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Summary

Using longitudinal data from a cohort of 1349 participants in the

Framingham Heart Study, we show that as early as 28–38 years of

age, almost 10% of variation in future lifespan can be predicted

from simple clinical parameters. Specifically, we found diastolic

and systolic blood pressure, blood glucose, weight, and body

mass index (BMI) to be relevant to lifespan. These and similar

parameters have been well-characterized as risk factors in the

relatively narrow context of cardiovascular disease and mortality

in middle to old age. In contrast, we demonstrate here that such

measures can be used to predict all-cause mortality from mid-

adulthood onward. Further, we find that different clinical mea-

surements are predictive of lifespan in different age regimes.

Specifically, blood pressure and BMI are predictive of all-cause

mortality from ages 35 to 60, while blood glucose is predictive

from ages 57 to 73. Moreover, we find that several of these

parameters are best considered as measures of a rate of ‘damage

accrual’, such that total historical exposure, rather than current

measurement values, is the most relevant risk factor (as with

pack-years of cigarette smoking). In short, we show that simple

physiological measurements have broader lifespan-predictive

value than indicated by previous work and that incorporating

information from multiple time points can significantly increase

that predictive capacity. In general, our results apply equally to

both men and women, although some differences exist.
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Introduction

Aging is a complex biological process with multiple contributing genetic

pathways (Kenyon et al., 1993; Lakowski & Hekimi, 1996; Hansen et al.,

2007; Lunetta et al., 2007; Pan et al., 2007; Willcox et al., 2008; Li

et al., 2009; Imai & Guarente, 2014; Satoh & Imai, 2014), significant

variation among even closely related organisms (Jones et al., 2014), and

an ongoing debate about its root causes and origin (Kirkwood, 2005). At

its core, however, aging is simply the statistical phenomenon of an

increased probability of death over time. In addition, mortality risk does

not increase at equal rates at all ages (Vaupel et al., 1998). Further,

aging can vary significantly for different individuals at the same age. As a

result, an individual’s chronological age is a limited predictor of their

actual mortality risk.

In order to develop improved prognostic capability for mortality,

demographers have sought to identify biomarkers of aging, functionally

defined as a biological parameter of an organism that either can better

predict functional capability or mortality risk than chronological age

(Baker & Sprott, 1988). This is motivated by an array of valuable

applications, including improved actuarial modeling, biological investi-

gations of the mechanisms of aging and therapeutics to slow its

progress, and the clinical ability to better target interventions to at-risk

patients.

Driven by these goals, researchers in the 1970s and 1980s proposed a

large number of candidate biomarkers of aging (Baker, 1975; Ludwig &

Smoke, 1980; Ingram & Reynolds, 1986). Although these studies

identified several putative biomarkers, many of the published multivari-

able composite scores were overfit—that is, overly tuned to a very

specific dataset. Consequently, these composite scores did not have

broad applicability, and later studies failed to validate the original

findings (Baker & Sprott, 1988; Costa & McCrae, 1988; Dean & Morgan,

1988; Ingram, 1988; Wilson, 1988).

As a result, much subsequent work has focused on predicting specific

disease processes instead of all-cause mortality (Cook et al., 1995; Vasan

et al., 2001; Sesso et al., 2008). Many physiological parameters, such as

blood pressure (Kannel, 1996) and body mass index (BMI) (Eckel et al.,

1998), have been well-characterized as risk factors for cardiovascular

disease and other specific morbidities. In general, these studies have

focused on middle-aged individuals and have emphasized risk over a

limited term, often just 5- or 10-year periods (e.g., Assmann et al.,

2002). In addition, most of the work on both general biomarkers of

aging and specific risk factors has been limited to the analysis of data

from single time points.

More recently, Yashin and colleagues have sought to use longitudinal

data to gain insight into the overall aging process and the relationship

between physiological change over time and mortality risk (e.g., Yashin

et al., 2013). In particular, modeling physiological change as a dynamic

system allowed mortality risk to be successfully modeled as a function of

the difference between an individuals’ current physiological state and

the ideal state for an individual of that age (Yashin et al., 2007; Arbeev

et al., 2011). Related analyses classified individuals’ likely lifespans

according to trajectories of physiological indices (Yashin et al., 2006,

2010). Further, a landmark series of studies of the accumulation of age-

related functional deficits in individuals over time identified a snowball

effect where individuals with physiological deficits are more likely to

accumulate further deficits over time and are exponentially more likely to

die (Mitnitski et al., 2005, 2006). Taken together, these studies indicate

that the trajectory of an individuals’ physiological state over time

provides a rich context for understanding future mortality risk.

We therefore set out to address two very simple questions about

lifespan prediction from longitudinal data. First, given an individuals’

history of physiological measurements (blood pressure, height, weight,

and similar), how early in life is there any indication of that individuals’

ultimate lifespan? A very recent investigation showed that that aging is
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indeed detectable even in young adults (Belsky et al., 2015). Specifically,

these investigators found that young adults who showed signs of

accelerated physiological aging also experienced greater functional

impairment. We now ask whether such early-life aging has detectable

impacts on eventual survival decades hence.

Second, this work seeks to determine whether data from multiple

time points can be aggregated in any way to provide a clearer estimate

of future lifespan? Many of the models presented in previous work (e.g.

Mitnitski et al., 2006; Yashin et al., 2007; Arbeev et al., 2011) use

longitudinal data, but estimate mortality risk at a particular time only

from measurements made at that time. This effectively assumes that

mortality risks are a memory-free Markov process. In this work, we test

this assumption and determine whether physiological history is helpful in

lifespan prediction.

Our investigation of longer term biomarkers of longevity was made

possible by the continued progression of the Framingham Heart Study

(FHS). With its large cohort, consistent longitudinal measurements of

basic physiology, and excellent level of follow-up in terms of rate and

length, the FHS offers a unique opportunity to investigate the contri-

butions of biomarkers from very young ages, as well as the evolution of

biomarker effectiveness throughout the aging process. The FHS popu-

lation also allows us to focus on a single longitudinal cohort of

individuals, avoiding the possible confounding effects of using additional

cross-sectional data. In this work, we use the Framingham data to

understand the proportion of variation in all-cause mortality that can be

predicted from basic clinical measurements. We study these effects from

early- to mid-adulthood, and examine how they evolve as a result of the

aging process (Table 1).

Results

To understand the mortality-predictive ability of various physiological

biomarkers, we began by selecting a well-defined and homogeneous

cohort of individuals to analyze. In order to study the effect of

biomarkers on mortality risk at a young age and the effects of

incorporating past measurements into predictive models, we chose to

focus on the youngest individuals in the original cohort of the

Framingham Heart Study. The data from these individuals are both the

most extensive and begin earliest in life. Moreover, this cohort, aged 28–

38 years at the first Framingham exam, shares a birth decade, limiting

the opportunity for confounding effects due to cultural and medical

changes over time.

Of the hundreds of measurements made by the Framingham

investigators, we chose to focus on basic parameters that were not

indicators for any specific pathology and which had a wide dynamic

range of variation (e.g., not binary variables such as whether a specific

type of cardiac arrhythmia was detected on physical exam). After

eliminating parameters that were not consistently measured across the

first 28 clinical exams (over 50 years) of the study, we obtained a panel

containing weight, height, systolic and diastolic blood pressure, BMI, and

blood glucose.

Amount of mortality predictable from physiology

In order to determine the fraction of variability in lifespan that can be

predicted from the first exam, we employed multiple linear regression to

assign weights to our six selected measurements. This allowed us to

combine the six variables into a single composite ‘risk score’ and to

assess its relationship with mortality (measured in days of survival after

the first clinical exam). The relationship between predicted lifespan and

results is shown in Fig. 1 (at the first clinical exam, when our cohort of

participants is 28–38 years old). Overall, approximately 10% of variation

in ultimate lifespan is predictable using a simple linear regression on six

basic clinical parameters (p = 8.52 9 10�32).

In this type of analysis, weights for each measured parameter are

chosen based on the known survival time of each individual. With

sufficiently many parameters, models constructed in this fashion can

become ‘overfit’ and not generalize well to future data. In this case, we

have few parameter weights (seven: six measurements plus a constant

offset) compared to the size of the data, and thus, the model is unlikely

to be overfit. To demonstrate this directly, we estimated the ability of the

model to generalize to future data using five-fold cross-validation, in

which different subsets of the data were used to fit the weights vs.

evaluate the goodness of that fit. This generated a Pearson r2 of 0.085,

suggesting that these results are indeed not overfit.

Thus, even relatively early in adulthood, a modest but meaningful

fraction of future lifespan is already predictable. Further, the lack of

sharp demarcations on the scatterplot indicates that this correlation is

not driven exclusively by individuals with overt pathologies. Rather, the

effect is graded, and is spread over much of the dynamic range that

exists for both the clinical measurements and the length of known

survival.

Next, we asked how the proportion of predictable mortality from

single time points changes as the cohort ages. Figure 2 (left) shows the

correlation between the measured parameters and mortality throughout

the aging process, for the subcohort of our original population still alive

Table 1 Summary statistics of the changing demographics of the surviving cohort

over time

Living

subcohort

size

Mean age

(years)

%

Males

%

Females

Number

of males

Number

of females

Exam 01 1349 34.5 � 2.2 47 53 631 718

Exam 02 1329 36.6 � 2.2 47 53 620 709

Exam 03 1311 38.5 � 2.2 47 53 611 700

Exam 04 1301 40.5 � 2.2 46 54 604 697

Exam 05 1285 42.5 � 2.2 46 54 597 688

Exam 06 1270 44.5 � 2.2 46 54 587 683

Exam 07 1256 46.5 � 2.2 46 54 582 674

Exam 08 1236 47.9 � 2.2 46 54 573 663

Exam 09 1216 49.9 � 2.2 46 54 562 654

Exam 10 1189 52.0 � 2.2 46 54 547 642

Exam 11 1162 53.8 � 2.2 46 54 535 627

Exam 12 1136 56.0 � 2.2 46 54 527 609

Exam 13 1108 58.0 � 2.2 46 54 512 596

Exam 14 1071 60.0 � 2.2 45 55 487 584

Exam 15 1031 61.9 � 2.2 45 55 460 571

Exam 16 987 63.9 � 2.2 44 56 435 552

Exam 17 956 65.9 � 2.2 44 56 416 540

Exam 18 893 68.1 � 2.2 43 57 384 509

Exam 19 836 70.1 � 2.2 42 58 351 485

Exam 20 789 72.2 � 2.2 41 59 322 467

Exam 21 724 74.1 � 2.2 39 61 282 442

Exam 22 646 76.0 � 2.2 39 61 251 395

Exam 23 580 77.8 � 2.2 37 63 217 363

Exam 24 488 79.9 � 2.2 36 64 177 311

Exam 25 455 81.8 � 2.2 35 65 159 296

Exam 26 376 83.8 � 2.2 32 68 122 254

Exam 27 301 85.5 � 2.1 31 69 94 207

Exam 28 236 87.2 � 2.0 32 68 76 160
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at each time point, stratified for gender. (Note that the trends in these

correlations thus include both the effects of age and of survivorship

bias.) The three different traces represent three approaches to

constructing a composite ‘risk score’ from the clinical data.

First, we used the weights that were computed to be optimal for

predicting lifespan at exam 1, when the mean age of the cohort was

34.5 years (Fig. 1, bottom). The decrease in the predictive ability of this

score over time suggests that the risk factors that are important in early

life become less relevant in middle age. To illustrate this more explicitly,

we then calculated the set of weights that most optimally predict future

lifespan at exam 18, when the mean age was 68.1 years. As expected,

the ‘exam 18’ trace is a worse predictor than the ‘exam 1’ trace early on,

but is more effective at later time points. We next used regression to

determine the optimal weighting of the six parameters at each

Framingham study exam (the ‘focal exam’) independently. This provides

an upper bound on fraction of lifespan predictable in a linear fashion

from these basic measurements over time. (Nonlinear regression models

with more free parameters may well be able to predict more about

future lifespan; we excluded these from our analysis as a guard against

overfitting and multiple hypothesis testing.) Of note is the gradual

decline in our ability to predict mortality after roughly age 60. This

suggests that the physiological parameters analyzed are able to capture

relevant differences between those who die relatively early and those

who die later, but not the variation among particularly longer lived

individuals.

To put our findings into the context of previously developed clinical

risk scores, Fig. 2 (center) compares the lifespan-predictive ability of the

well-known Framingham Risk Score (Wilson et al., 1998; Lloyd-Jones

et al., 2004) and Pooled Cohort Score (Goff et al., 2014) with our ‘focal

exam’ estimates. These clinical scores were designed specifically to assess

cardiovascular risk in a 5- to 10-year timeframe, using some of the

parameters we examined as well as smoking status, blood cholesterol,

and age. Despite this narrow focus, however, both scores are able to

predict a significant proportion of variation in all-cause mortality over

50+ years of follow-up. Indeed, their predictive value remains valid even

at the earliest clinical exam, when the average age of participants is

34.5 years. This demonstrates a surprising robustness of the lifespan-

predictive signal in these data: even risk scores such as these, which were

not specifically tuned to the task, are effective biomarkers of aging.

Next, Fig. 3 illustrates how the individual measurements’ (from Fig. 1)

correlations with future lifespan change over time. As expected, the

predictive ability of most of the parameters under investigation declines

as the overall predictable mortality (measured by the focal exam trace

from Fig. 2) declines. This trend is most strongly illustrated by the three

blood pressure variables, systolic, diastolic and pulse pressure, which are

highly predictive of lifespan from ages 35 to 60 and increasingly less

predictive thereafter. On the other hand, blood glucose is a striking

exception. Up to age 70, as all other significant predictors’ correlations

are declining, the correlation of blood glucose with all-cause mortality

rises consistently, achieving its highest values from the ages of 57–73.

Overall, it appears that blood pressure and BMI are predictive of all-cause

mortality early in life (ages 35–60, with pulse pressure interestingly being

a stronger predictor in late life than systolic and diastolic blood pressure),

while blood glucose is more meaningful in middle age (ages 57–73). This

reinforces the evidence from Fig. 2 that the mortality-predictive ability of

our clinical variables changes during different phases of life.

Incorporating physiological history into mortality prediction

As the Framingham data provide measurements of the same physiolog-

ical parameters at different ages for each individual, we next investigated

whether and how trends in these measures over time are predictive of

future lifespan (Fig. 4). The simplest possibility is that a particular

measurement directly reflects the current state of health of an individual

at that moment (central panel in Fig. 4). In this case, the previous values

of that measurement are redundant/irrelevant. Alternately, there may be
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Fig. 1 In early- to mid-adulthood

(participants aged 28–38), 9.7% of

variation in future lifespan can be predicted

from a weighted combination of systolic

and diastolic blood pressure, blood glucose,

height, weight, and body mass index. (top)

Scatter plot of predicted lifespan from

clinical measurements and actual future

survival. Note that the composite predictor

does not simply measure overt pathology,

but has a graded response across the full

dynamic range of lifespans. (bottom)

Summary information for the six

components of the composite predictor,

along with age for comparison. At the first

clinical exam, systolic pressure and diastolic

blood pressure are the strongest drivers of

predictions of all-cause mortality, as shown

by the r2 for the in the single-variable

correlations with future lifespan.
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cases where the precise value of a clinical measurement itself is not

particularly important for prognosis, but its rate of change with time is

more reflective of future health (illustrated by the slope of the tangent

line in the left panel in Fig. 4). For example, progressive increases in the

size of a skin blemish could indicate a malignancy, while the actual size

of the blemish itself may be less relevant. Finally, other clinical measures

may directly capture rates of change of health, such that the relevant

information for prognosis is the cumulative change over time (the

integrated ‘area under the curve’, illustrated by the shaded region in the

right panel in Fig. 4). One clear example is an individual’s risk from their

history of smoking. In that case, there is significant evidence that one’s

smoking ‘rate’ (packs per day) is in some sense a rate of decline of health
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Fig. 2 (left) The proportion of lifespan

predictable from various approaches to

constructing composites generally

decreases with age. The trace computed by

re-calculating the regression weights at

each time point independently (‘focal’) sets

an upper bound on the portion of survival

that predictable at each time point. The

‘exam 1’ trace performs well for early

exams, but becomes less relevant at more

advanced ages. Finally, the ‘exam 18’ trace,

created by fitting data from individuals at

clinical exam 18, performs worse than the

‘exam 1’ trace at early time points but

better at later ones. (center) Our ‘focal’

exam score is compared to the Framingham

Heart Score (FHS) and the Pooled Cohort

Equation Risk Score (PCERS), two well-

known cardiovascular risk scores. Strikingly,

the PCERS and FHS seem to behave like the

‘exam 1’ and ‘combined’ traces,

respectively. Note that the FHS and PCERS

are not subject to the ‘upper bound’ set by

the ‘focal’ trace, as they include

information from additional variables (such

as blood cholesterol and age itself) not used

for the ‘focal’ trace calculation. (right) A

survival curve for the overall cohort studied,

illustrating how the size of the surviving

subcohort changes over time.
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and that the true risk is best predicted by total accumulated underlying

damage (typically reported as ‘pack-years’ of smoking), rather than the

current smoking rate.

To see which of these possibilities best fits the observed data, we

computed ‘rates of change’ (i.e., differentiated) and ‘cumulative’ (i.e.,

integrated) versions of our variables and analyzed their correlations with

mortality. We first attempted several formulations of ‘rates of change’:

taking the difference between successive exams; reducing noise by

finding the slope of a line fitted to three exam time points rather than

two; and smoothing the data by averaging multiple adjacent exams

before obtaining pointwise rates of change as above. We found that no

‘rate of change’ formulation was predictive of mortality (data not

shown).

We next focused on the accumulation hypothesis, in which integrat-

ing past values for a given measurement might yield improved predictive

ability. To explore the idea of accumulated risk, we constructed variables

analogous to pack-years for smoking by simply summing past measure-

ments, weighed to account for the uneven timing of the Framingham

exams. If, as hypothesized, a particular variable represents a ‘rate of

change’ of health, then its accumulated history will be more predictive of

mortality than its current single time value. Continuing the example of

smoking, an individual’s accumulated pack-years of smoking should

have a stronger correlation with survival than their current smoking rate.

Further, looking at intermediate amounts of history should yield

intermediate levels of predictive capacity. For example, if we obtain

individuals’ smoking history for only the previous 5 years, that variable’s

correlation with mortality should be greater than the correlation from

the single time measurement, but less than the correlation obtained for

their full lifetime history of smoking. If, on the other hand, integrating

the most recent 5 years or so of history improves predictive abilities but

earlier historical data adds nothing, this may suggest that the ‘integrated

recent history’ may simply be a de-noised estimate of the current

physiological state. While such denoising may be clinically useful, it is not

good evidence that the risk factor truly is cumulative.

For this analysis, we begin with the single time correlation at a

particular exam (the ‘focal exam’), then trace the mortality-predictive

abilities of individual clinical parameters as progressively more years of

history are incorporated (Fig. 5). In this Figure, each successive point in

the line includes history from one additional Framingham study exam. As

more history is incorporated (by summing variable-years), some vari-

ables’ correlation with survival increases consistently and roughly linearly,

suggesting that these variables are indeed cumulative. Figure 5 shows

these traces with exams 16 and 20 as the focal exams. (These exams

were conducted when the participants were 59–69 and 67–77 years

old, respectively.) For focal exam 16, diastolic blood pressure exhibits a

consistent increase in mortality-prediction with each additional unit of

history for both men and women. In contrast, for focal exam 20,

diastolic blood pressure does not seem to accumulate predictivity from

history, while blood glucose does. We have also excluded the effects of

hypertension treatment in Figs 5 and 6. This caused the size of the

observed effects to decrease marginally without creating any substantial

differences from the same analysis of data uncontrolled for hypertension

treatment (data not shown). We believe that this steady increase in

mortality-predictive capacity with additional historical data is the

hallmark of a variable that affects health through cumulative exposure.

The switch in which variables predict future risk at different ages

between exams 16 and 20 is consistent with our earlier analysis, and

much other work (Albala et al., 1996) demonstrating the dramatic

change in risk factors with age (Fig. 3).

To further examine these trends, we focused on diastolic blood

pressure, BMI and blood glucose, which appear to be cumulative when

considered from the perspective of exams 16 and 20. For each variable,

Fig. 6 shows the utility of additional years of history when starting from

a range of focal exams, rather than just exams 16 and 20. In particular,

BMI seems to increase in mortality-predictive capacity as more history is

incorporated, regardless of the clinical exam from which we begin the

analysis. In contrast, diastolic blood pressure appears to stop showing

signs of cumulative risk after clinical exam 17, which corresponds to an

average age of 65.9 years. Blood glucose, however, seems to behave as

an accumulating variable for all exams after clinical exam 13, which

corresponds to an average age of 58.0 years. Again, this extends our

result from earlier: Not only do blood glucose and blood pressure seem

to be important for mortality-risk prediction at different age regimes

(ages 35–60 and 57–73, respectively), their predictive capability within

their regimes is cumulative (ages 35–65, and 58–87, respectively); that is,

blood glucose and blood pressure appear to primarily predict mortality

through accumulated lifetime exposure.

Discussion

We surveyed the amount of variation in all-cause mortality that could be

predicted from physiology at early- to mid-adulthood, finding a modest
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Fig. 3 The individual variables’ ability to

predict survival changes over time. Blood

pressure, BMI, and weight are predictive of

mortality primarily from ages 35 to 60 and

while blood glucose is most predictive from

ages 57 to 73. Also, note that BMI, all three

measures of blood pressure, and weight all

decrease in predictivity as the cohort ages,

but blood glucose’s ability to predict

survival increases in middle age before

declining again.
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but nontrivial effect: 9.7% of variation in mortality at ages 28–38 can be

predicted using the common physiological measurements of height,

weight, BMI, blood glucose level, and systolic and diastolic blood

pressure. In addition, we have shown that our results are generally valid

for both men and women. Although there are several quantitative

differences in the magnitudes of effects and their precise timing, our

overarching conclusions apply to both genders.

Further, the amount of predictable mortality generally decreases as a

cohort ages and the least healthy individuals die off. This result is

consistent with survivorship bias: as the unhealthy individuals die off, the

surviving cohort becomes more homogeneous. As a result, the surviving

cohort will have less predictable variation in survival; that is, a greater

proportion of the variation will be random and not predictable.

Specifically, Fig. 3 shows that the ability of blood pressure (diastolic,

systolic, and pulse pressure), BMI, and weight to predict variation in

survival is high in early- to mid-adulthood, and gradually decreases up to

roughly age 60. Although there is some fluctuation in this trend, likely

the result of measurement noise, the overall direction for most variables

is clear. Blood glucose’s predictivity presents an interesting exception.

While essentially all other variables are decreasing in predictive capacity

(up to age 60), blood glucose’s predictive ability seems to sharply

increase from age 57, peaking around the age of 70. The fact that blood

pressure, BMI, and weight are predictive of mortality primarily from ages

35 to 60 and while blood glucose is most predictive from ages 57 to 73

suggests a fundamental difference between their contributions to all-

cause mortality.

In parallel, Fig. 6 demonstrates that harm mediated by hypertension

and obesity accumulates from ages 35 to 65, while mortality risk from

blood glucose accumulates from ages 58 to 87. In conjunction with the

results from Fig. 3 discussed above, these results suggest certain ‘critical

periods’ (Dietz, 1994) for damage accumulation and mortality predic-

tivity. These ‘critical periods’ vary between different physiological

parameters, but seem to represent times of damage accumulation and

high mortality predictivity for each parameter. Again, all-cause mortality

risk before age 70 seems is best predicted using blood pressure and BMI,

while mortality during the age regime from age 60 and through age 80

is associated with blood glucose. While the confounding effects of

changing societal habits over the years need to be taken into account,

this type of analysis promises to yield important insights into the

evolution of health and accumulated mortality risk over the course of the

aging process.

The simplistic explanation for these observed ‘critical periods’ is that

the changing predictive ability of blood glucose and other measurements

is entirely due to the aging process: In general, perhaps blood pressure

becomes a less important predictor with increasing age while the

predictive value of blood glucose increases. This interpretation, however,

is confounded by the changing life habits of the American population

over recent history. Shifts in diet and lifestyle have steadily increased the

contribution of diabetes mellitus to morbidity and mortality over the past

half-century, and advances in hypertension treatment have altered the

physiological interpretation of blood pressure measurements. Disentan-

gling these effects calls for additional analysis of both the Framingham

data as well as other cohorts.

In addition to surveying mortality predictivity in the single-time-point

context, we investigated trends in variables over time. Rates of change

for height, weight, BMI, blood glucose level, and systolic and diastolic

blood pressure were utterly unpredictive of future mortality, despite

several different approaches to estimating these rates of change.

However, in many cases the measured variables’ accumulated history

yielded substantially higher correlations in comparison with the single-

time-point context.

Specifically, the ability of diastolic blood pressure and BMI to predict

all-cause mortality risk increases steadily and roughly linearly as more

historical information is included for individuals below the age of 67. For

blood glucose, this effect is observed most prominently from the age 58

onward. In conjunction with our result that indicates that blood glucose

is mortality-predictive at later ages than blood pressure and BMI, these

‘accumulating regimes’ indicate that these variables’ effects on mortality

are cumulative.

This is consistent with the current understanding of the harms

mediated by obesity, high blood glucose, and high blood pressure. While

the precise mechanisms by which high blood pressure is pathological are
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but their stability over time is. Thus, a trajectory in the midst of a sharp decline may be a risk factor, while a more stable trajectory is lower risk. The middle panel

illustrates the case in which a parameter value directly relates to underlying risk, so the current value of that parameter is most useful as a quantitative risk factor. Finally, the
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of mortality than the measure’s current value or rate of change; as such, in this example, the trajectory with the larger shaded area underneath is the more at-risk.
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still a subject of active research, the consensus so far is that the

hemodynamic forces of hypertension initiate a signal which is trans-

duced by endothelial cells, initiating various pathways involving ion

channels, growth factors, extracellular matrix interactions, and various

other molecular components (Luft et al., 1999). The end result of these

effects is generally a combination of vascular remodeling – blood vessels

becoming less pliable, weaker, narrower – and specific organ damage,

commonly in kidneys. Overall, it is generally agreed that the harmful

effects of hypertension occur gradually over time. Similar lines of

evidence suggest that pathologies from high blood glucose and obesity

occur gradually as well (Kahn et al., 2006).

Thus, it is not merely having high blood pressure, high blood glucose,

or being overweight that instantaneously puts one at risk for the various

associated pathologies. Rather, it is the sustained level of increased stress

on one’s organ systems that causes a gradual accumulation of damage.

This suggests that many current preventative medicine guidelines, which

focus on cardiovascular risk factors in older patients, may be failing to

fully capture the lasting dangers of an unhealthy lifestyle, especially for

younger individuals. In addition, while the concept of additional risk from

sustained lifetime exposure may be intuitively understood by physicians,

this study quantitatively highlights the magnitude of the effect, and

suggests a straightforward way to estimate risk from accumulated

exposure: simply summing historical physiological measurements. Fur-

ther, some recent work on functional impairment during the aging

process, as measured by frailty indices (Kulminski et al., 2007; Mitnitski

et al., 2013), may be evidence of downstream effects of accumulated

physiological damage.

With the advent of electronic medical records and ever-increasing

computing power, it is becoming commonplace to have access to

patients’ previous physiological measurements. By exploiting longitudinal

information in novel ways, we have shown that the predictive capacity of

many well-studied risk factors can be greatly increased. Further, these
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Fig. 5 A plot of how the mortality-predictive ability of single variables changes as more history is incorporated into an accumulated risk score at ‘focal exams’ 16 and 20.

Accumulating variables are identified by a steady increase in mortality-prediction with each additional unit of history. At exam 16, diastolic blood pressure exhibits a

consistent increase in mortality-prediction with each additional unit of history for both men and women, although the effect is smaller in size for men. In contrast, at exam

20, blood glucose accumulates predictivity with additional history for approximately 15 years, corresponding to ages 57–73. BMI, on the other hand, behaves as an

accumulating variable for women at focal exams 16 and 20, but is relatively unpredictive of mortality for men at these exams.
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statistical improvements can also drive new biomedical insights and

provide avenues for testing those hypotheses. Much previous work has

demonstrated the utility of physiological history for understanding the

processes that drive aging and the relationship between disease risk and

specific physiological measurements (Yashin et al., 2006, 2007; Arbeev

et al., 2011). Our results add to this understanding by demonstrating

clearly that early-life physiology informs late-life survival and that

cumulative historical exposure can be a useful variable to track in

addition to the present state of an individual’s physiology. Incorporating

early-life data (where available) and recent history into existing quan-

titative models may further improve our understanding of how and why

mortality risk increases with aging.

Experimental procedures

Data collection

The design of the Framingham Heart Study has been previously

described (Kannel et al., 1979; Collins et al., 1990). For our present

study, subjects in the original cohort who were ages 28 to 38 at the first

examination (1948–1953, 1451/5079 subjects) were eligible. We

excluded participants that were lost to follow-up (defined by lacking

both a known date of death and having no recorded data from clinical

exam 28) and those who were missing sufficient data for any of the six

physiological measures we studied (systolic blood pressure, diastolic
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Fig. 6 The accumulation of predictivity using additional years of history, starting at different exams. Each single time trace shown here is analogous to a single time trace in

Fig. 5. Each panel illustrates how additional years of historical data improve risk prediction for a different physiological variable. Unlike Fig. 5, which presents these

results from exams 16 and 20, here a range of ‘focal exams’ are shown. Each trace represents the change in mortality predictivity as additional years of history are

incorporated into the mortality prediction from a given starting point (‘focal exam’). For example, the yellow traces show how the predictive ability of a given measure at

exam 26 can be increased by adding additional historical data. Each particular point on a yellow trace then represents the gain in predictive ability when data area (as

illustrated in the right panel of Fig. 4) is added from exam 26 back to that particular point in time. As in Fig. 5, the hallmark of an accumulating variable is a steady increase

of predictivity with the incorporation of additional history. Note that BMI seems to accumulate predictivity as more history is incorporated, regardless of the focal exam from

which the analysis is begun. In contrast, diastolic blood pressure and blood glucose only accumulate predictivity in limited regimes. Diastolic blood pressure and blood

glucose accumulate risk from exams 1 to 14 and 13 to 20, respectively, which correspond to average ages of 35–60 and 57–73 years.
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blood pressure, blood glucose, height, weight, BMI). After applying our

criteria, 91 individuals were excluded on the basis of incomplete follow-

up and 10 individuals were excluded on the basis of insufficient data. We

then manually removed a single outlier individual, who had a systolic

blood pressure of 250 mm Hg at the first clinical exam (an extraordi-

narily pathological reading, approximately 8.8 standard deviations from

the mean) and died approximately 3 months later. We thus obtained a

cohort of 1349 participants who remained eligible for this study. In

Table 2, we see that the differences between our chosen cohort and

individuals excluded for lack of follow-up or insufficient data are

minimal, and are unlikely to cause significant bias in our results. By

selecting a birth decade cohort, we hope to minimize the confounding

effects of age, as all participants in our study are similar in age.

Statistics

Statistics (Pearson correlation coefficient, multiple regression weights,

partial correlations) were computed using the Python programming

language and associated packages.

Construction of clinical risk scores

It should be noted that although we made every effort to reconstruct the

Framingham and Pooled Cohort Equations risk scores as completely as

possible, the smoking and high-density lipoprotein cholesterol terms had

to be excluded due to the lack of consistent longitudinal measurement in

the Framingham Heart Study. For example, early blood cholesterol

measurements did not distinguish between high-, low-, and very low-

density lipoproteins. The data from smoking questionnaires also varied

among clinical exams, and were difficult to interpret consistently for all

longitudinal time points.

Blood pressure treatment

To minimize the confounding effects of blood pressure treatment in

Figs 5 and 6, we adjusted individuals’ blood pressure measurements to

reflect our best estimates of their untreated blood pressure. We achieved

this by adding the average effect of blood pressure treatment to all

individuals. Our results computed with controlled blood pressure were

not substantially different from those from the same analysis on

uncontrolled blood pressure (data not shown).

Pulse pressure

Pulse pressure, a derived variable defined as the difference between an

individual’s systolic anddiastolic bloodpressures,was includedas a seventh

variable in our analysis from Fig. 3 onward. We excluded pulse pressure

from Figs 1 and 2, which employedmultiple linear regression, because it is

linearly dependent on systolic and diastolic blood pressure and would not

havemade anymeaningful contribution to the derived composite variable.

Exam weighting in history accumulation

To adjust for unequal timing of clinical exams, we assumed that at any

given point in time, each patient has the samemeasurement as the closest

clinical exam. For example, if a patient has a measured systolic blood

pressure (in mm Hg) of 120 in 1960, 130 in 1966, and 140 in 1976, our

analysis would use this adjustment to assign blood pressures of 120 for

1960–1963, 130 for 1964–1971, and 140 for 1972–1976. Further, to

avoid artificially diminishing the impact of the first and last available time

points, we pad the first and last exams with half of the average interexam

period. In the given example, we would actually assign blood pressures of

120 for 1956–1963, 130 for 1964–1971, and 140 for 1972–1980.
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Table 2 Comparison of the selected vs. excluded Framingham Heart Study (FHS) participants

Average at Exam 01,

selected males

Average at Exam 01,

excluded males

P-value

(t-test),

males

Average at Exam 01,

selected females

Average at Exam 01,

excluded females

P-value

(t-test),

females

Blood glucose 79.1 � 18.65 mg dL�1 77.1 � 13.11 mg dL�1 0.57 78.3 � 12.86 mg dL�1 76.8 � 10.42 mg dL�1 0.39

Body mass index 25.6 � 3.71 kg m�2 24.0 � 3.0 kg m�2 0.02 23.8 � 4.28 kg m�2 22.6 � 4.16 kg m�2 0.03

Diastolic blood pressure 82.7 � 9.77 mm Hg 83.5 � 13.38 mm Hg 0.69 77.4 � 8.56 mm Hg 76.0 � 7.8 mm Hg 0.2

Systolic blood pressure 131.1 � 14.04 mm Hg 133.1 � 24.38 mm Hg 0.47 121.9 � 12.59 mm Hg 119.4 � 11.7 mm Hg 0.11

Height 68.4 � 2.74 inches 68.3 � 2.07 inches 0.82 63.1 � 2.34 inches 63.3 � 2.63 inches 0.6

Weight 172.58 � 26.24 pounds 161.83 � 21.31 pounds 0.03 137.34 � 23.78 pounds 132.0 � 23.3 pounds 0.07

Age 34.5 � 2.16 years 33.9 � 2.13 years 0.18 34.5 � 2.19 years 34.0 � 2.2 years 0.08

Number of participants 631 30 718 72

All parameter mean values are within a single standard deviation, suggesting that our exclusion criteria did not introduce any obvious bias. The only statistically significant

differences (at a P = 0.05 level) between included and excluded cohorts are in BMI and weight. However, even for BMI and weight, the excluded individuals’ mean values are

still within a standard deviation of those of the included cohort. Further, relatively few individuals were excluded in relation to those who remained in the cohort, so we

believe the risk of bias from our exclusion criteria to be minimal.
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Fig. S1. For men in early-to-mid adulthood (participants aged 28–38), 9.3%
of variation in future lifespan can be predicted from a weighted combination

of systolic and diastolic blood pressure, blood glucose, height, weight, and

body mass index.

Fig. S2. For women in early-to-mid adulthood (participants aged 28–38),
6.6% of variation in future lifespan can be predicted from a weighted

combination of systolic and diastolic blood pressure, blood glucose, height,

weight, and body mass index.

Fig. S3. The individual variables’ ability to predict survival in a single-time

point context, stratified by gender.
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