aija Kazocina, Renata Leuschner, Jose Oriol Magrans, Ileana Miron, Stefanie Nave, Ragnor Pedersen, Hermine Reich, Alejandro Rojas, Angela Sacchi, Miguel Santos, Alessia Pia Scarlato, Anne Theobald, Benedicte Vagenende and Alessia Verani

Abstract

According to Article 12 of Regulation (EC) No 396/2005, EFSA has reviewed the maximum residue levels (MRLs) currently established at European level for the pesticide active substance thiram. Although this active substance is no longer authorised within the European Union, MRLs based on the use of thiram were established by the Codex Alimentarius Commission (codex maximum residue limits; CXLs) and import tolerances were reported by Member States (including the supporting residues data). Based on the assessment of the available data, EFSA assessed the existing import tolerances, and a consumer risk assessment was carried out for thiram only. Although no apparent risk to consumers was identified, the import tolerances were not fully supported by data. Hence, the consumer risk assessment is considered indicative only and further consideration by risk managers is needed. © 2021 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.

Keywords: dithiocarbamates, MRL review, Regulation (EC) No 396/2005, consumer risk assessment, fungicide

Requestor: European Commission
Question number: EFSA-Q-2008-638
Correspondence: pesticides.mrl@efsa.europa.eu

Acknowledgement: EFSA wishes to thank Stathis Anagnos, Laszlo Bura, Viktorija Krivova, Silvia Ruocco and Viktor Toth for the support provided and the rapporteur Member State, France, for the preparatory work on this scientific output.

Suggested citation: EFSA (European Food Safety Authority), Anastassiadou M, Bernasconi G, Brancato A, Carrasco Cabrera L, Ferreira L, Greco L, Jarrah S, Kazocina A, Leuschner R, Magrans JO, Miron I, Nave S, Pedersen R, Reich H, Rojas A, Sacchi A, Santos M, Scarlato AP, Theobald A, Vagenende B and Verani A, 2021. Reasoned Opinion on the review of the existing maximum residue levels for thiram according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2021;19 (1):6391, 33 pp. https://doi.org/10.2903/j.efsa.2021.6391

ISSN: 1831-4732
© 2021 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.

This is an open access article under the terms of the Creative Commons Attribution-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited and no modifications or adaptations are made.

The EFSA Journal is a publication of the European Food
Safety Authority, an agency of the European Union.

Summary

Thiram was initially included in Annex I to Directive 91/414/EEC on 1 August 2004 by Commission Directive 2003/81/EC, and was deemed to be approved under Regulation (EC) No 1107/2009, in accordance with Commission Implementing Regulation (EU) No 540/2011, as amended by Commission Implementing Regulation (EU) No 541/2011. As the active substance was approved before the entry into force of Regulation (EC) No 396/2005 on 2 September 2008, the European Food Safety Authority (EFSA) is required to provide a reasoned opinion on the review of the existing maximum residue levels (MRLs) for that active substance in compliance with Article 12(2) of the aforementioned regulation.

In the meantime, an application for renewal of the approval of thiram in accordance with Article 1 of Commission Implementing Regulation (EU) No 844/2012 was submitted by the Thiram Task Force (TTF). The peer review for the renewal of the first approval, with France designated as rapporteur Member State (RMS) has been completed by EFSA in 2017. In 2018, a decision of non-renewal of thiram was taken by Commission Implementing Regulation (EU) 2018/1500.

As the basis for the MRL review, on 15 October 2019, EFSA initiated the collection of data for this active substance. In a first step, Member States and the UK were invited to submit by 18 November 2019 their national Good Agricultural Practices (GAPs) in a standardised way, in the format of specific GAP forms, allowing the designated rapporteur Member State, France, to identify the critical GAPs in the format of a specific GAP overview file. On the basis of all the data submitted by Member States and by the European Union Reference Laboratories for Pesticides Residues (EURL), EFSA asked the RMS to complete the Pesticide Residues Overview File (PROFile) and to prepare a supporting evaluation report. The PROFile and evaluation report, together with Pesticide Residues Intake Model (PRIMo) calculations and updated GAP overview file were provided by the RMS to EFSA on 27 May 2020. Subsequently, EFSA performed the completeness check of these documents with the RMS. The outcome of this exercise including the clarifications provided by the RMS, if any, was compiled in the completeness check report.

Based on the information provided by the RMS, Member States and the EURL, and taking into account the conclusions derived by EFSA in the framework of Regulation (EC) No 1107/2009 and the MRLs established by the Codex Alimentarius Commission, EFSA prepared in October 2020 a draft reasoned opinion, which was circulated to Member States and EURLs for consultation via a written procedure. Comments received by 27 November 2020 were considered during the finalisation of this reasoned opinion. The following conclusions are derived.

The metabolism of thiram in plant was investigated in primary crops. According to the results of the metabolism studies, the residue definition for enforcement can be proposed as thiram (expressed as thiram). A specific residue definition for rotational crops is not deemed necessary considering that the crops under review are import tolerances. A residue definition for processed commodities could not be concluded on. Fully validated analytical methods are available for the enforcement of the proposed residue definition in high water content commodities and high oil content commodities at the limit of quantification (LOQ) of $0.05 \mathrm{mg} / \mathrm{kg}$. A data gap was, however, identified for the determination of the extraction efficiency of the thiram specific method in plants. According to the EURLS, a practical LOQ for thiram could not be proposed.

Available residue trials data were considered sufficient to derive tentative MRL proposals as well as risk assessment values for all commodities under evaluation according to the residue definition for enforcement of thiram (expressed as thiram), reflecting the residues from the use of thiram only.

Thiram is not authorised for use on crops that might be fed to livestock. Further investigation of the occurrence of residues in commodities of animal origin is not required and the setting of MRLs in these commodities is not considered necessary.

The calculated exposure values were compared with the toxicological reference values for thiram, derived by EFSA (2017). The highest chronic exposure was calculated for Dutch toddlers, representing 0.6% of the acceptable daily intake (ADI), and the highest acute exposure was calculated for avocados, representing 35% of the acute reference dose (ARfD). Although major uncertainties remain due to the data gaps identified, this indicative exposure calculation did not indicate a risk to consumers.

The derivation of the toxicological reference values of M1 is pending robust data addressing the toxicological profile of this metabolite. In addition, data on the level of the metabolite M1 in/on treated avocados and bananas are not available. Therefore, the consumer risk assessment for metabolite M1 could not be performed and the overall risk assessment for the uses under consideration should be considered on a tentative basis. It is underlined that the crops under consideration are consumed
peeled and according to the results of metabolism studies and residue trials, limited translocation of the residue from the peel to the pulp is expected. Therefore, it is expected that metabolite M1 will not be present at significant levels in the edible portion of the crops under assessment. Nevertheless, this conclusion should be confirmed by residue trials analysing for metabolite M1.

Table of contents

Abstract 1
Summary 3
Background 6
Terms of Reference 7
The active substance and its use pattern 7
Assessment. 8

1. Residues in plants 8
1.1. Nature of residues and methods of analysis in plants 8
1.1.1. Nature of residues in primary crops 8
1.1.2. Nature of residues in rotational crops 8
1.1.3. Nature of residues in processed commodities 8
1.1.4. Methods of analysis in plants 9
1.1.5. Stability of residues in plants 9
1.1.6. Proposed residue definitions 10
1.2. Magnitude of residues in plants 10
1.2.1. Magnitude of residues in primary crops 10
1.2.2. Magnitude of residues in rotational crops 11
1.2.3. Magnitude of residues in processed commodities 11
1.2.4. Proposed MRLs 11
2. Residues in livestock 11
3. Consumer risk assessment 11
Conclusions 12
Recommendations 13
References 13
Abbreviations 15
Appendix A - Summary of authorised uses considered for the review of MRLs 17
Appendix B - List of end points 18
Appendix C - Pesticide Residue Intake Model (PRIMo) 26
Appendix D - Input values for the exposure calculations 30
Appendix E - Decision tree for deriving MRL recommendations 31
Appendix F - Used compound codes 33

Background

Regulation (EC) No $396 / 2005^{1}$ (hereinafter referred to as 'the Regulation') establishes the rules governing the setting and the review of pesticide maximum residue levels (MRLs) at European level. Article 12(2) of that Regulation stipulates that the European Food Safety Authority (EFSA) shall provide by 1 September 2009 a reasoned opinion on the review of the existing MRLs for all active substances included in Annex I to Directive 91/414/EEC² before 2 September 2008.

Thiram was initially included in Annex I to Council Directive 91/414/EEC on 1 August 2004 by means of Commission Directive $2003 / 81 / E C^{2}$ which has been deemed to be approved under Regulation (EC) No 1107/20093, in accordance with Commission Implementing Regulation (EU) No $540 / 2011^{4}$, as amended by Commission Implementing Regulation (EU) No 541/20115. Therefore, EFSA initiated the review of all existing MRLs for that active substance.

An application for renewal of the approval of thiram in accordance with Article 1 of Commission Implementing Regulation (EU) No 844/2012 was submitted by the Thiram Task Force (TTF). The peer review for the renewal of the first approval, with France designated as rapporteur Member State (RMS) has been completed by EFSA in 2017. In 2008, a decision of non-renewal of thiram was taken by Commission Implementing Regulation (EU) 2018/15006.

According to the legal provisions, EFSA shall base its reasoned opinion in particular on the relevant assessment reports prepared under Directive 91/414/EEC and Regulation (EC) No 1107/2009. It should be noted, however, that, in the framework of Regulation (EC) No 1107/2009, only a few representative uses are evaluated, whereas MRLs set out in Regulation (EC) No 396/2005 should accommodate all uses authorised within the European Union (EU), and uses authorised in third countries that have a significant impact on international trade. The information included in the assessment report prepared under Regulation (EC) No 1107/2009 is therefore insufficient for the assessment of all existing MRLs for a given active substance.

As the basis for the MRL review, on 15 October 2019, EFSA initiated the collection of data for this active substance. In a first step, Member States and UK${ }^{7}$ were invited to submit by 18 November 2019 their Good Agricultural Practices (GAPs) that are authorised nationally, in a standardised way, in the format of specific GAP forms. In the framework of this consultation, 14 Member States and the UK provided feedback on their national authorisations of thiram. GAPs authorised in third countries were reported by the rapporteur Member State, France, after having consulted the main authorisation holders. At this moment grace periods for the disposal, storage and use of existing stocks of some of the plant protection products which contains thiram were applicable until 30 January 2020 (Regulation (EU) 2018/1500). Reported authorised uses in the EU were not considered/included in the GAP overview considering the EU uses withdrawal along the evaluation process. Subsequently, Member States and UK were requested to provide residue data supporting only the critical GAPs on import tolerances, within a period of 1 month, by 10 January 2020.

On the basis of all the data submitted by Member States, UK and the EU Reference Laboratories for Pesticides Residues (EURL), EFSA asked France to complete the PROFile and to prepare a supporting evaluation report. The PROFile and the supporting evaluation report, together with the Pesticide

[^0]Residues Intake Model (PRIMo) calculations and an updated GAP overview file, were submitted to EFSA on 27 May 2020. Subsequently, EFSA performed the completeness check of these documents with the RMS. The outcome of this exercise including the clarifications provided by the RMS, if any, was compiled in the completeness check report.

Considering all the available information and taking into account the MRLs established by the Codex Alimentarius Commission (CAC) (i.e. codex maximum residue limit; CXLs), EFSA prepared in October 2020 a draft reasoned opinion, which was circulated to Member States and EURLs for commenting via a written procedure. All comments received by 27 November 2020 were considered by EFSA during the finalisation of the reasoned opinion.

The evaluation report submitted by the RMS (France, 2020), taking into account also the information provided by Member States and UK during the collection of data, and the EURL report on analytical methods (EURL, 2020) are considered as main supporting documents to this reasoned opinion and, thus, made publicly available.

In addition, further supporting documents to this reasoned opinion are the completeness check report (EFSA, 2020a) and the Member States consultation report (EFSA, 2020b). These reports are developed to address all issues raised in the course of the review, from the initial completeness check to the reasoned opinion. Furthermore, the exposure calculations for all crops reported in the framework of this review performed using the EFSA Pesticide Residues Intake Model (PRIMo) and the PROFile as well as the GAP overview file listing all import tolerances are key supporting documents and made publicly available as background documents to this reasoned opinion. A screenshot of the report sheet of the PRIMo is presented in Appendix C.

Terms of Reference

According to Article 12 of Regulation (EC) No 396/2005, EFSA shall provide a reasoned opinion on:

- the inclusion of the active substance in Annex IV to the Regulation, when appropriate;
- the necessity of setting new MRLs for the active substance or deleting/modifying existing MRLs set out in Annex II or III of the Regulation;
- the inclusion of the recommended MRLs in Annex II or III to the Regulation;
- the setting of specific processing factors as referred to in Article 20(2) of the Regulation.

The active substance and its use pattern

Thiram is the ISO common name for tetramethylthiuram disulfide or bis (dimethylthiocarbamoyl)disulfide (IUPAC).

The chemical structure of the active substance and its main metabolites are reported in Appendix F .
The EU MRLs for thiram are established in Annexes II and IIIB of Regulation (EC) No 396/2005. Codex maximum residue limits (CXLs) based on the uses of thiram were also established by the Codex Alimentarius Commission (CAC).

It is underlined that, although two lists of MRLs are currently set for thiram (one as thiram and specific for this active substance, and one as CS2, covering all dithiocarbamates), the present review is focussing only on the MRLs currently set as thiram.

An overview of the MRL changes that occurred since the entry into force of the Regulation mentioned above is provided below (Table 1).

Table 1: Overview of the MRL changes since the entry into force of Regulation (EC) No 396/2005

Procedure	Legal implementation	Remarks
MRL Application	Regulation (EC) No 2016/1	Avocados (EFSA, 2015)
MRL Application	Regulation (EC) No 822/2009	Bananas (EFSA, 2008)

For the purpose of this MRL review, all the uses of thiram currently authorised in the third countries as submitted by the Member States during the GAP collection, have been reported by the RMS in the GAP overview file. The critical GAPs identified in the GAP overview file were then summarised in the PROFile and considered in the assessment. The details of the authorised critical GAP for thiram are given in Appendix A.
Review of the existing MRLs for thiram

Assessment

EFSA has based its assessment on the following documents:

- the PROFile submitted by the RMS;
- the evaluation report accompanying the PROFile (France, 2020);
- the draft assessment report (DAR) and its addenda prepared under Council Directive 91/414/ EEC (Belgium, 1997, 2002);
- the renewal assessment report (RAR) and its revision prepared under Commission Implementing Regulation (EU) No 844/2012 (France, 2016a,b);
- the conclusion on the peer review of the pesticide risk assessment of the active substance thiram (EFSA, 2017);
- the Joint Meeting on Pesticide residues (JMPR) Evaluation report (FAO, 1996);
- the previous reasoned opinions on active substance thiram (EFSA, 2008, 2015).

The assessment is performed in accordance with the legal provisions of the uniform principles for evaluation and authorisation of plant protection products as set out in Commission Regulation (EU) No $546 / 2011^{8}$ and the currently applicable guidance documents relevant for the consumer risk assessment of pesticide residues (European Commission, 1997a-g, 2000, 2010a,b, 2017; OECD, 2011, 2013).

More detailed information on the available data and on the conclusions derived by EFSA can be retrieved from the list of end points reported in Appendix B.

1. Residues in plants

1.1. Nature of residues and methods of analysis in plants

1.1.1. Nature of residues in primary crops

During the peer review for the renewal, the metabolism of thiram was investigated following foliar applications on fruits (apples and grapes) at application rates covering both import tolerances uses on avocados and bananas (France, 2016a; EFSA, 2017). Thiram was shown to be extensively degraded into polar compounds with further incorporation of the radioactive residues into natural constituents of the plant (EFSA, 2017). Most of the total radioactive residue (TRR) was detected in the surface of the fruits: less than 7% of the total initial radioactivity was found incorporated into the apple while in grapes in the surface wash of fruit and leaves more than 90% TRR was associated with thiram (France, 2016b). In the framework of the peer review, significant amounts of M1 compound (0.05$0.13 \mathrm{mg} / \mathrm{kg}$) were observed in residue trial studies on apple, apricot and strawberry. This metabolite was not analysed for in the metabolism studies performed on fruits. The metabolism of thiram in fruits is sufficiently elucidated and the conclusions of the peer review on the metabolic pathway are applicable to the current review.

Metabolism studies following seed treatment on roots (sugar beet), cereals (wheat) and pulses/ oilseeds (cotton, soya bean) are also available (Belgium, 1997) and were assessed in the framework of the peer review (EFSA, 2017). The metabolic patterns in the different crops following foliar and seed treatment were considered similar (EFSA, 2017).

1.1.2. Nature of residues in rotational crops

Studies investigating the nature of residues in rotational crops are not available. Since thiram is no longer approved in the European Union and the only uses under assessment are import tolerances, further consideration on rotational crops is not required.

1.1.3. Nature of residues in processed commodities

Studies investigating the nature of residues in processed commodities were assessed in the framework of the peer review (EFSA, 2017). Under standard hydrolysis conditions, thiram was shown to be degraded into numerous metabolites, i.e. M1, M2, M3, M7 and M8 that accounted for 0.2-5.1\% of the applied radioactivity (AR) and M4 that was recovered as the predominant compound of total

[^1]residues with 14.4 \% AR under pasteurisation to 72.6% of AR under sterilisation (EFSA, 2017). During the peer review, significant residue levels of thiram (specific) were observed in the residue trials on fruit crops, and therefore, it could not be excluded that these metabolites may also occur at significant levels in processed commodities (EFSA, 2017). Furthermore, insufficient data were available to conclude on the toxicological profile of M1, M2, M4, M7 and M8 metabolites while M3 is a major rat metabolite and therefore considered as covered by the toxicological reference values set for the parent compound. Since the stability of M1 under processing could not be established based on the fruit processing residue trials analysing for M1 residues, a hydrolysis study simulating the standard processing conditions for M1 compound was requested to be provided. Considering the outstanding data on the fate of M1 compound under the standard hydrolysis conditions, the magnitude of residues of metabolites M2, M3, M4, M7 and M8 in fruit processed commodities and the unknown toxicity of M1, M2, M4, M7 and M8, the residue definition for processed commodities could not be concluded on in the framework of the peer review (EFSA, 2017).

Since no new information was provided in the framework of the current MRL review, a residue definition for processed commodities cannot be concluded on. Nevertheless, as the commodities under consideration are mainly consumed raw and peeled and according to the results of metabolism studies and residue trials limited translocation from the peel to the pulp is expected, the data gap identified in the peer review regarding the effect of processing on the nature of residues is not deemed relevant in the framework of this assessment.

1.1.4. Methods of analysis in plants

Residues of thiram in food and feed of plant origin can be monitored by liquid chromatography with tandem mass spectrometry (LC-MS/MS) with a limit of quantification (LOQ) of $0.01 \mathrm{mg} / \mathrm{kg}$ in dry commodities and an LOQ of $0.05 \mathrm{mg} / \mathrm{kg}$ in the other plant matrices (EFSA, 2017). A data gap was, however, identified for the determination of the extraction efficiency of the thiram specific method in plants (EFSA, 2017).

The EURLs reported that they are unable at the current stage to indicate any practical LOQs due to losses taking place during the analysis of thiram using procedures routinely employed by laboratories (EURL, 2020).

1.1.5. Stability of residues in plants

The storage stability of thiram (specific), thiram as CS_{2} and metabolite M 1 were investigated in the framework of the peer review (EFSA, 2017) and in new studies submitted under this review (France, 2020).

The storage stability of thiram in primary crops was investigated in the framework of the peer review for the renewal (France, 2016b). Residues of thiram analysed as CS_{2} were found to be stable at $<-20^{\circ} \mathrm{C}$ for up to 78 weeks in high oil content matrices (cotton, soybean). No data were available regarding thiram (specific) or metabolite M1 for high oil content matrices. Furthermore, storage stability was demonstrated for thiram (specific) and metabolite $M 1$ for up to 1 year at $-18^{\circ} \mathrm{C}$ in high water content commodities (apricot, pear, cherry). However, a significant degradation of residues of thiram and its metabolites containing the CS_{2} moiety $\left(\mathrm{CS}_{2}\right.$ moiety method) was observed in lettuce after ca. 2 months, suggesting that thiram (specific) might not be stable for 1 year for the whole high water content commodity crop group (EFSA, 2017).

New storage stability studies were performed on avocados and bananas and assessed by the RMS (France, 2020). In the first study with avocados, the results indicate no significant loss of thiram (specific) after a storage period of 4 months, but the study is considered as informative only since no control samples appear to have been analysed together with the supplemented samples (France, 2020). The second study demonstrated that residues of thiram analysed as CS_{2} are stable for 3 months in whole avocados (France, 2020). In the storage stability study with bananas, thiram can be considered as stable upon deep frozen storage $\left(-18^{\circ} \mathrm{C}\right)$ for about 3 months (96 days for thiram analysed as CS_{2} and 97 days for thiram analysed as thiram). In addition, a storage stability trial performed in the framework of supervised residue trials showed that thiram analysed as CS_{2} is expected to be stable upon deep frozen storage $\left(-15^{\circ} \mathrm{C}\right)$ for 3 months (91 days) in whole bananas and 2.5 months (78 days) in banana pulp (France, 2020). An overview of all available stability studies is available in Appendix B.1.1.2.

1.1.6. Proposed residue definitions

The metabolism of thiram was similar in all crops assessed. There were no metabolism studies in rotational crops, and these are not necessary since further investigation on rotational crops is not required because thiram is no longer approved in the European Union and the only uses under assessment are import tolerances. For processed commodities, it is not possible to conclude on a residue definition, since information on the toxicological profile and magnitude of several metabolites is not available (see Section 1.1.3).

As the parent compound was found to be a sufficient marker in primary crops, the residue definition for enforcement is proposed as thiram only (expressed as thiram) (EFSA, 2017).

An analytical method for the enforcement of the proposed residue definition at the LOQ of $0.05 \mathrm{mg} / \mathrm{kg}$ in high water and high oil content matrices is available; however, there is a data gap on the extraction efficiency (EFSA, 2017). The EURLs reported that they are unable at the current stage to indicate any practical LOQs for thiram (EURL, 2020). During the member states consultation, the EURLS proposed the option of merging thiram and ziram into the same residue definition for monitoring (EFSA, 2020b). However, since the LC-MS/MS method used for the determination of thiram in the studies assessed in the peer review was considered acceptable and ziram was not observed in the metabolism studies, the proposed residue definition thiram (expressed as thiram) is considered the most appropriate for enforcement purposes. The analytical standard for thiram is commercially available (EURL, 2020).

The identified major metabolite M1 is not genotoxic, according to the assessment of the peer review, but available data were not sufficient to conclude on its toxicological profile (EFSA, 2017). Considering that metabolite M 1 does not contain the common CS_{2} moiety and the toxicological reference values of the parent compound cannot apply to this compound, EFSA proposed in the framework of the peer review two separate residue definitions for risk assessment (provisionally): (1) thiram and (2) M1 compound. It was noted that the way the residue definition for risk assessment would be expressed would depend upon further information on the toxicity profile of M1 (data gap).

Since no new information on the toxicity profile of M1 was received for this review (and therefore, the data gap was not addressed), the residue definition for risk assessment derived in the peer review is proposed on a tentative basis.

It is underlined that the crops under consideration are consumed peeled and according to the results of metabolism studies and residue trials limited translocation of the residue from the peel to the pulp is expected. Moreover, in the residue trials assessed during the peer review, metabolite M1 was always found at levels lower than the parent compound (the lowest ratio between parent and metabolite was $7.6: 1$, with parent compound present at $0.76 \mathrm{mg} / \mathrm{kg}$ and M 1 at $0.10 \mathrm{mg} / \mathrm{kg}$). It is therefore expected that metabolite M1 will not be present at significant levels in the edible portion of the crops under assessment. Nevertheless, this conclusion should be confirmed by residue trials analysing for metabolite M1 (data gap).

1.2. Magnitude of residues in plants

1.2.1. Magnitude of residues in primary crops

To assess the magnitude of thiram residues resulting from the reported GAPS, EFSA considered all residue trials reported by the RMS in its evaluation report (France, 2020) and that were already submitted in the framework of previous MRL applications (EFSA, 2008, 2015).

Residue trial samples of bananas were stored in compliance with the conditions for which storage stability of residues was demonstrated. Decline of residues during storage of the trial samples is therefore not expected in bananas. For avocados, considering that storage stability in high oil content commodities was only demonstrated for thiram analysed as CS_{2} for ca. 3 months, information on the storage stability of thiram (specific) would be desirable to confirm the validity of the residue trials reported, since in three out of the six residue trials, the sample storage conditions were up to 130 days (France, 2020; see also Section 1.1.5).

The number of residue trials and extrapolations were evaluated in accordance with the European guidelines on comparability, extrapolation, group tolerances and data requirements for setting MRLs (European Commission, 2017).

The number of residue trials obtained with the thiram specific method was not sufficient to derive an MRL for thiram (specific). Following the methodology proposed by EFSA in the framework of an import tolerance on bananas (EFSA, 2008) and avocados (EFSA, 2015), a 'correction' factor from trials
where thiram was analysed as CS_{2} to thiram analysed as itself has been estimated based on the samples analysed with both methods (France, 2020).

Metabolite M1 was not analysed for in any of the trials on avocados and bananas.
Therefore, only tentative MRLs and risk assessment could be derived for both crops under assessment and the following data gaps were identified:

- Avocados: four trials analysing for metabolite M1 are still required.
- Bananas: four trials analysing for metabolite M1 are still required.

1.2.2. Magnitude of residues in rotational crops

No studies investigating the magnitude of residues in rotational crops were available for this review, and these are not required, since thiram is no longer approved in the European Union and the only uses under assessment are import tolerances.

1.2.3. Magnitude of residues in processed commodities

The effect of industrial processing and/or household preparation was assessed on studies conducted on apples, pears and strawberries in the framework of the peer review (EFSA, 2017). Studies on bananas were assessed in a previous MRL application (EFSA, 2008), and these studies were also reported by the RMS (France, 2020). Based on the residue trials reported by the RMS for whole fruit and pulp, a peeling factor was derived for avocados (France, 2020). An overview of all available processing studies in avocados and bananas (bagged and unbagged) is available in Appendix B.1.2.3. Results of the processing studies on apples, pears and strawberries can be found in the list of endpoints of the peer review (EFSA, 2017).

Further processing studies are not required as they are not expected to affect the outcome of the risk assessment of the current review.

1.2.4. Proposed MRLs

The available data are considered sufficient to derive tentative MRL proposals as well as risk assessment values for all commodities under evaluation.

2. Residues in livestock

Thiram is not authorised for use on crops that might be fed to livestock. Further investigation of the occurrence of residues in commodities of animal origin is not required and the setting of MRLs in these commodities is not considered necessary (European Commission, 1996).

Although not necessary for this current review, the metabolism of thiram was investigated in lactating goats and laying hens under the framework of the peer review. A residue definition for enforcement and risk assessment as thiram was proposed, and an LC-MS/MS method with LOQ of $0.01 \mathrm{mg} / \mathrm{kg}$ for the determination of thiram in food and feed of animal origin (meat, liver, kidney, fat, milk and egg) was reported. A data gap was, however, identified for the determination of the extraction efficiency of the thiram specific method in food of animal origin (EFSA, 2017).

3. Consumer risk assessment

In the framework of this review, only the uses of thiram reported by the RMS in Appendix A were considered. It is noted that the use of thiram was previously also assessed by the JMPR and thiramMRLs correlated to CXLs were derived on pome fruits and strawberries, for which the critical dithiocarbamate use was thiram (FAO, 1996). Considering that all these CXLs were based on EU uses (FAO, 1996) and that thiram is no longer authorised in the EU and that no information is available on the levels of metabolite M1 and of the additional metabolites formed following hydrolysis, these CXLs should not be considered in the consumer risk assessment. However, EFSA performed an indicative calculation considering the CXLs for thiram (expressed as thiram) on pome fruits and strawberries in order to assist risk managers in the decision-making process. According to this indicative calculation, acute risks were identified for pears, apples, quinces, medlars and strawberries, while chronic risks were identified for the following diets: Dutch toddler, German child and Dutch child. In addition, risks were also identified for processed commodities: apple juice and pear juice. For loquats, in the absence of consumption data, it was not possible to calculate even an indicative exposure. Nevertheless,
considering the results of all other pome fruits and the data gaps identified, it is also not possible to exclude a risk for consumers for this commodity.

Chronic and acute exposure calculations for all crops reported in the framework of this review were performed using revision 3.1 of the EFSA PRIMo (EFSA, 2018, 2019). Input values for the exposure calculations were derived in compliance with the decision tree reported in Appendix E. Hence, for those commodities where a tentative MRL could be derived by EFSA in the framework of this review, input values were derived according to the internationally agreed methodologies (FAO, 2009). All input values included in the exposure calculations are summarised in Appendix D.

The exposure values calculated were compared with the toxicological reference values for thiram, derived by EFSA (2017). The highest chronic exposure was calculated for Dutch toddlers, representing 0.6% of the acceptable daily intake (ADI), and the highest acute exposure was calculated for avocados, representing 35% of the ARfD. Although major uncertainties remain due to the data gaps identified in the previous sections, this indicative exposure calculation did not indicate a risk to consumers.

The derivation of the toxicological reference values of M1 is pending robust data addressing the toxicological profile of this metabolite. In addition, data on the level of the metabolite M1 in/on treated avocados and bananas are not available. Therefore, the consumer risk assessment for metabolite M1 could not be performed and overall risk assessment for the uses under consideration should be considered on a tentative basis. It is underlined that the crops under consideration are consumed peeled and according to the results of metabolism studies and residue trials limited translocation of the residue from the peel to the pulp is expected. Therefore, it is expected that metabolite M1 will not be present at significant levels in the edible portion of the crops under assessment. Nevertheless, this conclusion should be confirmed by residue trials analysing for metabolite M1.

Conclusions

The metabolism of thiram in plant was investigated in primary crops. According to the results of the metabolism studies, the residue definition for enforcement can be proposed as thiram (expressed as thiram). A specific residue definition for rotational crops is not deemed necessary considering that he crops under review are import tolerances. A residue definition for processed commodities could not be concluded on. Fully validated analytical methods are available for the enforcement of the proposed residue definition in high water content commodities and high oil content commodities at the LOQ of $0.05 \mathrm{mg} / \mathrm{kg}$. A data gap was, however, identified for the determination of the extraction efficiency of the thiram specific method in plants. According to the EURLs, a practical LOQ for thiram could not be proposed.

Available residue trials data were considered sufficient to derive tentative MRL proposals as well as risk assessment values for all commodities under evaluation according to the residue definition for enforcement of thiram (expressed as thiram), reflecting the residues from the use of thiram only.

Thiram is not authorised for use on crops that might be fed to livestock. Further investigation of the occurrence of residues in commodities of animal origin is not required and the setting of MRLs in these commodities is not considered necessary.

The calculated exposure values were compared with the toxicological reference values for thiram, derived by EFSA (2017). The highest chronic exposure was calculated for Dutch toddlers, representing 0.6% of the acceptable daily intake (ADI), and the highest acute exposure was calculated for avocados, representing 35% of the ARfD. Although major uncertainties remain due to the data gaps identified in the previous sections, this indicative exposure calculation did not indicate a risk to consumers.

The derivation of the toxicological reference values of M1 is pending robust data addressing the toxicological profile of this metabolite. In addition, data on the level of the metabolite M1 in/on treated avocados and bananas are not available. Therefore, the consumer risk assessment for metabolite M1 could not be performed and the overall risk assessment for the uses under consideration should be considered on a tentative basis. It is underlined that the crops under consideration are consumed peeled and according to the results of metabolism studies and residue trials limited translocation of the residue from the peel to the pulp is expected. Therefore, it is expected that metabolite M1 will not be present at significant levels in the edible portion of the crops under assessment. Nevertheless, this conclusion should be confirmed by residue trials analysing for metabolite M1.

Recommendations

MRL recommendations were derived in compliance with the decision tree reported in Appendix E of the reasoned opinion (see Table 2). Due to the outstanding issues on the toxicological characterisation of metabolite M1, the consumer risk assessment could not be finalised. Consequently, none of the MRL values listed in the table are recommended for inclusion in Annex II to the Regulation, and the following data are required:

- Further toxicological information for metabolite M1 in order to better define the toxicological profile of this compound. This information is needed to conclude on the residue definition for risk assessment and to finalise the consumer risk assessment (data gap relevant for avocados and bananas);
- A representative study to assess the suitability of the extraction procedures applied in plant analytical method (data gap relevant for avocados and bananas);
- Four trials analysing for metabolite M1 (data gap relevant for avocados and bananas).

It is underlined that no analytical methods are currently available to the EURLs for the enforcement of the proposed residue definition as thiram (specific). This should be considered by risk managers when implementing the derived MRLs. EFSA also underlines that, according to the information provided by the EURLs, the analytical standard for thiram is commercially available (EURL, 2020).

Minor deficiencies were identified in the assessment, but these deficiencies are not expected to impact either on the validity of the MRLs derived or on the national authorisations. The following data are therefore considered desirable but not essential:

- A representative storage stability of thiram (specific) and metabolite M1 in high oil content commodities.

Table 2: Summary table

Code number	Commodity	Existing EU MRL ($\mathrm{mg} / \mathrm{kg}$)	$\begin{aligned} & \text { Existing } \\ & \text { CXL } \\ & (\mathbf{m g} / \mathbf{k g}) \end{aligned}$	Outcome of the review	
				$\begin{gathered} \text { MRL } \\ (\mathrm{mg} / \mathrm{kg}) \end{gathered}$	Comment
Enforcement residue definition: thiram (expressed as thiram)					
130010	Apples	5	8	-	Further consideration needed ${ }^{(a)}$
130020	Pears	5	8	-	Further consideration needed ${ }^{(a)}$
130030	Quinces	0.1	8	-	Further consideration needed ${ }^{(\mathrm{a})}$
130040	Medlars	0.1	8	-	Further consideration needed ${ }^{(a)}$
130050	Loquats/Japanese medlars	0.1	8	-	Further consideration needed ${ }^{(\mathrm{a})}$
152000	Strawberries	10	8	-	Further consideration needed ${ }^{(a)}$
163010	Avocados	0.2	-	0.2	Further consideration needed ${ }^{\left({ }^{(b)}\right.}$
163020	Bananas	10	-	10	Further consideration needed ${ }^{(b)}$
-	Other commodities of plant and/or animal origin	See Reg. 2016/1	-	-	Further consideration needed ${ }^{(c)}$

MRL: maximum residue level; CXL: codex maximum residue limit.
*: Indicates that the MRL is set at the limit of quantification.
(a): There are no relevant authorisations or import tolerances reported at EU level; CXL is not sufficiently supported by data and a risk to consumers cannot be excluded. Either a specific LOQ or the default MRL of $0.01 \mathrm{mg} / \mathrm{kg}$ may be considered (combination A-IV in Appendix E).
(b): Tentative MRL is derived from a GAP evaluated at EU level, which is not fully supported by data but for which no risk to consumers was identified (assuming the existing residue definition); no CXL is available (combination F-I in Appendix E).
(c): There are no relevant authorisations or import tolerances reported at EU level; no CXL is available. Either a specific LOQ or the default MRL of $0.01 \mathrm{mg} / \mathrm{kg}$ may be considered (combination A-I in Appendix E).

References

Belgium, 1997. Draft assessment report on the active substance thiram prepared by the rapporteur Member State Belgium in the framework of Council Directive 91/414/EEC, December 1997.

Belgium, 2002. Addendum to the Draft assessment report on the active substance thiram prepared by the rapporteur Member State Belgium in the framework of Council Directive 91/414/EEC, November 2002.
EFSA (European Food Safety Authority), 2008. Reasoned opinion of EFSA prepared by the Pesticides Unit (PRAPeR) on the modification of the existing MRL for thiram in bananas. EFSA Journal 2008;6(12):210r, 29 pp. https://doi.org/10.2903/j.efsa.2008.210r
EFSA (European Food Safety Authority), 2015. Reasoned opinion on the modification of the existing MRL for thiram in avocados. EFSA Journal 2015;13(1):4003, 21 pp. https://doi.org/10.2903/j.efsa.2015.4003
EFSA (European Food Safety Authority), 2017. Conclusion on the peer review of the pesticide risk assessment of the active substance thiram. EFSA Journal 2017;15(7):4700, 29 pp. doi.org/10.2903/j.efsa.2017.4700
EFSA (European Food Safety Authority), 2020a. Completeness check report on the review of the existing MRLs of thiram prepared by EFSA in the framework of Article 12 of Regulation (EC) No 396/2005, 12 October 2020. Available online: www.efsa.europa.eu
EFSA (European Food Safety Authority), 2020b. Member States consultation report on the review of the existing MRLs of thiram prepared by EFSA in the framework of Article 12 of Regulation (EC) No 396/2005, 11 December 2020. Available online: www.efsa.europa.eu
EFSA (European Food Safety Authority), Brancato A, Brocca D, Ferreira L, Greco L, Jarrah S, Leuschner R, Medina P, Miron I, Nougadere A, Pedersen R, Reich H, Santos M, Stanek A, Tarazona J, Theobald A and Villamar-Bouza L, 2018. Guidance on use of EFSA Pesticide Residue Intake Model (EFSA PRIMo revision 3). EFSA Journal 2018;16(1):5147, 43 pp. https://doi.org/10.2903/j.efsa.2018.5147
EFSA (European Food Safety Authority), Anastassiadou A, Brancato L, Carrasco Cabrera L, Ferreira LS, Greco A, Jarrah R, Kazocina L, Magrans JO, Miron R, Pedersen M, Raczyk H, Reich S, Ruocco A, Sacchi M, Santos A, Stanek J, Tarazona A, Theobald A and Verani A, 2019. Pesticide Residue Intake Model- EFSA PRIMo revision 3.1. EFSA supporting publication 2019;16(3):EN-1605, 15 pp. https://doi.org/10.2903/sp.efsa.2019.EN-1605

EURL (European Union Reference Laboratories for Pesticide Residues), 2020. Evaluation report prepared under Article 12 of Regulation (EC) No 396/2005. Analytical methods validated by the EURLs and overall capability of official laboratories to be considered for the review of the existing MRLs for thiram. November 2020. Available online: www.efsa.europa.eu
European Commission, 1996. Appendix G. Livestock Feeding Studies. 7031/VI/95 rev.4., 22 July 1996.
European Commission, 1997a. Appendix A. Metabolism and distribution in plants. 7028/IV/95-rev., 22 July 1997.
European Commission, 1997b. Appendix B. General recommendations for the design, preparation and realization of residue trials. Annex 2. Classification of (minor) crops not listed in the Appendix of Council Directive 90/642/ EEC. 7029/VI/95-rev. 6, 22 July 1997.
European Commission, 1997c. Appendix C. Testing of plant protection products in rotational crops. 7524/VI/95rev. 2, 22 July 1997.
European Commission, 1997d. Appendix E. Processing studies. 7035/VI/95-rev. 5, 22 July 1997.
European Commission, 1997e. Appendix F. Metabolism and distribution in domestic animals. 7030/VI/95-rev. 3, 22 July 1997.
European Commission, 1997f. Appendix H. Storage stability of residue samples. 7032/VI/95-rev. 5, 22 July 1997.
European Commission, 1997g. Appendix I. Calculation of maximum residue level and safety intervals.7039/VI/95 22 July 1997. As amended by the document: classes to be used for the setting of EU pesticide maximum residue levels (MRLs). SANCO 10634/2010, finalised in the Standing Committee on the Food Chain and Animal Health at its meeting of 23-24 March 2010.
European Commission, 2000. Residue analytical methods. For pre-registration data requirement for Annex II (part A, section 4) and Annex III (part A, section 5 of Directive 91/414. SANCO/3029/99-rev. 4.
European Commission, 2010a. Classes to be used for the setting of EU pesticide Maximum Residue Levels (MRLs). SANCO 10634/2010-rev. 0, Finalised in the Standing Committee on the Food Chain and Animal Health at its meeting of 23-24 March 2010.
European Commission, 2010b. Residue analytical methods. For post-registration control. SANCO/825/00-rev. 8.1, 16 November 2010.
European Commission, 2017. Appendix D. Guidelines on comparability, extrapolation, group tolerances and data requirements for setting MRLs. 7525/VI/95-rev.10.3, June 2017.
FAO (Food and Agriculture Organization of the United Nations), 1996. Thiram. In: Pesticide residues in food1996. Evaluations. Part I. Residues. Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Toxicological Core Assessment Group. FAO Plant Production and Protection Paper 142, 527-583.
FAO (Food and Agriculture Organization of the United Nations), 2009. Submission and evaluation of pesticide residues data for the estimation of Maximum Residue Levels in food and feed. Pesticide Residues. 2nd Edition. FAO Plant Production and Protection Paper 197, 264 pp.
France, 2016a. Renewal Assessment Report (RAR) on the active substance thiram prepared by the rapporteur Member State France, in the framework of Commission Implementing Regulation (EU) No 844/2012, January 2016. Available online: www.efsa.europa.eu

France, 2016b. Revised Renewal Assessment Report (RAR) on the active substance thiram prepared by the rapporteur Member State France, in the framework of Commission Implementing Regulation (EU) No 844/ 2012, October 2016. Available online: www.efsa.europa.eu
France, 2020. Evaluation report prepared under Article 12.2 of Regulation (EC) No 396/2005. Review of the existing MRLs for thiram, 27 May 2020. Available online: www.efsa.europa.eu
OECD (Organisation for Economic Co-operation and Development), 2011. OECD MRL calculator: spreadsheet for single data set and spreadsheet for multiple data set, 2 March 2011. In: Pesticide Publications/Publications on Pesticide Residues. Available online: http://www.oecd.org
OECD (Organisation for Economic Co-operation and Development), 2013. Guidance document on residues in livestock. In: Series on Pesticides No 73. ENV/JM/MONO(2013)8, 4 September 2013.

Abbreviations

a.i.	active ingredient
a.s.	active substance
ADI	acceptable daily intake
AR	applied radioactivity
ARfD	acute reference dose
BBCH	growth stages of mono- and dicotyledonous plants
bw	body weight
CAC	Codex Alimentarius Commission
CAS	Chemical Abstract Service
CF	conversion factor for enforcement residue definition to risk assessment residue definition
CS	capsule suspension
CV	coefficient of variation (relative standard deviation)
CXL	codex maximum residue limit
DAR	draft assessment report
DAT	days after treatment
DB	dietary burden
DM	dry matter
DS	powder for dry seed treatment
EC	emulsifiable concentrate
EMS	evaluating Member State
EURLs	European Union Reference Laboratories for Pesticide Residues (former CRLs)
FAO	Food and Agriculture Organization of the United Nations
GAP	Good Agricultural Practice
GC	gas chromatography
GS	growth stage
HPLC-MS/MS	high performance liquid chromatography with tandem mass spectrometry
HR	highest residue
IEDI	international estimated daily intake
IESTI	international estimated short-term intake
ILV	independent laboratory validation
ISO	International Organisation for Standardization
IUPAC	International Union of Pure and Applied Chemistry
JMPR	Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Expert Group on Pesticide Residues (Joint Meeting on Pesticide Residues)
LC	liquid chromatography
LC-MS/MS	liquid chromatography with tandem mass spectrometry
LOQ	limit of quantification
Mo	monitoring
MRL	maximum residue level
MS	Member States
MS	mass spectrometry detector
MS/MS	tandem mass spectrometry detector
MW	molecular weight
NEDI	national estimated daily intake
NESTI	national estimated short-term intake

NTMDI	national theoretical maximum daily intake
OECD	Organisation for Economic Co-operation and Development
PBI	plant back interval
PF	processing factor
PHI	pre-harvest interval
PRIMo	(EFSA) Pesticide Residues Intake Model
PROFile	(EFSA) Pesticide Residues Overview File
RA	risk assessment
RD	residue definition
RAC	raw agricultural commodity
RD	residue definition
RMS	rapporteur Member State
SANCO	Directorate-General for Health and Consumers
SC	suspension concentrate
SEU	southern European Union
SMILES	simplified molecular-input line-entry system
SL	soluble concentrate
SP	water soluble powder
STMR	supervised trials median residue
TAR	total applied radioactivity
TMDI	theoretical maximum daily intake
TRR	total radioactive residue
UV	ultraviolet (detector)
WG	water dispersible granule
WHO	World Health Organization
WP	wettable powder

Appendix A - Summary of authorised uses considered for the review of MRLs

A.1. Import tolerances

Crop and/or situation	MS or country	F G or $I^{(a)}$	Pests or group of pests controlled	Preparation		Application				Application rate per treatment			$\begin{gathered} \text { PHI } \\ \text { (days) }^{(\mathrm{d})} \end{gathered}$	Remarks
				Type ${ }^{\text {(b) }}$	Conc. a.s.	Method kind	Range of growth stages \& season ${ }^{(c)}$	Number min-max	Interval between application (min)	$\begin{gathered} \text { a.s. } / \mathrm{hL} \\ \min -\max \end{gathered}$	Water L/ha minmax	Rate and unit		
Avocados	Mexico	F	Funghi	WG	$\begin{gathered} 800.0 \\ \mathrm{~g} / \mathrm{kg} \end{gathered}$	Foliar treatment spraying		1-3		2.40	1,000	$\mathrm{Kg} \text { a.s./ }$ ha	0	
Bananas	Brazil, Colombia, Costa Rica, Ecuador, Guatemala, Honduras, Mexico, Panama and Venezuela	F	Foliar funghi (Mycosphaerella fijiensis)	SC	$\begin{gathered} 420.0 \\ \mathrm{~g} / \mathrm{kg} \end{gathered}$	Foliar treatment spraying		1-10	5	1.26	15-30	$\mathrm{Kg} \text { a.s./ }$ ha	0	Aerial spraying From fruit emergence until harvest

MS; Member State.
(a): Outdoor or field use (F), greenhouse application (G) or indoor application (I).
(b): CropLife International Technical Monograph no 2, 6th Edition. Revised May 2008. Catalogue of pesticide.
(c): Growth stage range from first to last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including, where relevant, information on season at time of application.
(d): PHI - minimum preharvest interval.

Appendix B - List of end points

B.1. Residues in plants

B.1.1. Nature of residues and methods of analysis in plants
B.1.1.1. Metabolism studies, methods of analysis and residue definitions in plants

Primary crops (available studies)	Crop groups	Crop(s)	Application(s)	Sampling (DAT)	Comment/Source
	Fruit crops	Apples	Foliar treatment: $1 \times 29.5 \mathrm{~kg}$ a.s./ha	0, 14, 28, 56, 101	Radiolabelled active substance: ${ }^{14} \mathrm{C}$-thiram (France, 2016a,b; EFSA, 2017)
		Grapes	Foliar treatment: $4 \times 3.2 \mathrm{~kg}$ a.s./ha	0,14, 27	Radiolabelled active substance: ${ }^{14}$ C-thiram (France, 2016a,b; EFSA, 2017)
	Root crops	Sugar beet	Seed treatment: $1 \times 2.4 \mathrm{~g}$ a.s. $/ \mathrm{kg}$ seed or $1 \times 120 \mathrm{~g}$ a.s. $/ \mathrm{kg}$ seed	100 and at maturity (tops/leaves root)	Radiolabelled active substance: ${ }^{14}$ C-thiram (France, 2016a,b; EFSA, 2017)
	Cereals/grass	Wheat	Seed treatment: $1 \times 0.334 \mathrm{~g}$ a.s. $/ \mathrm{kg}$ seed	35 (leaves, stem) and at maturity (straw, chaff, grain)	Radiolabelled active substance: ${ }^{14} \mathrm{C}$-thiram (France, 2016a, b; EFSA, 2017)
			Seed treatment: $1 \times 0.785 \mathrm{~g}$ a.s. $/ \mathrm{kg}$ seed or $1 \times 4.19 \mathrm{~g}$ a.s./kg seed or $1 \times 14 \mathrm{~g}$ a.s. $/ \mathrm{kg}$ seed	32, 60 (Forage), 95 (straw, chaff, grain)	Radiolabelled active substance: ${ }^{14} \mathrm{C}$-thiram (France, 2016a,b; EFSA, 2017)
			Seed treatment: $1 \times 1.28 \mathrm{~g}$ a.s. $/ \mathrm{kg}$ seed $(1 \times)$ or $1 \times 6.4 \mathrm{~g}$ a.s. $/ \mathrm{kg}$ seed	30,67	Radiolabelled active substance: ${ }^{14} \mathrm{C}$-thiram (France, 2016a,b; EFSA, 2017)
	Pulses/oilseeds	Cotton	Seed treatment: $1 \times 1.14 \mathrm{~g}$ a.s. $/ \mathrm{kg}$ seed $(1 \times$) or $1 \times 7 \mathrm{~g}$ a.s./kg seed	30,67	Radiolabelled active substance: ${ }^{14} \mathrm{C}$-thiram (France, 2016a,b; EFSA, 2017)
		Soybean	Seed treatment: $1 \times 1.03 \mathrm{~g}$ a.s. $/ \mathrm{kg}$ seed $(1 \times)$ or $1 \times 6.5 \mathrm{~g}$ a.s. $/ \mathrm{kg}$ seed	30,67	Radiolabelled active substance: ${ }^{14} \mathrm{C}$-thiram (France, 2016a,b; EFSA, 2017)
			Seed treatment: $1 \times 0.60 \mathrm{~g}$ a.s. $/ \mathrm{kg}$ seed $(1 \times) 1 \times 30 \mathrm{~g} \text { a.s. } / \mathrm{kg} \text { seed }$	29, 69 (forage) and at maturity (straw, pods, seeds)	Radiolabelled active substance: ${ }^{14} \mathrm{C}$-thiram (France, 2016a,b; EFSA, 2017)
Rotational crops (available studies)	Crop groups	Crop(s)	Application(s)	PBI (DAT)	Comment/Source
	Root/tuber crops	-	-	-	-
	Leafy crops	-	-	-	-
	Cereal (small grain)	-	-	-	-

Processed commodities (hydrolysis study)	Conditions	Stable?	Comment/Source
	Pasteurisation $\left(20 \mathrm{~min}, 90^{\circ} \mathrm{C}, \mathrm{pH} 4\right)$	No	Thiram 80\% TRR. Volatile compounds were negligible, less than 2\% TAR (EFSA, 2017)
	Baking, brewing and boiling $\left(60 \mathrm{~min}, 100^{\circ} \mathrm{C}, \mathrm{pH} 5\right)$	No	Thiram 20.8\% TRR. Volatile radioactivity ranged between 16.7% and 21.0% TAR (EFSA, 2017)
	Sterilisation (20 min, $\left.120^{\circ} \mathrm{C}, \mathrm{pH} 6\right)$	No	Thiram 0.6% TRR. Volatile radioactivity ranged between 16.7% and 21.6% TAR (EFSA, 2017)
	Other processing conditions	-	-

Can a general residue definition be proposed for primary crops?

Rotational crop and primary crop metabolism similar?

Residue pattern in processed commodities similar to residue pattern in raw commodities?

Plant residue definition for monitoring (RD-Mo)

Plant residue definition for risk assessment (RD-RA)

Yes	Not applicable.
Inconclusive	Metabolism studies in rotational crops not available and not required since uses under assessment are import tolerances.
Pending outcome of the requested hydrolysis study on M1, the magnitude of M2, M3, M4, M7 and M8 residues in fruit processed commodities and toxicological information on compounds M1, M2, M4, M7, M8 in the framework of the peer-review (EFSA, 2017). As the commodities under consideration are consumed mainly raw and peeled and according to the results of metabolism studies and residue trials limited translocation from the peel to the pulp is expected, the data gaps identified in the peer-review regarding the effect of processing on the nature of residues are not deemed relevant in the framework of this assessment.	
Thiram (expressed as thiram)	

Primary crops: 1) thiram (expressed as thiram) and 2) metabolite M1 (tentative, pending upon the requested information on the toxicity profile of M1)

Processed commodities: Inconclusive, pending outcome of the requested hydrolysis study on M1, the magnitude of M2, M3, M4, M7 and M8 residues in fruit processed commodities and toxicological information on compounds M1, M2, M4, M7, M8.

LC-MS/MS with a limit of quantification (LOQ) of $0.01 \mathrm{mg} / \mathrm{kg}$ in dry commodities and a LOQ of $0.05 \mathrm{mg} / \mathrm{kg}$ in the other plant matrices.
Confirmatory method available.
ILV available.
Extraction efficiency of thiram specific (data gap).
(EFSA, 2017)

The EURLs reported that they are unable at the current stage to indicate any practical LOQs due to losses taking place during the analysis of thiram using procedures routinely employed by laboratories (EURL, 2020).
a.i.: active ingredient; DAT: days after treatment; PBI: plant-back interval; HPLC-MS/MS: high-performance liquid chromatography with tandem mass spectrometry; LC-MS/MS: liquid chromatography with tandem mass spectrometry; LOQ: limit of quantification; ILV: independent laboratory validation.

B.1.1.2. Stability of residues in plants

Plant products (available studies)	Category	Commodity	T (${ }^{\circ} \mathrm{C}$)	Stability period		Compounds covered	Comment/ Source
				Value	Unit		
	High water content	Bananas	-18	3	Months	Thiram (specific); thiram as CS_{2}	France (2020)
		Lettuce	-20	8	Weeks	Thiram (specific)	EFSA (2017)
		Plum	-20	71	Weeks	Thiram (specific); thiram as CS_{2}	EFSA (2017)
		Apricot	-18	12	Months	Thiram (specific); thiram as CS_{2}; M1	EFSA (2017)
		Pear	-18	12	Months	Thiram (specific); M1	EFSA (2017)
		Pear	-18	13	Weeks	ETU	EFSA (2017)
		Cherry	-18	12	Months	```Thiram (specific); M1```	EFSA (2017)
		Wheat forage	-20	8	Weeks	Thiram as CS_{2}	EFSA (2017)
		Maize forage	-20	2	Months	Thiram as CS_{2}	EFSA (2017)
				5	Months	M1	EFSA (2017)
				0	Weeks	Thiram (specific)	EFSA (2017)
	High oil content	Avocado	-18	3	Months	Thiram as CS_{2}	$\begin{aligned} & \text { France } \\ & \text { (2020) } \end{aligned}$
		Cotton seed	-20	78	Weeks	Thiram as CS_{2}	EFSA (2017)
		Soybean	-20	78	Weeks	Thiram as CS_{2}	EFSA (2017)
	High protein content	-	-	-	-	-	-
	High starch content	Wheat grain	-20	52	Weeks	Thiram as CS_{2}	EFSA (2017)
		Barley grain	-20	4	Months	Thiram as CS_{2}	EFSA (2017)
				5	Months	M1	EFSA (2017)
		Maize grain	-20	4	Months	Thiram as CS_{2}	EFSA (2017)
				0	Weeks	Thiram (specific)	EFSA (2017)
				5	Months	M1	EFSA (2017)
	High acid content	Strawberry	-20	12	Months	Thiram (specific); thiram as $\mathrm{CS}_{2} ; \mathrm{M} 1$	EFSA (2017)
		Grapes	-18	12	Months	Thiram (specific); M1	EFSA (2017)
	Processed products	Pear juice	-18	12	Months	Thiram (specific); M1	EFSA (2017)
				13	Weeks	ETU	EFSA (2017)
		Pear puree	-18	12	Months	Thiram as $\mathrm{CS}_{2} ; \mathrm{M} 1$	EFSA (2017)
				13	Weeks	ETU	EFSA (2017)
		Wine	-18	12	Months	M1	EFSA (2017)
	Others	Barley straw	-20	4	Months	Thiram as CS_{2}	EFSA (2017)
				5	Months	M1	EFSA (2017)
		Maize straw	-20	1	Month	Thiram as CS_{2}	EFSA (2017)
				0	Week	Thiram (specific)	EFSA (2017)

B.1.2. Magnitude of residues in plants

B.1.2.1. Summary of residues data from the supervised residue trials - Primary crops

Commodity	$\begin{aligned} & \text { Region/ } \\ & \text { Indoor } \end{aligned}$	Residue levels observed in the supervised residue trials ($\mathrm{mg} / \mathrm{kg}$)	Comments/Source	$\begin{aligned} & \text { Calculated } \\ & \text { MRL } \\ & \text { (mg/kg) } \end{aligned}$	$\begin{gathered} H R^{(b)} \\ (\mathrm{mg} / \mathrm{kg}) \end{gathered}$	$\begin{aligned} & \mathrm{STMR}^{(\mathrm{c})} \\ & (\mathrm{mg} / \mathrm{kg}) \end{aligned}$	$\mathrm{CF}^{(\mathrm{d})}$
RD-Mo \& RD-RA 1: thiram (expressed as thiram) RD-RA 2: M1 (tentative)							
Avocados	AU, MX	$\begin{aligned} & \hline \text { Mo \& RA1: 2.28; } \\ & \text { 2.49; 2.56; 2.69; } \\ & \text { 4.30; 5.85 } \\ & \text { RA2: - } \end{aligned}$	Residue trials on avocados compliant with GAP (EFSA, 2015; France, 2020) ${ }^{(\mathrm{g})}$. Residues in avocado pulp below the LOQ: $6 \times<0.08$ (France, 2020) $M R L_{\text {OECD }}=10.09$	$\begin{gathered} 10 \\ \text { (tentative) }^{(\mathrm{e})} \end{gathered}$	5.85	2.63	RA1: 1 RA 2: _(f)
Bananas	$\begin{aligned} & \mathrm{BR}, \mathrm{CO}, \mathrm{CR}, \\ & \text { EC, GT, HN, } \\ & \text { MX, PA, VZ } \end{aligned}$	Mo \& RA1: $5 \times<0.05$; 0.061; $2 \times 0.066 ;$ 0.071; 0.094; 0.110; 0.114 RA2:	Residue trials on bananas compliant with GAP (EFSA, 2008; France, 2020) ${ }^{(\mathrm{h})}$. Residue levels for unbagged bananas, whole fruit. Residues in banana (unbagged) pulp varied between <0.01 and $0.024 \mathrm{mg} / \mathrm{kg}$ (France, 2020) MRLoect $=0.16$	$\begin{gathered} 0.2 \\ \text { (tentative) }^{(\mathrm{e})} \end{gathered}$	0.11	0.06	RA1: 1 RA 2: (f)

GAP: Good Agricultural Practice; OECD: Organisation for Economic Co-operation and Development; MRL: maximum residue level; Mo: residue levels expressed according to the monitoring residue definition; RA: residue levels expressed according to risk assessment residue definition.
*: Indicates that the MRL is proposed at the limit of quantification.
(a): NEU: Outdoor trials conducted in northern Europe, SEU: Outdoor trials conducted in southern Europe, Indoor: indoor EU trials or Country code: if non-EU trials.
(b): Highest residue. The highest residue for risk assessment (RA) refers to the whole commodity and not to the edible portion.
(c): Supervised trials median residue. The median residue for risk assessment (RA) refers to the whole commodity and not to the edible portion.
(d): Conversion factor to recalculate residues according to the residue definition for monitoring to the residue definition for risk assessment.
(e): MRL is tentative since extraction efficiency of the analytical method of thiram (specific) and information on the levels and toxicity of metabolite M1 are missing.
(f): A conversion factor could not be derived since information on residue levels and toxicological profile of metabolite M1 are missing.
(g): Analysed as thiram: 2.28; 2.56; 4.30. Residues analysed as CS_{2} and recalculated to thiram using a correction factor of 0.79 : 2.49; 2.69; 5.85.
(h): Analysed as thiram: $0.061 ; 0.071 ; 0.114 ; 0.469$. Residues analysed as CS_{2} and recalculated to thiram by applying a correction factor of 0.24: $5 \times<0.05 ; 2 \times 0.066 ; 0.094 ; 0.110$.

B.1.2.2. Residues in rotational crops

a) Overall summary

Residues in rotational and succeeding crops expected based on confined rotational crop study?	Not triggered	Since thiram is no longer approved in the European Union and the only uses under assessment are import tolerances, consideration on rotational crops is not required.
Residues in rotational and succeeding crops expected based on field rotational crop study?	Not triggered	Since thiram is no longer approved in the European Union and the only uses under
assessment are import tolerances,		
lonsideration on rotational crops is not		
required.		

B.1.2.3. Processing factors

Processed commodity	Number of valid studies $^{(\mathbf{a})}$	Processing Factor (PF)		Comment/
	Median PF	Source		

PF: Processing factor (=Residue level in processed commodity expressed according to RD-Mo/ Residue level in raw commodity expressed according to RD-Mo); CF_{p} : Conversion factor for risk assessment in processed commodity (=Residue level in processed commodity expressed according to RD-RA/Residue level in processed commodity expressed according to RD-Mo); n.r.: not reported.
Studies with residues in the RAC at or close to the LOQ were disregarded (unless concentration may occur).

B.3. Residues in livestock

Since crops under assessment are not fed to livestock, there is no need to derive a residue definition and/or MRLs for livestock.

B.4. Consumer risk assessment

ARfD

Highest IESTI, according to EFSA PRIMo (rev.3.1)

NESTI (\% ARfD)
Assumptions made for the calculations

TMDI according to EFSA PRIMo
NTMDI, according to (to be specified)
Highest IEDI, according to EFSA PRIMo (rev.3.1)

NEDI (\% ADI)

Thiram: $0.025 \mathrm{mg} / \mathrm{kg}$ bw (EFSA, 2017) M1: open

Thiram: Avocados: 35\% of ARfD
M1: not assessed
Not assessed in this review.
The calculation is based on the highest residue levels expected in raw agricultural commodities, to which the derived peeling factors were applied: avocados (PeF <0.03) and bananas ($\mathrm{PeF}=0.19$).

Metabolite M1 is not covered in the calculation as residue levels and toxicological information on this compound are not available.

ARfD: acute reference dose; bw: body weight; NESTI: national estimated short-term intake; PRIMo: (EFSA) Pesticide Residues Intake Model; WHO: World Health Organization; IESTI: international estimated short-term intake.

Thiram: $0.01 \mathrm{mg} / \mathrm{kg}$ bw per day (EFSA, 2017) M1: open
Not assessed in this review.
Not assessed in this review.
Thiram: 0.6\% ADI (Dutch toddlers)
M1: not assessed
Not assessed in this review.

The calculation is based on the median residue levels expected in raw agricultural commodities, to which the derived peeling factors were applied: avocados (PeF <0.03) and bananas ($\mathrm{PeF}=0.19$).

The contributions of commodities where no GAP was reported in the framework of the MRL review were not included in the calculation.

Metabolite M1 is not covered in the calculation as residue levels and toxicological information on this compound are not available.

ADI: acceptable daily intake; bw: body weight; NEDI: national estimated daily intake; PRIMo: (EFSA) Pesticide Residues Intake Model; WHO: World Health Organization; TMDI: theoretical maximum daily intake; NTMDI: national theoretical maximum daily intake.

B.5. Proposed MRLs

Code number	Commodity	Existing EU MRL ($\mathrm{mg} / \mathrm{kg}$)	$\begin{aligned} & \text { Existing } \\ & \text { CXL } \\ & (\mathbf{m g} / \mathrm{kg}) \end{aligned}$	Outcome of the review	
				MRL (mg/kg)	Comment
Enforcement residue definition: thiram (expressed as thiram)					
130010	Apples	5	8	-	Further consideration needed ${ }^{\left({ }^{(a)}\right.}$
130020	Pears	5	8	-	Further consideration needed ${ }^{\left({ }^{(a)}\right.}$
130030	Quinces	0.1	8	-	Further consideration needed ${ }^{(a)}$
130040	Medlars	0.1	8	-	Further consideration needed ${ }^{\left({ }^{(a)}\right.}$
130050	Loquats/Japanese medlars	0.1	8	-	Further consideration needed ${ }^{\left({ }^{(a)}\right.}$
152000	Strawberries	10	8	-	Further consideration needed ${ }^{\left({ }^{(a)}\right.}$
163010	Avocados	0.2	-	0.2	Further consideration needed ${ }^{(b)}$
163020	Bananas	10	-	10	Further consideration needed ${ }^{(b)}$
-	Other commodities of plant and/or animal origin	$\begin{gathered} \text { See Reg. 2016/ } \\ 1 \end{gathered}$	-	-	Further consideration needed ${ }^{(c)}$

MRL: maximum residue level; CXL: codex maximum residue limit.
*: Indicates that the MRL is set at the limit of quantification.
(a): There are no relevant authorisations or import tolerances reported at EU level; CXL is not sufficiently supported by data and a risk to consumers cannot be excluded. Either a specific LOQ or the default MRL of $0.01 \mathrm{mg} / \mathrm{kg}$ may be considered (combination A-IV in Appendix E).
(b): Tentative MRL is derived from a GAP evaluated at EU level, which is not fully supported by data but for which no risk to consumers was identified (assuming the existing residue definition); no CXL is available (combination F-I in Appendix E).
(c): There are no relevant authorisations or import tolerances reported at EU level; no CXL is available. Either a specific LOQ or the default MRL of $0.01 \mathrm{mg} / \mathrm{kg}$ may be considered (combination A-I in Appendix E).

Appendix C - Pesticide Residue Intake Model (PRIMo)

- PRIMo(EU)

Review of the existing MRLs for thiram

	Acute risk assessment/children				Acute risk assessment/adults/general population			
	Details - acute risk assessment/children				Details-acute risk assessment/adults			
The acute risk assessment is based on the ARfD. The calculation is based on the large portion of the most critical consumer group.								
	Show results for all crops							
	Results for children No. of commodities for which ARfD/ADI is exceeded (IESTI):				Results for adults No. of commodities for which ARfD/ADI is exceeded (IESTI):			
	IESTI				IESTI			
	Highest \% of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure ($\mu \mathrm{g} / \mathrm{kg}$ bw)	Highest \% of	Commodities	MRL/input for RA (mg/kg)	Exposure ($\mu \mathrm{g} / \mathrm{kg}$ bw)
	35%	Avocados Bananas	$\begin{aligned} & \hline 10 / 0.18 \\ & 0.2 / 0.02 \end{aligned}$	$\begin{aligned} & 8.8 \\ & 2.1 \end{aligned}$	$\begin{gathered} \hline 11 \% \\ 2 \% \end{gathered}$	Avocados Bananas	$\begin{aligned} & 10 / 0.18 \\ & 0.2 / 0.02 \end{aligned}$	$\begin{gathered} 2.6 \\ 0.46 \end{gathered}$
	Expand/collapse list							
	Total number of commodities exceeding the ARfD/ADI in children and adult diets (IESTI calculation)							

[^2]- PRIMo (CXL)

	Acute risk assessment/children				Acute risk assessment/adults/general population			
	Details - acute risk assessment/children				Details - acute risk assessment/adults			
The acute risk assessment is based on the ARfD. The calculation is based on the large portion of the most critical consumer group.								
	Show results for all crops							
	Results for children No. of commodities for which ARfD/ADI is exceeded (IESTI):				Results for adults No. of commodities for which ARfD/ADI is exceeded (IESTI):			
	IESTI				IESTI			
	Highest \% of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure ($\mu \mathrm{g} / \mathrm{kg}$ bw)	Highest \% of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure ($\mu \mathrm{g} / \mathrm{kg}$ bw)
	3501\%	Pears	7.9/6.32	875	772\%	Pears	7.9/6.32	193
	2725\%	Apples	7.9/6.32	681	710\%	Apples	7.9/6.32	177
	622\%	Quinces	7.9/6.32	155	385\%	Quinces	7.9/6.32	96
	350\%	Medlar	7.9/6.32	87	173\%	Medlar	7.9/6.32	43
	203\%	Strawberries	8/3.1	51	116\%	Strawberries	8/3.1	29
	35\%	Avocados	10/0.18	8.8	11\%	Avocados	10/0.18	2.6
	8\%	Bananas	0.2/0.02	2.1	2\%	Bananas	0.2/0.02	0.46
	Expand/collapse list							
	Total number of commodities exceeding the ARfD/ADI in children and adult diets (IESTI calculation)							
	Results for children No of processed commodities for which ARfD/ADI is exceeded (IESTI):			2	Results for adults No of processed commodities for which ARfD/ADI is exceeded (IESTI):			1
	IESTI				IESTI			
	Highest \% of ARfD/ADI	Processed con	MRL/input for RA (mg/kg)	Exposure ($\mu \mathrm{g} / \mathrm{kg} \mathrm{bw}$)	Highest \% of	Processed commodities	MRL/input for RA (mg/kg)	$\begin{gathered} \text { Exposure } \\ (\mu \mathrm{g} / \mathrm{kg} \mathrm{bw}) \end{gathered}$
	411\%	Apples/juice	7.9/1.9	103	253\%	Apples/juice	7.9/1.9	63
	247\%	Pears/juice	7.911.9	62	9\%	Quinces/jam	7.9/1.9	2.4
	23\%	Quinces/jam	7.9/1.9	5.7				
	Expand/collapse list							
	Conclusion:							
	The estimated short-term intake (IESTI) exceeded the toxicological reference value for 5 commodities. For processed commodities, the toxicological reference value was exceeded in one or several cases.							

Appendix D - Input values for the exposure calculations

D.1. Consumer risk assessment without consideration of the CXLs

Commodity	Chronic risk assessment		Acute risk assessment	
	Input value (mg/kg)	Comment	Input value (mg/kg)	Comment
Risk assessment residue definition 1: thiram (expressed as thiram)				
Avocados	0.08	STMR $\times \mathrm{PeF}(<0.03)$	0.18	$\mathrm{HR} \times \mathrm{PeF}(<0.03)$
Bananas	0.01	STMR \times PeF (0.19)	0.02	HR \times PeF (0.19)
Risk assessment residue definition 2: M1 (tentative)				
Avocados	-	No data available regarding the levels of M1 in treated crops. Information on the toxicity of M1 not available	-	No data available regarding the levels of M1 in treated crops. Information on the toxicity of M1 not available
Bananas	-		-	

PeF: peeling factor.
*: Indicates that the input value is proposed at the limit of quantification.

D.2. Indicative consumer risk assessment with consideration of the CXLs

Commodity	Chronic risk assessment		Acute risk assessment	
	Input value (mg/kg)	Comment	Input value (mg/kg)	Comment
Risk assessment residue definition 1: thiram (expressed as thiram)				
Pome fruits	1.9	STMR (CXL) ${ }^{(\mathrm{a})}$	6.3	HR (CXL) ${ }^{(a)}$
Strawberries	2.1	STMR (CXL)	3.1	HR (CXL)
Avocados	0.08	STMR \times PeF (<0.03)	0.18	$\mathrm{HR} \times \mathrm{PeF}(<0.03)$
Bananas	0.01	STMR \times PeF (0.19)	0.02	HR $\times \mathrm{PeF}$ (0.19)
Risk assessment residue definition 2: M1 (tentative)				
Pome fruits	-	No data available regarding the levels of M1 in treated crops. Information on the toxicity of M1 not available	-	No data available regarding the levels of M1 in treated crops. Information on the toxicity of M1 not available
Strawberries	-		-	
Avocados	-		-	
Bananas	-		-	

PeF: peeling factor.
*: Indicates that the input value is proposed at the limit of quantification.
(a): A conversion factor of 1.58 was used to convert the risk assessment values from CS_{2} to thiram

Appendix E - Decision tree for deriving MRL recommendations

Appendix F - Used compound codes

Code/trivial name ${ }^{(a)}$	Chemical name/SMILES notation/In	Structural formula
thiram	Tetramethylthioperoxydicarbonic diamide Tetramethylthiuram disulfide Bis(dimethylthiocarbamoyl)disulfide Bis(dimethylaminothiocarbonyl)-disulfide	
M4 (DMA)	N -methylmethanamine CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N	
ETU (Ethylenethiourea)	4,5-Dihydro-1H-imidazol-2-thione	
M1	2-(dimethylamino)-4,5-dihydro-1,3-thiazole-4carboxylic acid $\mathrm{CN}(\mathrm{C}) \mathrm{C} 1=\mathrm{NC}(\mathrm{CS} 1) \mathrm{C}(\mathrm{O})=\mathrm{O}$ SUUMCDKAOZPOQX-UHFFFAOYSA-N	
M2	1,1,3,3-tetramethylthiourea $\mathrm{CN}(\mathrm{C}) \mathrm{C}(=\mathrm{S}) \mathrm{N}(\mathrm{C}) \mathrm{C}$ MNOILHPDHOHILI-UHFFFAOYSA-N	
M3	sodium dimethylcarbamodithioate hydrate $[\mathrm{Na}+] \cdot \mathrm{O} \cdot \mathrm{CN}(\mathrm{C}) \mathrm{C}([\mathrm{~S}-])=\mathrm{S}$ RJCVAPZBRKHUSV-UHFFFAOYSA-M	
M7	sodium thiocyanate $\mathrm{N} \# \mathrm{CS}[\mathrm{Na}]$ VGTPCRGMBIAPIM-UHFFFAOYSA-M	
M8	N, N-dimethylformamide $\mathrm{CN}(\mathrm{C}) \mathrm{C}=\mathrm{O}$ ZMXDDKWLCZADIW-UHFFFAOYSA-N	

(a): The metabolite name in bold is the name used in the conclusion.
(b): ACD/Name 2019.1.1 ACD/Labs 2019 Release (File version N05E41, Build 110555, 18 July 2019).
(c): ACD/ChemSketch 2019.1.1 ACD/Labs 2019 Release (File version C05H41, Build 110712, 24 July 2019).

[^0]: ${ }^{1}$ Regulation (EC) No 396/2005 of the European Parliament and of the Council of 23 February 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/EEC. OJ L 70, 16.3.2005, p. 1-16.
 ${ }^{2}$ Commission Directive 2003/81/EC of 5 September 2003 amending Council Directive 91/414/EEC to include molinate, thiram and ziram as active substances. OJ L 224, 6.9.2003, p. 29.
 ${ }^{3}$ Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. OJ L 309, 24.11.2009, p. 1-50.
 ${ }^{4}$ Commission Implementing Regulation (EU) No 540/2011 of 25 May 2011 implementing Regulation (EC) No 1107/2009 of the European Parliament and of the Council as regards the list of approved active substances. OJ L 153, 11.6.2011, p. 1-186.
 ${ }^{5}$ Commission Implementing Regulation (EU) No 541/2011 of 1 June 2011 amending Implementing Regulation (EU) No 540/2011 implementing Regulation (EC) No 1107/2009 of the European Parliament and of the Council as regards the list of approved active substances. OJ L 153, 11.6.2011, p. 187-188.
 ${ }^{6}$ Commission Implementing Regulation (EU) 2018/1500 of 9 October 2018 concerning the non-renewal of approval of the active substance thiram, and prohibiting the use and sale of seeds treated with plant protection products containing thiram, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending Commission Implementing Regulation (EU) No 540/2011. OJ L 254, 10.10.2018, p. 1-3.

 7 The United Kingdom withdrew from EU on 1 February 2020. In accordance with the Agreement on the Withdrawal of the UK from the EU, and with the established transition period, the EU requirements on data reporting also apply to the UK data collected until 31 December 2020.

[^1]: ${ }^{8}$ Commission Regulation (EU) No 546/2011 of 10 June 2011 implementing Regulation (EC) No 1107/2009 of the European Parliament and of the Council as regards uniform principles for evaluation and authorisation of plant protection products. OJ L 155, 11.6.2011, p. 127-175.

[^2]: Conclusion:
 No exceedance of the toxicological reference value was identified for any unprocessed commodity.
 A shor-term intake of residues of thiram is unlikely to present a public health risk.
 For processed commodities, no exceedance of the ARfD/ADI was identified.

