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Synopsis Research on insect flight control has focused primarily on the role of wings. Yet abdominal deflections during flight 
can potentially influence the dynamics of flight. This paper assesses the role of airframe deformations in flight, and asks to what 
extent the abdomen contributes to flight maneuverability. To address this, we use a combination of both a Model Predictive 
Control (MPC)-inspired computational inertial dynamics model, and free flight experiments in the hawkmoth, Manduca sexta . 
We explored both underactuated (i.e., number of outputs are greater than the number of inputs) and fully actuated (equal 
number of outputs and inputs) systems. Using metrics such as the non-dimensionalized tracking error and cost of transport 
to evaluate flight performance of the inertial dynamics model, we show that fully actuated simulations minimized the tracking 
error and cost of transport. Additionally, we tested the effect of restricted abdomen movement on free flight in live hawkmoths 
by fixing a carbon fiber rod over the thoracic-abdomen joint. Moths with a restricted abdomen performed worse than sham 

treatment moths. This study finds that abdominal motions contribute to flight control and maneuverability. Such motions of 
non-aerodynamic structures, found in all flying taxa, can inform the development of multi-actuated micro air vehicles. 
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flight. ( Dickinson 2006 ; Dickson et al. 2012 ). Yet other 
body segments may also contribute to movement con- 
trol and maneuverability by changing the configura- 
tion of their position during flight. Inertial redirection 

of terrestrial locomotion has been observed in lizards 
which lift their tails as they navigate over rough ter- 
rain ( Libby et al. 2012 ). Likewise the cat righting re- 
flex allows for cats to contour their bodies by twist- 
ing their spine and land on their feet ( Kane and Scher 
1969 ). For example, tail motions are a key component 
of the flight control system in birds and bats ( Thomas 
1996 ; Gardiner et al. 2011 ; Su et al. 2012 ). In insects, 
rather than a distinct tail, both the abdomen and legs 
have been implicated in flight control. For example, 
leg extension in response to wind gusts in various Hy- 
menoptera have been suggested to serve a role in flight 
stability ( Combes and Dudley 2009 ). Similarly, visu- 
ally driven abdominal flexion and extension is thought 
to contribute to flight control in a variety of insects 
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ith the exception of feed-forward control, most an-
mal movements are governed by multiple streams of
ensory inputs that are processed centrally to coordi-
ate force and torque generation by multiple actua-
ors. Such multi-input, multi-output (MIMO) systems
nderlie complex motor tasks such as grasping and
anipulation as well as myriad modes of terrestrial,
quatic, and aerial locomotion ( Cowan et al. 2014 ). An-
mal flight is an especially challenging MIMO system
hat relies on both visual and mechanosensory infor-
ation processing to coordinate complex wing dynam-

cs for movements ranging from forward flight, to hov-
ring, to tracking moving targets ( Taylor and Krapp
007 ; Cowan et al. 2014 ; Roth et al. 2016 ; Wardill et al.
017 ). The vast majority of literature pertaining to the
ontrol and dynamics of animal fight, however, has
argely focused on the wing motions, for the clear rea-

on that as wings generate the lift forces necessary for 
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including moths ( Dyhr et al. 2013 ), locusts ( Camhi 
1970 ), and fruit flies ( Zanker 1988a , b ). A previous study
has shown that while insect flight is inherently pitch 

unstable, movement of the abdomen yields short-term 

control in the thoracic pitch of a 2-D simulated butter- 
fly ( Jayakumar et al. 2018 ). Finally, abdominal undula- 
tions (i.e., periodic abdominal swings coupled to wing 
inertia) have been demonstrated both experimentally 
and theoretically to be a mechanism which reduces the 
overall mean power and mean energy requirements for 
hovering and forward climbing flight in monarch but- 
terflies ( Tejaswi et al. 2021 ). These changes in body pos- 
ture during flight (airframe deformations) may arise ei- 
ther actively (i.e., movements driven by the insect) or 
passively (i.e., respond to external perturbations) and 

may well contribute to path control. 
Given that the abdomen contributes a large propor- 

tion of mass for insects (up to 46–67% of body mass for 
hawkmoths, see Appendix, Table A4 ), a deeper exam- 
ination of its role in flight control is warranted. Addi- 
tionally, understanding the relative roles of wings and 

abdominal movements in accomplishing specific flight 
tasks presents an interesting inverse problem: can one 
predict the forces and torques applied by abdominal 
motions and wings required to accomplish a specified 

path? And furthermore, can one predict the forces and 

torques, applied to both the abdomen and wings, re- 
quired to accomplish a specified path? Previous litera- 
ture has addressed the inverse problem of hovering and 

level forward flight using a combination of genetic algo- 
rithm wedded with a simplex optimizer ( Hedrick and 

Daniel 2006 ). Moreover, a study that solved the inverse 
problem by linearizing the dynamical system associated 

with flight control ( Dyhr et al. 2013 ) found that flap- 
ping flight with active abdominal control operates on 

the edge of stability. 
Moreover, recent interest in the control and design 

of micro air vehicles emphasizes the need to under- 
stand the challenges that underactuated, non-linear sys- 
tems present including: (a) the development of pre- 
cise aerodynamic models, (b) the destabilizing effects 
due to wind gusts, and (c) the control consequences 
of measurement errors are difficult and can compound 

into larger, more significant errors ( Hua et al. 2013 ). 
Hedrick and Daniel 2006 also explored the inverse 
problem of hovering for overactuated systems, fully 
actuated systems, with some examination of under- 
actuated systems. Understanding underactuated sys- 
tems is of great importance to the design of hover- 
craft ( Xiangyu et al. 2022 ), quadrotors or micro air 
vehicles ( Jafferis et al. 2016 ). This study aims to fur- 
ther examine the role of non-aerodynamic structures 
(i.e., the abdomen) in underactuated and fully actuated 

systems. 
This paper focuses on flight control in the hawkmoth
 Manduca sexta ) by combining both experimental and
omputational approaches to address the role of air-
rame deformations in flight. Computationally, we use
n inertial dynamics model of an insect tracking a verti-
ally oscillating signal in which abdominal flexion con-
ributes to the control. Experimentally, we explore this
irframe control hypothesis through measurements of
ree flight behaviors for animals whose abdominal mo-
ion is restricted. 
We develop an inertial dynamics model inspired by
yhr et al. 2013 to examine the extent of abdominal
ontribution in the movement control of a 2-D inertial
odel (an insect) tracking a vertically moving target
a moving flower). We use an approach inspired by
odel Predictive Control (MPC) to solve the inverse
roblem of determining the wing forces and wing and
bdominal torques, along with abdominal motions
equired to achieve a specified flight path (i.e., to track
 vertically moving flower). In doing so, we explore a
ully actuated control model (4 controls for 4 degrees
f freedom) and an underactuated model (3 controls
or 4 degrees of freedom). The degrees of freedom
re the two rectilinear directions ( x , y ), and the two
otational directions ( θ , φ). In all cases we analyze both
he tracking error of these control strategies as well as a
on-dimensional measure of the energy cost associated
ith each strategy. Interestingly, all MPC solutions
ere able to solve the flower tracking. However, there
re subtle differences in the errors of each approach and
ubstantial differences in the cost of tracking. Addition-
lly, experimentally suppressing abdominal motions in
ive hawkmoths greatly inhibits flight performance. 

odel formulation and methods 
e developed an inertial dynamics model coupled with
onte Carlo simulations to address the question of
bdominal contribution to flight maneuverability and
ight control. Our model simulates the dynamics of a
ying moth as a reduced-order two-mass rigid body
ystem. We used an Euler-Lagrange formulation to gen-
rate a system of ODEs that relate wing forces and body
orques to the position and angles of the body in time.
ur model includes aerodynamic drag forces on the
wo body masses (head-thorax, and abdomen mass),
nd is in the form of a non-linear, second order sys-
em of ODEs. As we indicate below, we use a method
nspired by MPC. 

nsect Geometric Model 

he hawkmoth was modeled as two mechanically cou-
led ellipsoid masses: mass ( m 1 and m 2 ) with associated
oments of inertia ( I 1 and I 2 ) ( Fig. 1 (b)). A pin joint
onnects the base of the head-thorax mass m to the
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Fig. 1 Model basis and modifications. The model has mechanical properties described in blue, and the randomized applied effor ts in red. 
Modifications to the basic model are highlighted in green in (c–e). (a) a tracing of a hawkmoth in flight. (b) The fully actuated model (“fa”) has 
two spheroids of prescribed masses and moment of iner tia. Ref erence frame describes positive motion coordinates and rotational motions 
(counterclockwise). The spheroid of the head-thorax mass is indicated in grey. (c) The fully actuated and location of applied force shifted 
treatment (“fs”) allows for an additional implicit torque on the system. (d) The underactuated treatment (“ua”) is identical to the fully actuated 
treatment (b), with the applied wing torque set to zero. (e) The underactuated with location of applied force shifted treatment (“us”) is most 
similar to treatment (c) but with the applied wing torque set to zero. 
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bdomen mass m 2 . The pin joint connection between
he two masses was modeled as a damped torsional
pring with a spring constant ( κ) and a torsional damp-
ng term ( η) as shown in Beatus and Cohen (2015) . The
xternally applied efforts of the system include the aero-
ynamic force of magnitude ( F ), with a direction ( α)
ith respect to the long axis of m 1 . Additionally, an ab-
ominal torque at the pin joint ( τ abdo ), and the wing
orque ( τwing ) serve as two additional control features. 
The model follows the traditional right-hand coordi-

ate system (i.e., x and y are positive going right and up-
ard, respectively, Fig. 1 (b)). The angular motion asso-
iated with the head-thorax mass relative to an inertial
oordinate frame is θ , while the motion associated with
he abdomen mass is φ, which is also relative to an in-
rtial frame ( Fig. 1 (b)). To keep consistency with right-
anded coordinates, all counter-clockwise rotations are
efined as positive. This motion allows for positive pitch
o yield a “nose-up” motion. 
The model was modified to examine four cases with

he modification shorthand in parentheses next to their
espective definitions: (1) fully actuated (“fa”, the basic
odel, Fig. 1 (b)), (2) fully actuated with the location of

he applied force shifted from the center of mass (“fs”,
ig. 1 (c)), (3) underactuated (“ua”, Fig. 1 (d)) where the
ings do not generate torque, (4) underactuated with
he location of the applied force shifted from the center
f mass (“us”, Fig. 1 (e)). The modifications that include
hifting the location of the applied force from the cen-
er of the head-thorax mass are included to determine
hether the role of implicit torques on the system pro-
ide additional stability. By shifting the location of the
pplied force away from the center of the head-thorax
 

mass, we examine the potential for additional stability
using one fewer controller (i.e., comparing “fs” to “us”).
Additionally, these four modified cases were also run
with a model where the abdomen mass was decreased
by ∼90% to determine the role the applied torques (ab-
dominal and wing torque) contribute to maneuverabil-
ity. By significantly reducing the mass of the abdomen,
we examine to what extent the abdomen plays a role in
tracking a vertically oscillating signal, and furthermore
determine how flight performance changes. 

All model morphometric values and mechanical
properties were measured from hawkmoths ( N = 10,
5 males & 5 females). These specific morphometric
values and mechanical properties can be found in the
Appendix ( Table A2 ). We used the torsional damping
coefficient from Dyhr et al. (2013) , and empirically
measured the torsional spring constant in this study
(see Torsional spring constant measurements below). 

Dynamical Equations 

The Euler–Lagrange formulation (Equation 1) yields
the equations of motion (see Appendix equations A.1–
A.25) necessary to simulate the dynamics of the multi-
body model (full derivation in Appendix). 

d 
d t 

∂T ∗

∂ ̇  q 
− ∂T ∗

∂q 
+ 

∂V 

∂q 
+ 

∂D 

∂ ̇  q 
= e s q , (1)

where T 

* accounts for the kinetic energies of the sys-
tem, V accounts for the potential energies of the system,
D accounts for the dissipative energies of the system,
and e s q accounts for the work due to external applied
efforts. All energies and efforts are with respect to the
generalized coordinates. The equations of motion form
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a coupled system of second-order non-linear ODEs, 
which can be separated and solved using an explicit nu- 
merical solver we have written in Python (using odeint). 
All code is available on GitHub . 

Specifying motion and loss function value 

We specified a challenging motion for the model to 
track. We chose prime frequencies as used in Roth 

et al. (2016) , and Sponberg et al. (2015) to deter- 
mine whether the output response of the model was 
non-linear. The prescribed goal signal (Equation 2) in- 
cludes eleven prime number frequencies (see Appendix, 
Table A1 ), and eleven amplitudes of decreasing magni- 
tude to ensure the velocity of the signal was not increas- 
ing as frequency increases. 

y goal = A 1 sin (2 π f 1 t ) + A 2 sin (2 π f 2 t ) + ... 

+ A 11 sin (2 π f 11 t ) , (2) 

where the amplitudes A i and frequencies f i are speci- 
fied in the Appendix ( Table A1 ) for the y goal . The speci-
fied goal motion of the x -direction ( x goal ) is always set to
zero. The specified goal angle of the head-thorax mass 
( θ goal ) is always set to π /2. 

To explore the theoretical control authority, the ap- 
plied efforts ( F , α, τ abdo , τwing ) were randomized using 
Monte–Carlo methods. The ranges of each applied ef- 
forts were defined as follows. The aerodynamic force ( F )
was between 0 and 0.443 kg ·m · s −2 the maximum value 
is the force required for a hawkmoth to hover in place. 
The direction of the aerodynamic force ( α) was between 

0 and 2 π radians to allow for all possible directions of 
aerodynamic force. The ranges for both the abdominal 
torque ( τ abdo ) and the wing torque ( τwing ) were between 

0 and 0.01 kg · m 

2 · s −2 . 
Each individual randomized set of applied efforts 

yields an individual realization. Each realization was al- 
lowed to run for a time period of 20 ms. The time pe- 
riod of 20 ms is half the time of a normal full wing 
stroke for a hawkmoth. This allowed the model to re- 
randomize the variables for both the upstroke and the 
down-stroke, and to further reduce error accumulated 

over time. 2500 realizations were generated from the 
randomized set of applied efforts for a given 20 ms time 
period with the same initial conditions for each partic- 
ular time period. To simulate a closed-loop system, a 
loss function (Equation 3) selects one realization out of 
the 2500 realizations with the lowest loss function value 
for the particular time period ( Fig. 2 , bottom right blue 
box). 

λ = w 1 (x − x goal ) 2 + w 2 (y − y goal ) 2 

+ w 3 (θ − θgoal ) 2 + w 4 ( ̇  x − ˙ x goal ) 2 

+ w 5 ( ̇  y − ˙ y goal ) 2 + w 6 ( ̇  θ − ˙ θgoal ) 2 (3) 
he loss function takes the difference between the pre-
cribed goal value at the end of the 20 ms simulation,
nd where the realization actually ended up. This is cal-
ulated for the head-thorax motion ( θ), rectilinear po-
ition ( x and y ), and their respective derivatives ( ̇  θ , ˙ x ,
nd 

˙ y ). Each term has a prescribed weighting coefficient
 w 1 − 6 see Appendix Table A3 ) intended to minimize
eviations of the head-thorax motion and rectilinear
otion. 
Drawing inspiration from MPC, we incorporated a

eceding horizon to minimize the time-accumulated er-
or throughout the 20 ms simulation time. After the
oss function selects the realization with the lowest loss
unction value, the model travels 25% of the selected
ath. The state variables at this 25% point become the
ew initial conditions, and we simulate a new batch of
500 realizations ( Fig. 2 ). This method is repeated until
he simulation time of 10 s is completed. 

valuating simulated flight performance 

he model simulation flight performance was evaluated
sing two key metrics: (1) non-dimensionalized track-
ng error, (2) cost of transport. 
We defined the non-dimensionalized tracking error

Equation 4) as the rectilinear distance between the the
nal location of the 20 ms simulation ( x sim 

, and y sim 

)
nd the goal position. This distance is normalized by
ividing the body by length of the organism. √ 

(x sim 

− x goal ) 2 + (y sim 

− y goal ) 2 

body length 
(4)

The generalized form of mechanical work is defined
n Equation 5 as a summation of rectilinear work (work
one by the wing force in translational motions), ro-
ational work (work done by the torque resulting from
ing forces), and the work due to applied torques (wing
orque and abdominal flexion torque). 

Work = F | � ⇀ 

r | + | ( ⇀ 

r × ⇀ 

F )�θ | 
+ | τwing �θ | + | τabdo �β | , (5)

here the first term concerns rectilinear work, and
he subsequent three terms describe different rotational
ork components. F is the magnitude of the applied
orce, 

⇀ 

r is the generalized positional vector (see ap-
endix), | � ⇀ 

r | is the distance the simulated moth trav-
led in each time step of the 20 ms simulation. And the
bdominal flexion is defined as β and is defined as: φo 
 θ o - π . The absolute value of each term in Equation
5) represents the energy expenditure of movement in
pace. Note each model treatment as denoted in Fig. 1
ay not contain every term in Equation (5) for the in-
tantaneous work. 

https://github.com/JorgeBJr
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Fig. 2 Methods for simulating trajectories. The model has a prescribed set of biomechanical properties: both inertial parameters (masses: M 1 , 
M 2 , moments of inertia: I 1 , I 2 , vector lengths: L 1 , L 2 , L 3 , torsional spring constant: κ , and torsional damping coefficient: η) and aerodynamic 
parameters (coefficient of drag: C d , dynamic viscosity of air: μa , and density of air: ρa ). Each simulation begins with a prescribed set of initial 
conditions (the set of positions: q and their respective velocities: ˙ q ). Monte-Carlo methods randomized the applied forces (magnitude of 
force: F , direction of force: α) and torques (abdominal torque: τ abdo , and wing torque: τwing ). There are a set of 2500 randomized forces and 
torques for each time 20 ms time period, yielding the final conditions. The initial conditions, randomized torques and forces, and biomechanical 
parameters are all passed into the ordinary differential equations (ODEs) of the system (to see the ODEs and their full derivations, see 
Appendix Equations A.22–A.25). A loss function ( λ) selects the trajectory with the lowest loss function value. The loss function contains various 
weights ( w 1 −6 , see Appendix Table A3 ) which penalize deviations from y and x more than θ . The composition of the vertically oscillating signal 
y goal is noted in the grey dashed box on the upper right. The time series of the y goal is displayed for a 10 s time period, the frequency components 
of this signal are noted in the figure below. The values of amplitude and frequency are noted in Appendix Table A1 . The trajectory selected 
by the loss function uses the values 25% through the trajectory as the new initial conditions for the next 20 ms time period. A visualization of 
the trajectories and the selection of one trajectory through time is included in the light blue dashed box on the lower right. 
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The cost of transport describes the normalized en-
rgy expenditure of movement in space. The cost of
ransport normalizes the mechanical work, as referred
o in Equation (5), by dividing the product of the weight
nd distance traveled by the moth at any 20 ms interval
s seen in Equation (6). 

C = 

Work 

mg | � ⇀ 

r | 
, (6)

here m is the mass of the head-thorax section, and g is
he acceleration due to gravity. 

xper imental mater ials and methods 

awkmoth preparation and abdominal restriction 

ethods 

obacco hawkmoths ( Manduca sexta ) were collected
rom a colony at the University of Washington. The
oths were maintained on a 12:12 h light-dark cycle.
or the free flight experiment, we used 2–5 days post-
closion hawkmoths, and specifically selected adults
ho showed eagerness to feed (actively flew or hovered
n front of a red-light headlamp) ∼2 h after the begin-
ing of the dark cycle. 
For the experimental treatment (3 moths, a total of

2 trials), a single carbon fiber rod (0.048–0.095 g) was
glued on the dorsal side across the thorax and abdomen
joint using superglue to restrict the motion of this joint.
Carbon fiber rods for the experimental treatment com-
posed 0.40% + / − 0.14% (mean + / − standard devia-
tion) of moth body mass. 

A sham treatment was also incorporated in a sep-
arate set of moths (4 moths, total of 14 trials). These
sham treatment moths had two separate carbon fiber
rods glued to the thorax and abdomen, respectively (to-
tal weight range 0.047–0.067 g). Carbon fiber rods for
the sham treatment composed 0.24% + / − 0.03% (mean
+ / − standard deviation) of moth body mass. The pur-
pose of the sham treatment was to account for the
weight of the carbon fiber rod. For moths that flew, their
last exposure to light was 1.03–4.78 h (or 62–287 min)
before flight experiments. 

All free flight experiments were performed during
the active, night period of hawkmoths including dusk
and dawn at 20–25 ◦C. All moths were flower-naïve and
had never fed as adults prior to experimentation. 

A separate set of 10 hawkmoths (5 males, 5 fe-
males) were used to measure the percentage of abdom-
inal mass (as reported in the Introduction). For these
measurements, we used 1–3 days post-eclosion hawk-
moths. The total mass of the moth was weighed prior
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to cold anesthetization. After at least 45 min of cold 

anesthetization, the head, thorax, and abdomen were 
all excised and weighed separately. The value reported 

in the introduction is the range of percentages of ab- 
dominal mass for each individual moth (see Appendix, 
Table A4 ). 

Free flight behavioral setup 

To document flight behaviors we used an experimen- 
tal system established by Deora et al. (2021) (see 
Deora et. al, “Behavioral setup”). Moths flew in an ar- 
tificial arena (36 ′′ × 27 ′′ × 36 ′′ ) darkened, and enclosed 

from all external lighting. We used an overhead video 
camera (Basler piA640-210gm GigE) recording at 100 
frames per s, 200 μsec exposure under infrared illu- 
mination. The enclosure was illuminated with diffuse 
white light at 0.1 lux with a custom-made LED lightbox 
(SpyeGrey film, Spyeglass TM ). 

The moths were tasked with feeding from an ar- 
tificial, 3-D printed, funnel shaped, stationary flower 
( Deora et al. 2021 ). We used a seven-component scent 
mixture which mimicked the scent of hawk moth- 
pollinated flowers to motivate flight ( Riffell et al. 2013 ; 
Campos et al. 2015 : 0.6% benzaldehyde, 17.6% ben- 
zyl alcohol, 1.8% linalool, 24% methyl salicylate, 3% 

nerol, 9% geraniol, 0.6% methyl benzoate in mineral 
oil). A few drops of this scent was placed on fil- 
ter paper. The filter paper was placed directly above 
the artificial flower on the ceiling of the artificial 
enclosure, and covered with a dark cloth so as not 
to cause a visual distraction for moths during the 
experiment. 

Evaluation of moth free flight performance 

We tracked the moth head using DeepLabCut (DLC, 
Mathis et al. 2018 , see also methods of Deora et al. 2021 )
to capture and analyze flight paths of the abdominally 
restricted and sham treated moths. The DLC model was 
trained on a previous training data set in Deora et al. 
(2021) which used similar overhead view of moth feed- 
ing from artificial flower. We wrote custom codes (avail- 
able on GitHub) to analyze these flight tracks. We used 

several metrics to capture flight dynamics and flight 
path characteristics like mean velocity, mean accelera- 
tion, flight path tortuosity, box dimension as well as an- 
alyzed the spectral characteristics of the path. We used 

a Wilcoxon rank sum test to analyze the differences be- 
tween abdominally restricted and sham moths across all 
metrics. 

We computed the path tortuosity (Equation 7), a 
metric of how much a moth deviates from a mean or 
straight flight path to compare flight paths across our 
treatments. Because moths flight path often cross them- 
selves in this behavioral paradigm, we analyzed tortuos- 
ty along smaller segments of the path, essentially creat-
ng a sliding window estimate of tortuosity of 40 frames
100 ms, equivalent to 10 wing beats which we felt was
n adequate time scale to capture relevant flight trajec-
ory features) for each trajectory and computed the total
istance and displacement for each window. We used
he following equation to compute tortuosity of each
egment (Equation 7), and average across these to com-
ute the mean tortuosity for each flight path. Similarly,
e also used fast Fourier transform on each trajectory
egment to compute the mean power at various tempo-
al frequencies. 

Tortuosity = 

∑ i +40 
k = i 

√ 

(x k +1 − x k ) 2 + (y k +1 − y k ) 2 √ 

(x c − x 0 ) 2 + (y c − y 0 ) 2 
, (7)

here i = [ i , N − 40] and N is the number of frames for
ny trial. This represents a sliding window of tortuosity
stimates. 
We also used fractal dimensions (box counting di-
ension) to quantify the complexity (i.e., jaggedness) of
ach flight trajectory. Fractal dimensions have been pre-
iously used to quantify the geometry of animal paths
 Benhamou 2004 ). They measure how shapes and pat-
erns scale in comparison to the space they occupy.
ence, smaller a fractal value ( ∼1) means a measured
imension is more similar to a line; higher values ( > 1.5)
eans a measured dimension more similar to that of
n area. Prior to analysis, each trajectory was saved as
n image, so that the space between discrete centroid
ositions was linearly interpolated. This allowed us to
nalyze the entire shape of the trajectory irrespective of
he moth’s velocity. 

ouble-blind scoring of rolling maneuvers 

ith a single camera system, body pitch and roll are dif-
cult to quantify, but human observers are able to assess
he presence or absence of such motions. An increase in
itch and roll motions may suggest that the hawkmoth
ay use these motions to compensate for the sham
nd/or experimental treatments. To determine whether
r not there was an increased incidence of rolling in
xperimental treatment moths relative to sham moths,
e used a double-blind study of the moth video tri-
ls. Eight volunteers were tasked with the simple bi-
ary scoring (yes/no) of whether or not they witnessed
olling in the 26 flight bouts (12 videos of experimental
reatment flight bouts, and 14 videos of sham treatment
ight bouts). The order of the videos was randomized,
nd the treatment of the moth was hidden to the volun-
eer. The metric of evaluation for this scoring was if the
ncidence of rolls in experimental treatment moths were
igher than the incidence of rolls in the sham treatment
oths. 
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orsional spring constant measurements 

he torsional spring constant was empirically measured
or our multibody dynamics model. A still image and
ideo of the torsional spring constant measurement
etup is provided in the Appendix ( Fig. A1 and Supple-
entary Video). All torsional spring constant experi-
ents were performed on 1–2 days post-eclosion dead
awkmoths ( N = 20 moths). There were two groups of
ead moths: moths in the freezer ( −20 ◦C) for 1 h before
he head was excised ( N = 10 moths; 5 male, 5 female)
nd 10 min before ( N = 10 moths; 5 male, 5 female)
he head was excised. At the time of head ablation, the
ings and legs were also ablated. The scales were re-
oved from the thorax so as to mount the moth into

ts measurement rig more easily. 
Moths were mounted on a micro manipulator with

he thorax firmly pierced by two nails to maintain its po-
ition during measurements. The abdomen was aligned
ith a the true vertical as best as possible, and lassoed
o the lever arm of a Dual Mode Muscle Lever System
Aurora Scientific, Model 360) firmly with thread. 
The Dual Mode Muscle Lever System had the dual

ask of applying the sinusoidal oscillations and record-
ng the torque that the abdomen exerted back on the
ever arm as a response. Calibration of the Dual Mode
uscle Lever System to the corresponding angles and

orques was done by tying a rubberband (Sparco Pre-
ium Quality Rubber Bands, 1614LB, Size 16, 2 1/2” x
/16”) to a vertical rod. All data acquisition was per-
ormed with a National Instruments DAQ (NI USB-
229) at a sampling frequency of 1000 Hz. 
The prescribed sinusoidal signal was 15 s long, and

omposed of one of five driving frequencies (0.2, 1, 5,
0, 20 Hz), with one of three input voltages (2, 5, 9 Volts)
hich correspond to the different angular sweeps of the
ever arm (5.42, 13.56, 24.41 degrees, respectively). Each
f these 15 signals had three replicates. The order of
hese 45 trials were randomly permuted for each of the
0 moths to ensure there was no statistical bias or un-
sual response by the moth abdomen to different driv-
ng frequencies and amplitudes. 
We recorded the time series for both the abdomi-

al angle and applied torque for these 45 trials. Both
ime series signals were Fourier transformed. These two
ourier transformed signals each have a real component
nd an imaginary component. The real components of
he two Fourier transformed signals is used to calculate
he torsional spring constant: 

κ = Real 
(
T 
�

)
+ Iω 

2 , (8)

here T is the Fourier transform of the torque signal,
is the Fourier transform of the angle signal, I is the
oment of inertia of the moth abdomen, and ω is the
driving frequency. For the full derivation, see the Ap-
pendix. 

All instantaneous torsional spring constants (for all
trials and moths) were plotted with respect to driv-
ing frequency and fit with a second degree polynomial
function. The x -intercept of this polynomial fit was the
torsional spring constant used in all of our simulations.
The torsional spring constant value we used in the sim-
ulations is 0.0023 kg · m 

2 · rad 

−1 · s −2 (see Results). 

Results 
Torsional spring constant measurements 

Moths which were in the freezer for 10 min prior to
head excision had a torsional spring constant of 0.0023
+ / − 0.00072 kg · m 

2 · rad 

−1 · s −2 (mean + / − stan-
dard deviation). Moths which were in the freezer for
1 h prior to head excision had a torsional spring con-
stant of 0.0034 + / − 0.0020 kg · m 

2 · rad 

−1 · s −2 (mean
+ / − standard deviation). We decided to use a value
within the range of the moths which were in the freezer
10 min prior to head excision because such moths have
material properties more directly relevant to the live
moths. 

Simulated flight: non-dimensional tracking error 

Non-dimensional tracking error denotes the 2-D rec-
tilinear distance between the final state of the model
in a 20 ms simulation run time, and the goal posi-
tion normalized to body length (2( L 1 + L 2 ), constant
for all simulations) of the simulated moth. A Kruskal–
Wallis one-way analysis of variance test showed at least
one of the groups were significantly different from the
other (Kruskal–Wallis, χ2 = 294.14, df = 7, P = 2.2e-
16, effect size, η2 = 0.941): the Dunn’s test for mul-
tiple comparisons revealed the treatments which had
the lowest non-dimensionalized tracking error were the
two fully actuated treatments for the regular-sized ab-
domen, and one underactuated treatment for the re-
duced mass abdomen (regular-sized abdomen “fa” and
“fs” in Fig. 3 (a), and reduced mass abdomen “us”). 

Simulated flight: cost of transport 

The cost of transport is defined as the non-
dimensionalized work normalized to the weight of the
head-thorax mass of the simulated insect multiplied by
the distance it traveled in the 20 ms time frame. Cost
of transport was lowest for the regular-sized abdomen
fully-actuated simulations ( Fig. 3 (b), treatments “fa”
and “fs”) and were significantly different from the other
statistical groupings (Kruskal–Wallis χ2 = 295.27, df
= 7, P = 2.2e–16, effect size, η2 = 0.935). 

Energy expenditure was minimized for fully ac-
tuated treatments. Decreasing the abdomen mass by
∼90% yields flight dynamics similar to a normal
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Fig. 3 Panel (a) is the non-dimensionalized tracking error. Panel (b) is 
the cost of transport. The regular-sized abdomen is based off of our 
measured parameters (Appendix, Table A2 ), and the reduced mass 
abdomen is an abdomen mass decreased by ∼90% to evaluate the 
role of effecti vel y eliminating the abdomen mass from the system. 
The grouping of four treatments on the left side of the panel cor- 
respond to the regular-sized abdomen, while the grouping of four 
treatments of the right side of the panel correspond to the reduced 
mass abdomen. For both panels, and both sizes of abdomen all treat- 
ment shorthands are defined as follows: fully actuated (“fa”), fully 
actuated and location of applied force shifted treatment (“fs”), un- 
deractuated (“ua”), and underactuated with location of applied force 
shifted treatment (“us”). All results here are based on 40 full sim- 
ulations per treatment with the exception of the regular-sized ab- 
domen underactuated simulations (“ua” and “us”). Each full simu- 
lation run time of 10 s of simulated flight. The letters above each 
box plot indicate statistical groupings. All statistical tests for signifi- 
cance were perf or med by a Kruskal–Wallis rank sum test. All statisti- 
cal groupings were based on Bonf er roni correction factor (i.e., reject 
hypothesis if P > 0.05/2). For non-dimensionalized tracking error, 
all model modifications except both fully actuated regular-sized ab- 
domen treatments (left columns, “fa” and “fs”), and the reduced mass 
“us” treatment had significantly higher non-dimensionalized track- 
ing error ( P > 0.025). For cost of transport, all model modifica- 
tions except both fully actuated regular-sized abdomen treatments 
(left columns, “fa” and “fs”) had significantly higher cost of transport 
( P > 0.025). 
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abdomen (see Appendix, Figs. A2 , A3 ) for the under- 
actuated and location of applied force shifted treat- 
ments. However, the cost of transport is higher for all 
reduced abdomen size treatments than the fully actu- 
ated, regular-sized abdomen treatments. 

Moth free flight: incidence of flight 

One metric to observe any differences between the two 
treatments is the incidence of flight. After dark adapta- 
ion, moths were brought into the darkened arena and
llowed 10 min to initiate flight. Flight or no flight was
cored and compiled. Of 40 experimental treatment tri-
ls, 7 trials resulted in moth flight. Of 37 sham treatment
rials, 18 resulted in moth flight. The incidence of flight
s much lower in experimental treatment moths (17.5%)
han in sham treatment moths (48.6%). A chi-squared
est revealed that the incidence of flight in the experi-
ental treatment is significantly lower than in the sham

reatment ( χ2 (1, N = 77) = 8.5053, P = 0.003541). 

oth free flight: kinematics and path metrics 

or all moths which successfully flew, we used various
etrics to evaluate the dynamics of the flight paths,
nd observe the differences between the two treatments.
hese metrics included root mean square (RMS) ve-
ocity, RMS acceleration, tortuosity, box dimension, the
og-log transform of the spatial frequencies of flight
ath, and flight duration. 
The RMS velocity was not significantly different for

oth the experimental and sham treatments (Wilcoxon
ank sum exact test, P = 0.6947). The RMS accelera-
ion was not significantly different for both the exper-
mental and sham treatments (Wilcoxon rank sum ex-
ct test, P = 0.6505). The sliding window tortuosity was
ot significantly different for both the experimental and
ham treatments (Wilcoxon rank sum exact test, P =
.261). The box dimension was not significantly dif-
erent for both the experimental and sham treatments
Wilcoxon rank sum exact test, P = 0.6495). Neither the
lopes nor intercepts of the log-log transform of the spa-
ial frequencies of tortuosity were significantly different
etween experimental and sham treatments (Wilcoxon
ank sum exact test, slope: P = 0.9408; intercept P =
.3312 ). 
However, the flight duration was significantly dif-

erent for both the experimental and sham treatments
Wilcoxon rank sum exact test, P = 0.01561). This im-
lies inhibition of abdominal movements yields shorter
ight bouts for experimental treatment moths. 

ouble-blind scoring of rolling maneuvers 

he incidence of rolls in the experimental treatment
as 45 of 96 (46.9%). The incidence of rolls in the
ham treatment was 23 of 112 (20.5%). This difference
as statistically significant (Wilcoxan rank sum exact
est, W = 132, P = 0.01332). This implies inhibition
f abdominal movements yields a greater incidence
f rolls for experimental treatment moths, although
t remains unclear if this is a behavioral compen-
ation or an inertial consequence of the abdominal
estriction. 
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iscussion 

n this study, we have provided both theoretical and
xperimental evidence that abdominal motions can
lay a critical role in flight control. This is shown in
oth the inertial dynamics model of this study and in
xperimental treatments of freely flying hawkmoths.
hree key results arise from our computational analysis.
irst, our computational approach, inspired by MPC,
uccessfully predicts forces and torques required to ac-
omplish the complex motor task of tracking a moving
arget. Second, we find that both fully actuated and
nderactuated models of control can successfully ac-
omplish these tasks. However, the error associated
ith tracking is generally greater for underactuated
ystems. Third, we find that the energetic cost of trans-
ort, as measured by the energy divided by the product
f the thorax muscle weight and distance traveled,
epends quite strongly on the abdominal motions. We
howed that all computational model variations were
ble to successfully track the vertically oscillating goal,
et two treatments in particular minimized the cost of
ransport (both fully actuated, regular-sized abdomen
odels, see Fig. 3 (b), left columns, treatments “fa”
nd “fs”). We also showed that when abdomen motion
as inhibited in freely flying moths attempting to feed
rom a stationary 3-D printed flower, yielded a dras-
ically lower incidence of flight, and for moths which
uccessfully flew, the duration of the flight bouts were
ignificantly shorter and less stable. 

nverse solutions using MPC-inspired models 

light control is a non-linear problem in which the in-
erse solution–finding forces and torques required to
ollow a specified path–can be quite challenging. As
entioned previously, a number of outstanding studies
ave solved this inverse problem using a variety of ap-
roaches. For example, Hedrick and Daniel (2006) used
 genetic algorithm melded with a simplex optimization
n which 10 parameters were used to solve the inverse
roblem of hovering and level flight control with the
ame four degrees of motion we allowed in our sim-
lations. With 10 control parameters, they simulated
n overactuated system, particularly given that the state
pace is dominantly four degrees of freedom. Nonethe-
ess, that study showed it was possible to fix all but two
inematic parameters and still accomplish successful
ight ( Hedrick and Daniel 2006 , Table 2). Interestingly,
hat study also showed that a single underactuated kine-
atic parameter set could perform the task of hover-

ng, albeit with considerably higher error. This particu-
ar underactuated kinematic parameter set was the in-
piration for our study as underactuated systems have
een of particular interest in synthetically designed en-
gineered systems ( Mian and Daobo 2008 ; Hinson et al.
2013 ). 

Additionally, Dyhr et al. (2013) , created a model
which was linearized about equilibrium points. They
found that the model operates at the very edge of sta-
bility. In contrast, our model was intentionally not lin-
earized and explored the number of actuators neces-
sary for successful flight. That said, our current study
did a simple linearization and finds very similar fre-
quency dynamics emerge. Unlike the work by Dyhr
et al. (2013) , we did not explore specific frequency
response dynamics to a range of forcing frequencies.
Rather we sought to identify the underlying eigenfre-
quencies of the system. 

Genetic algorithms have been used elsewhere in
studies of flight control including but not limited to:
identifying actuator placement, controller design, ve-
hicle design to launch small satellites, and other gen-
eral optimization processes ( Steinberg and Page 1999 ).
While, to our knowledge, only Hedrick and Daniel
(2006) incorporate the use of a genetic algorithm for
computing the inverse problem of hovering in a biolog-
ical context, a similar approach was used to compute
wing kinematics in flight that minimized the energy re-
quired for hovering ( Berman and Wang 2007 ). 

Analogously, MPC approaches for flight control have
gained considerable attention in recent literature in-
cluding on-board control of quadrotors ( Bouffard et al.
2012 ), target tracking in fixed wing aircraft ( Zanker
1988b ; Stastny et al. 2017 ), and other synthetic systems
( Shamaghdari et al. 2015 ). However, to our knowledge,
it has not been widely deployed as a method for explor-
ing natural flight systems. MPC approaches also lend
themselves to future studies in which deep neural net-
works (DNNs) can be developed, refined, and influ-
ence the basis of problems with otherwise infinite state-
space permutations. In summary, the implementation
of MPC approaches coupled with DNNs can provide
unique insight into a vast array of physically bounded,
biologically relevant questions. 

Fully actuated and underactuated controls 

For our model of a flying moth moving with four de-
grees of freedom–in our cases two translational ( x ,
y ) and two rotational ( θ , φ) directions–we explored
two control scenarios, one in which the model is
fully actuated using four control inputs, and one in
which it is underactuated, where we use just three con-
trol inputs. Additionally, we examined the role im-
plicit torques (“fs” and “us”) may play with regard the
flight performance metrics described in this study. For-
mally, underactuated systems are those for which the
control system cannot accomplish any acceleration in
some of the degrees of freedom at any instant in time
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( Shkolnik and Tedrake 2008 ). Underactuated systems 
have received considerable attention in recent years, of- 
ten because they are commonly seen in a variety of bio- 
logical systems. For example, Xinyan Deng et al. (2006) 
show that time invariant averaging theory can be used 

for controlling bioinspired insect robots that are under- 
actuated. Similar approaches have been used for under- 
actuated fish-like robots ( Morgansen et al. 2001 ). 

Similar to the time-averaging methods above, in our 
underactuated scenario, we use a fixed force and fixed 

abdominal torque during the equivalent time of half 
a wing stroke to effect control, effectively serving as a 
stroke averaged control. As we noted above, this ap- 
proach leads to effective tracking, though an intriguing 
trade-off appears. When the abdominal mass is close to 
that observed in Manduca the cost of transport in both 

underactuated configurations (“ua” and “us”) is greater 
than that associated with the fully actuated system (“fa”
and “fs”) ( Fig. 3 (b)). As observed, if the abdominal mass 
is drastically smaller, as in our reduced mass abdomen 

models, the cost of transport is actually greater for the 
fully actuated system despite the dynamics yielding rea- 
sonable motions ( Fig. A3 ). The cost of transport of un- 
deractuated systems for both the normal abdominal 
mass and the reduced mass are similar in magnitude 
(Fig. 3 (b)). If the role of the abdomen is nearly com- 
pletely removed (i.e., mass reduced by ∼90%), this sug- 
gests that an underactuated system may be best to per- 
form the task of tracking a vertically oscillating signal. 
This is because the reduced mass abdomen does not re- 
quire more actuators to stabilize the motion. This re- 
sult may inform the development of micro air vehicles 
carrying significantly smaller loads (i.e., quad-copters). 
Furthermore, the model developed in this study allows 
for the exploration of different abdominal sizes and spa- 
tial configurations in future simulations. 

When considering the role of implicit torques, we 
observed that the fully actuated simulations (regardless 
of abdomen size) yield statistically similar flight per- 
formance metrics (Fig. 3 ). This trend remains consis- 
tent for the underactuated simulations only when the 
abdomen was regular-sized. Yet when the role of the 
abdomen was nearly completely eliminated (i.e., mass 
reduced by ∼90%), the underactuated scenarios ben- 
efited fro m having a shifted location of applied force 
(“us”) despite using one fewer control input. This im- 
plies such underactuated models with reduced abdom- 
inal mass would benefit from an implicit torque on the 
system. 

Taken together, the flight dynamics (Appendix, 
Figs A2 , A3 ), non-dimensionalized tracking error 
( Fig. 3 (a)), and cost of transport ( Fig. 3 (b)) yield con-
flicting results with the findings of Hedrick and Daniel 
(2006) (see Hedrick and Daniel, Table 2). For the nor- 
al mass simulations, a higher non-dimensionalized
racking error, and cost of transport was shown for both
nderactuated treatments (“ua” and “us”) when com-
ared to the fully actuated treatments (“fa” and “fs”)
hich is in accordance with Hedrick and Daniel (2006) .
owever, the flight dynamics (Appendix, Figs A2 , A3 )
eveals that while the model can track rectilinear mo-
ions accurately ( x , y ), and even maintain a relatively
easonable head-thorax rotation ( θ , with some abrupt
ostling), the abdominal motions spin indefinitely for
oth underactuated configurations (“ua” and “us”).
his dramatic abdominal spin demonstrates a conflict
ith the findings of Hedrick and Daniel (2006) . 
In all instances when applied wing torques or offset

rigin of wing forces are absent from the system, we ob-
erve unstable dynamics (“ua” treatment in Appendix,
igs A2 , A3 ), high energy expenditure, and high track-
ng error ( Fig. 3 , “ua” models). This implies the neces-
ity of an applied torque, regardless of how miniscule, is
ssential for dynamical stability. Interestingly, the pitch
oment of inertia about the center of mass for the entire
ead/thorax and abdomen system will depend on ab-
ominal flexion angle: greater flexion has a lower pitch
oment of inertia. 

estricting natural abdominal motions decreases 
ncidence of flight and flight duration 

or freely flying moths given the task of feeding from
 stationary 3-D printed flower, our sham treatment
oths flew successfully with no discernible inhibition

o their flight pattern. Flight incidence was dramatically
ecreased for moths given this same task with the car-
on fiber rod restricting their abdominal motion. Ad-
itionally, if moths flew, various flight dynamics (e.g.,
elocities, path tortuosity) were not significantly differ-
nt between treatments, except for length of flight du-
ation. This indicates the experimental treatment moths
hat were able to fly were inhibited to the point of having
horter flight bouts. As suggested by Fig. 3 , the shorter
ight bouts may indeed be a result of the increased
ost of transport because of the reduced number of
ctuators. 
While simple metrics of flight dynamics such as

peeds, accelerations, or tortuosities did not yield sig-
ificant differences between moths with restricted ab-
ominal motions and control individuals, moths in the
xperimental treatment group were observed to engage
n a higher incidence of rolling motions than sham
reatment moths. We suspect that abdominal flexion
ould increase the rotational moment of inertia in the
oll axis: a straight cylinder has a lower roll moment of
nertia than a bent cylinder of identical length and mass.
ndeed, maneuvering via abdominal flexion may allow
oll motions when straight and roll stability when bent.
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Similarly, this inhibition of abdominal movements is
hown to have adverse effects on other animals as seen
n a number of other studies. For example, juvenile
antids that had their abdominal segments restricted
y superglue resulted in slower rotations necessary
o complete a jump ( Burrows et al. 2015 ), sometimes
ausing them to crash head-first into their task goal–an
therwise easy to accomplish task for normal juvenile
antids. Live wingless aphids assume a stereotypical
ody posture before falling off leaves, and an inertial
echanism aerially rights their positions during free

all ( Ribak et al. 2013 ). However, this righting mech-
nism was significantly reduced when the wingless
phids were dead or had ablated appendages. At critical
tages of aerial righting, wingless nymphal stick insects
ctively use their legs to reorient while falling ( Zeng
t al. 2016 ). Gliding ants (wingless ant workers) apply
ctive control over their aerodynamic forces when
ighting their path back to tree trunks ( Munk et al.
015 ) despite their lack of having aerodynamically
treamlined appendages to accomplish this task. 
Future work could include 3-D motion tracking of
oths using the same vertically oscillating signal in our
PC-inspired model on live moths. This potential new

tudy could also include varying degrees of inhibited
bdominal motion ranges (i.e., potential halfway de-
rees of treatment–sticks which get stiffer as flexion in-
reases). 

onclusion 

irframe deformation: inertial reconfiguration 

ontributes to flight control 

aken together, both the computational and experi-
ental results point to an important role for inertial re-
onfiguration of body elements in movement control.
hile wings are clearly the most important structures

or animal flight control, this study shows that inertial
omponents of non-wing structures also play an impor-
ant role. 
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Appendix 

Model formulation and methods 

The Euler–Lagrange equations form a system of four
coupled second order ODEs for the state variables q ,
( q = x , y , θ , φ). 

The Euler–Lagrange equation is written in the fol-
lowing general form: 

d 
d t 

∂T ∗

∂ ̇  q 
− ∂T ∗

∂q 
+ 

∂V 

∂q 
+ 

∂D 

∂ ̇  q 
= e s q , (A.1)

where q is a placeholder for a flow variable ( x , y , θ ,
φ). x and y are with respect to the standard Carte-
sian coordinates, θ is the angle of the head-thorax mass
with respect to the x -axis, and φ is the angle between
the midline of the abdomen with respect to the x -axis
( Fig. 1 (b)). 

Furthermore, T *( p ) is defined as the kinetic co-
energy, V is defined as the potential energy, D ( p ) is de-
fined as the dissipative energy, and e s q the external effort
exerted that affects the respective flow variable (either x ,
y , θ , φ). This yields four Euler–Lagrange equations for
the four variables of this model: 

d 
d t 

∂T ∗

∂ ̇  x 
− ∂T ∗

∂x 
+ 

∂V 

∂x 
+ 

∂D 

∂ ̇  x 
= e s x (A.2)

d 
d t 

∂T ∗

∂ ̇  y 
− ∂T ∗

∂y 
+ 

∂V 

∂y 
+ 

∂D 

∂ ̇  y 
= e s y (A.3)

d 
d t 

∂T ∗

∂ ̇  θ
− ∂T ∗

∂θ
+ 

∂V 

∂θ
+ 

∂D 

∂ ̇  θ
= e s θ (A.4)

d 
d t 

∂T ∗

∂ ̇  φ
− ∂T ∗

∂φ
+ 

∂V 

∂φ
+ 

∂D 

∂ ̇  φ
= e s φ. (A.5)

The positional vectors of our two masses with respect
to the thorax-abdomen joint are the following: 

⇀ 

r 1 = (x + L 1 cos θ ) ̂  i + (y + L 1 sin θ ) ̂  j (A.6)

⇀ 

r 2 = (x + L 2 cos φ) ̂  i + (y + L 2 sin φ) ̂  j , (A.7)
where L 1 is a fixed length between the thorax-abdomen
joint to the center of the head-thorax mass ( Fig. 1 (b)).
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Similarly, L 2 is a fixed length between the thorax- 
abdomen joint to the center of the abdomen mass 
( Fig. 1 (b)). 

The velocity vectors for each of the two masses are 
simply the derivatives of the positional vectors with re- 
spect to time as follows: 

˙ ⇀ 

r 1 = ( ̇  x − L 1 ̇  θsin θ ) ̂  i + ( ̇  y + L 1 ̇  θcos θ ) ̂  j (A.8) 

˙ ⇀ 

r 2 = ( ̇  x − L 2 ̇  φsin φ) ̂  i + ( ̇  y + L 2 ̇  φcos φ) ̂  j . (A.9) 

The kinetic energy of the system is as follows: 

T ∗ = 

1 
2 
m 1 

˙ ⇀ 

r 1 
˙ ⇀ 

r 1 + 

1 
2 
I 1 ̇  θ2 + 

1 
2 
m 2 

˙ ⇀ 

r 2 
˙ ⇀ 

r 2 + 

1 
2 
I 2 ̇  φ2 , (A.10) 

where m 1 is the mass of the head-thorax, I 1 is the mo- 
ment of inertia of the head-thorax mass, m 2 is the mass 
of the abdomen, and I 2 is the moment of inertia of the 
abdomen. When the velocity vectors are substituted in, 
(A.10) becomes the following form: 

T ∗ = 

1 
2 
m 1 ( ̇  x 2 + 

˙ y 2 + 2 L 1 ̇  θ ( ̇  y cos θ − ˙ x sin θ ) + L 2 1 ̇  θ2 ) 

+ 

1 
2 
I 1 ̇  θ2 

+ 

1 
2 
m 2 ( ̇  x 2 + 

˙ y 2 + 2 L 2 ̇  φ( ̇  y cos φ − ˙ x sin φ) + L 2 2 ̇  φ2 ) 

+ 

1 
2 
I 2 ̇  φ2 . (A.11) 

The potential energy of the system is as follows: 

V = 

1 
2 
κ ((φ − θ − π ) − (φo − θo − π )) 2 

+ m 1 g(y + L 1 sin θ ) 

+ m 2 g(y + L 2 sin φ) , (A.12) 

where κ is the torsional spring constant of the joint that 
connects the thorax to the abdomen, g is the accelera- 
tion due to gravity, φo is the initial abdomen angle, and 

θ o is the initial head-thorax angle. And βrest is defined 
as: φo - θ o - π . 

The dissipative energy of the system is as follows: 

D = 

1 
2 
η( ̇  φ − ˙ θ ) 2 , (A.13) 

where η is the torsional damping constant of the joint 
that connects the thorax to the abdomen. The work 
done by the applied efforts to the system are as follows: 

δW x = Q x δx (A.14) 

δW y = Q y δy (A.15) 

δW = Q δθ (A.16) 
θ θ
δW φ = Q φδφ. (A.17)

Therefore, the applied efforts are as follows: 

e s x = Q x = F cos (θ + α) − 1 
2 
ρa S head C d head | ˙ x | ˙ x 

−1 
2 
ρa S abdo C d abdo | ˙ x | ˙ x (A.18)

e s y = Q y = F sin (θ + α) − 1 
2 
ρa S head C d head | ˙ y | ˙ y 

−1 
2 
ρa S abdo C d abdo | ˙ y | ˙ y (A.19)

e s θ = Q θ = τabdo + τwing + L 3 F sin (α) (A.20)

e s φ = Q φ = −τabdo , (A.21)

here F is the averaged aerodynamic lift force over the
ourse of the 20 ms simulation time period caused by
he flapping w ings of the insect, α is the angle of the
erodynamic lift force with respect to the midline of
he head-thorax mass, ρa is the density of air, S is the
urface area of the insect which is experiencing aero-
ynamic drag (modeled as a sphere). C d x , and C d y are
he coefficients of drag in the x -direction and in the y -
irection, respectively, τ abdo is the torque applied to the
horax-abdomen joint for flight correctional purposes
nd/or to counteract external perturbations (note: con-
ervation of angular momentum requires an equal and
pposite torque applied by the abdomen), and L 3 is
he fixed length between the thorax-abdomen joint to
he center of the aerodynamic lift of the head-thorax
ass. 
Taking the appropriate derivatives of equations
.11–A.13 as required by equations A.2–A.5, yield
he following four equations of motion (note, not
ll derivatives mentioned in equations A.2–A.5 are
ecessary): 
Equation of motion in the x -direction: 

(m 1 + m 2 ) ̈x − m 1 L 1 ̈θsin θ − m 2 L 2 ̈φsin φ

−m 1 L 1 ̇  θ2 cos θ − m 2 L 2 ̇  φ2 cos φ = F cos (θ + α) 

− 1 
2 
ρa S head C d head | ˙ x | ˙ x −

1 
2 
ρa S abdo C d abdo | ˙ x | ˙ x . 

(A.22)

Equation of motion in the y-direction: 

(m 1 + m 2 ) ̈y + m 1 L 1 ̈θcos θ + m 2 L 2 ̈φcos φ

−m 1 L 1 ̇  θ2 sin θ − m 2 L 2 ̇  φ2 sin φ + (m 1 + m 2 ) g 

= F sin (θ + α) − 1 
2 
ρa S head C d head | ˙ y | ˙ y 

−1 
2 
ρa S abdo C d abdo | ˙ y | ˙ y . (A.23)
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Table A1. The prime number frequencies (in Hz) listed out in se- 
quential order and their respective amplitudes (in cm). Amplitudes 
decreased with increasing frequency to prevent the system from go- 
ing unstable. 

Goal motion Goal motion 

Frequency (Hz) amplitude (cm) 

0.2 5 

0.3 3.3333 

0.5 2 

0.7 1.4286 

1.1 0.9091 

1.7 0.5882 

2.9 0.3448 

4.3 0.2326 

7.9 0.1266 

13.7 0.0730 

19.9 0.0503 

(
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F

T  

t  

T  

d

 

 

w
S  

d

Table A2. The mechanical properties of the model are fixed through- 
out the duration of all simulations. All values were calculated from our 
own measurements and rounded as appropriate with the exception 
of one: the torsional damping coefficient ( η) which was previously 
measured in Dyhr et al. (2013) . 

Mechanical property Numerical value 

L 1 0.908 cm 

L 2 1.9 cm 

L 3 0.75 cm 

a head − thorax 0.908 cm 

a abdomen 1.9 cm 

b head − thorax 0.5 cm 

b abdomen 0.75 cm 

κ 23000 cm 

2 g/(rad · s 2 ) 

η 14075.8 cm 

2 g/s 

From Dyhr et al. (2013) 

ρhead − thorax 0.9 g/cm 

3 

ρabdomen 0.4 g/cm 

3 

ρair 1.18 · 10 −3 g/cm 

3 

μair 1.86 · 10 −4 g/(cm · s) 

g 980 cm/s 2 

Table A3. The weighting coefficients of the loss function penalize rec- 
tilinear motions higher than head-thorax motion. Such weights are 
critical for the loss function to function. 

Loss function weighting coefficients 

Coefficient Value State variable 

assigned to: 

w 4 10 9 x 

w 5 10 10 y 

w 6 10 10 θ

w 1 10 −5 ˙ x 

w 2 10 −5 ˙ y 

w 3 10 8 ˙ θ

 

 

 

 

 

 

 

 

 

Equation of motion in the theta-direction: 

m 1 L 2 1 + I 1 ) ̈θ − m 1 L 1 ̈x sin θ + m 1 L 1 ̈y cosθ

−κ ((φ − θ − π ) − (φo − θo − π )) + m 1 gL 1 cos θ

−η( ̇  φ − ˙ θ ) = τabdo + τwing + L 3 F sin α. (A.24)

Equation of motion in the phi-direction: 

(m 2 L 2 2 + I 2 ) ̈φ − m 2 L 2 ̈x sin φ + m 2 L 2 ̈y cos φ

+ κ ((φ − θ − π ) − (φo − θo − π )) + m 2 gL 2 cos φ

+ η( ̇  φ − ˙ θ ) = −τabdo . (A.25)

These equations of motion (Equations A.22–A.25)
re the ones used in our inertial dynamics model. 

ixed mechanical properties 

he mechanical properties of the model are fixed
hroughout the simulations and are defined in Table A2 .
he terms for mass and moment of inertia in Fig. 1 are
efined as follows using the terms in Table A2 . 
Mass: 

M 1 = m ht = ρht 
4 
3 
πb 2 ht a ht (A.26)

Moment of inertia: 

I 1 = I ht = 

1 
5 
M 1 b 2 ht 

(
1 + 

a ht 
b ht 

)
, (A.27)

here the subscript “ht ” is shorthand for “head-thorax.”
imilarly, the mass and moment of inertia of the ab-
omen correspond to M 2 and I 2 , respectively. 
Loss function weighting coefficients 

The loss function weighting coefficients are defined in
Table A3 . These coefficients ensure that deviations from
our goal position and rotation heavily penalize rectilin-
ear motion deviations ( x , y ), with head motion devia-
tions penalized secondarily as strong ( θ). The deriva-
tives of these motions ( ̇  x , ̇  y , ˙ θ) are not as strongly pe-
nalized. 

Prescribed goal motion frequencies and amplitudes

The frequencies of the prescribed goal motion are
11 prime number frequencies drawn directly from
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Fig. A1 A still image of the torsional spring constant measurement 
setup. The head, wings, and legs of the hawkmoth were ablated. The 
scales were removed from the thorax to easily mount the moth into 
the rig. The abdomen is tied to the lever arm with string. The Dual 
Mode Muscle Lever System (Aurora Scientific, Model 360) simulta- 
neously records the force and angle of the abdomen. A true vertical 
determines the angle discrepancy of the abdomen with the vertical. 
The Supplementary Video associated with this still image shows a 
1 Hz signal and an angular sweep of 24.41 degrees. 

Table A4. Body segment mass distribution in grams. The mean and 
standard deviation values are calculated of the set of five male moths 
and five female moths, respecti vel y. The minimum and maximum of 
each set of five male moths and five female moths are also reported. 
The parenthetical values report the corresponding percentages of 
the value within the cell. Note the percentages summed across rows 
do not sum to 100% because (1) the wings and legs were not included 
in this measurement, and (2) the distribution reported reflects the 
value of the set (i.e., the minimum/maximum values not be shared 
by the same individual moth). 

Total Head Thorax Abdomen 

Sex - mass mass mass mass 

statistic (g) (g) (g) (g) 

Male 2.0758 0.135 0.584 1.0252 

average (6.5%) (28.3%) (49.3%)

st . dev 0.145 0.0267 0.0449 0.126 

min . 1.953 0.100 0.532 0.916 

(5.1%) (24.9%) (46.0%)

max . 2.302 0.173 0.651 1.187 

(7.5%) (32.7%) (53.1%)

Female 3.550 0.183 0.686 2.206 

average (5.2%) (19.6%) (61.9%)

st . dev 0.489 0.0264 0.0692 0.394 

min . 2.790 0.148 0.618 1.660 

(4.2%) (15.8%) (59.3%)

max . 4.054 0.214 0.796 2.728 

(6.2%) (22.7%) (67.3%)
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Roth et al. (2016) . The purpose of these prime num- 
ber frequencies is two-fold: (1) to determine if the out- 
put of the system is linear or non-linear, (2) to en- 
sure that any potential harmonics of the system can 

be distinguished from their basal frequencies (i.e., not 
overlap). 

The amplitude(s) of the goal motion signal decrease 
by a prescribed factor as shown in Equation A.28. 
This amplitude decrease is necessary to ensure that the 
derivative of the models tracking this goal do not accel- 
erate substantially causing unwanted instabilites in the 
system. 

A n = 

A 1 

2 π f n 
2 π f 1 (A.28) 

Derivation of torsional spring constant system 

As stated in Methods, the moths used in this experiment 
can be modeled as a system of two masses (thorax and 

abdomen) connected with a torsional spring constant 
and a torsional damper ( Fig. 1 (b)), and represented by 
Equation A.29. A still image of the torsional spring con- 
stant measurement setup is provided in Fig. A1 , along 
with its associated Supplementary Video. 

τ = κθ + η ˙ θ + I ̈θ (A.29) 

Which can be transformed into equation A.30. 
T = κ� + η(iω)� + −I(ω 

2 )� (A.30)

This can be rearranged into a torque-angle ratio form
s seen in equation A.31 

T 
�

= κ + iηω − Iω 

2 (A.31)

The system yields two components: the real compo-
ent (Equation A.32), and the imaginary component
Equation A.33). 

Real 
(
T 
�

)
= κ − Iω 

2 (A.32)

Imag 
(
T 
�

)
= iηω (A.33)

The real component corresponds to the torsional
pring constant and can be rearranged into Equation 8
see Methods) to calculate the torsional spring con-
tant. The imaginary component corresponds to the
orsional damping coefficient which is not calculated in
his study, but rather, a value previously calculated by
yhr et al. (2013) is used. 
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Fig. A2 Model dynamics output for all model variations of the regular-sized abdomen model. All plots are with respect to time for a 10 s 
simulation period. Top row is the x -motion in cm. Second row is the y motion in cm (note the dashed red line is the goal motion of our 
vertically oscillating goal). The third row is the head-thorax ( m 1 ) mass motion in degrees. The f our th row is the abdominal motion ( m 2 ) in 
degrees. The bottom row is the abdominal flexion angle (i.e., difference between rows 4 and 3, respecti vel y) in degrees. For all treatments, 
the model tracks the input y -motion well. 
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easurements of body segment masses 

ive male hawkmoths, and five female hawkmoths had
heir total mass, head, thorax, and abdomen weighed.
or a full distribution of these values, see Table A4 . 

stimating the fundamental frequency 

he set of non-linear second order differential equa-
ions (Equations A.22–A.25) represent a dynamical sys-
em that has effective masses, damping components,
nd stiffness values. To explore the fundamental fre-
uencies that underlie this system we linearized our sys-
em of equations for a moth that is hovering. We set the
osition of the moth to be the origin and the angle of
he body to be pi /4 with the abdomen aligned with the
ead-thorax: 

x = y = 0 (A.34a)

θ = π/ 4 (A.34b)

φ = 5 π/ 4 (A.34c)

˙ x = 

˙ y = 

˙ θ = 

˙ φ = 0 . (A.34d)

We linearized the system about these conditions and
olved for the mass matrix M , the damping matrix C ,
and the stiffness matrix K operating on the state vector
q = [ x , y , θ , φ] and its derivatives such that: 

M ̈q + C ̇

 q + Kq = ψ, (A.35)

where ψ is the vector of applied forces and torques. In
the limiting case of zero damping we solve the eigen-
value problem: 

M ̈q + Kq = 0 (A.36a)

thus I ̈q + M 

−1 Kq = 0 (A.36b)

S etting χ = q̄ e jω t we find arrive at the eigenvalue
problem: 

I ̄q ( jω) 2 e jωt + M 

−1 Ke jωt = 0 (A.37a)

thus I ̄q ( jω) 2 = M 

−1 K q̄, (A.37b)

where I is the identity matrix and the fundamental fre-
quencies are ( j ω) 2 . Given the parameters laid out in
Table A2 , we find the lowest fundamental frequency to
be 1.99 Hz for the case of hovering. This linearized es-
timate of the modal frequency is quite close to the fre-
quencies we observe in Fig. A2 . As such, the oscillations
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Fig. A3 Model dynamics output for all model variations of the reduced-sized abdomen model. All plots are with respect to time for a 10 s 
simulation period. Top row is the x -motion in cm. Second row is the y motion in cm (note the dashed red line is the goal motion of our 
vertically oscillating goal). The third row is the head-thorax ( m 1 ) mass motion in degrees. The f our th row is the abdominal motion ( m 2 ) in 
degrees. The bottom row is the abdominal flexion angle (i.e., difference between rows 4 and 3, respecti vel y) in degrees. For all treatments, 
the model tracks the input y -motion well. 
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that result follow from the dynamics of this coupled sys- 
tem. Details of the parameter values and the structure 
of the matrices M , C , and K can be found in our Github
repository in a file Modes.nb. 
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