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Abstract: Soft nanochannels are defined as nanochannels with a polyelectrolyte layer (PEL) on
the rigid walls. In the present study, the thermal transport properties of the fluids through
slit soft nanochannels are investigated under the combined influences of pressure-driven and
streaming potential. Based on the analytical solutions of electric potential and velocity distributions,
a dimensionless temperature of electrolyte solution in soft nanochannels is obtained by resolving the
energy equation. Then, a finite difference method is used to compute the energy equation and test
the validity of the analytical solution. Results show that the temperature increases with the decrease
of dimensionless velocity and the heat transfer rate for rigid nanochannel are higher than that for the
soft one. Moreover, we find the total entropy generation decreases with the increases of the ratio Kλ

of the electrical double layer (EDL) thickness in PEL to the EDL thickness on the solid wall.

Keywords: slit soft nanochannels; streaming potential; thermal transport; entropy generation

1. Introduction

In recent years, microfluidic devices, including micro electro mechanical systems (MEMS), have
been widely used in biology, chemistry, medicine, and engineering for chemical separation and thermal
management of microelectronic systems [1–8]. There are many advantages of these devices, such as
relatively low costs, light weights, high transport coefficients, small heat loss, etc. Currently, there are
numerous types of technologies for driving and controlling microfluidics. In general, the fluid flow
in nanochannels is driven by pressure, surface tension, external electric field, external magnetic field
and high frequency sound wave [9,10]. Compared with other driven mechanisms, pressure driven
flow in nanochannels has many applications [11–13] and is often utilized to obtain streaming potential.
When the electrolyte solution comes into contact with the wall of nanochannels, an electric double layer
(EDL) is formed due to the charge exchange between the wall surface and the electrolyte. A streaming
current is produced along a flowing direction within the EDL when an electrolyte solution flows in
channels under a pressure gradient. When the electrolyte solution is flowing, the net charge is gathered
at downstream nanochannels. As a result, the downstream potential in nanochannels is higher than
the one of the upstream. Finally, this induces a steady-state electric field, called the streaming potential,
opposite to the original direction of flow. Relevant studies have indicated that, through the above
process, the kinetic energy of the pressure-driven transport and chemical energy of the EDL can
be converted into electrical energy [14–21]. The streaming potential phenomenon is considered as
a reciprocal phenomenon of electroosmosis which represents the movement of electrolyte solution
relative to a stationary charged surface due to an applied electric field [22].

Traditionally, nanochannels with a polyelectrolyte layer (PEL) on the walls of rigid nanochannels
are labeled as soft nanochannels [23]. The PEL is assumed to contain a particular kind of ion and
fixed charge density of ions. The bulk electrolyte ions can penetrate into the PEL. Therefore, the
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PEL electrolyte interface acts as a semi-penetrable membrane [24]. Meanwhile, there is an additional
drag force on fluid flow within the PEL, similar to the flowing process of electrolyte solution through
porous media. Some electrokinetic theories and phenomena in soft channels have been studied [25–29].
Chanda et al. [30] studied the streaming potential and electroviscous effects in soft nanochannels.
They obtained the analytical solutions of the electrostatic potential, velocity and streaming potential.

Due to the need for higher heat transfer rates and lower entropy generation in industrial
applications, the thermal behavior in nanochannels has attracted the attention of a host of researchers.
Matin [31] analyzed the thermal transport of electrolytes by imposing pressure gradient in rigid
nanoslit. He obtained the analytical solution of temperature and found the presence of electroviscous
effects will dramatically boost the heat transfer rate. The entropy production is defined as irreversible
behaviors of fluid systems. In recent years, some efficient systems of fluid have been designed
to decrease useless energy, which can lead to the irreversibility of fluids due to the influences of
heat transfer and friction dissipation. Minimization concept of entropy generation has drawn much
attention in thermal engineering.

From the literature investigation, the problem of the heat transfer in nanochannels has been
studied by many researchers, but there are few studies regarding the heat transfer in soft nanochannels.
Meanwhile, the heat transfer in soft nanochannels is also very significant. Therefore, the motivation in
this paper is to study the heat transfer for soft nanochannels and to compare the related results with
rigid nanochannels. Based upon the acquired analytical solutions of the electric potential, velocity and
streaming potential [30], the entropy generation of electrokinetic flow through slit soft nanochannels
will be investigated in this paper. Then, in the case of thermally fully developed flow with constant
wall heat flux, we deduce the analytical solution of temperature and verify it by using a finite difference
method. Finally, this paper reveals that an enhancement of the viscous dissipation effect will lead
to the diminution of the heat transfer rate in soft nanochannels and the heat transfer rate for rigid
nanochannels is higher than that for soft nanochannels. The results obtained in this paper may provide
theoretical guidance for the equipment design of the heat transfer and energy utilization in industrial
applications. The applications of this nanoscale heat transfer analysis are concerned with the thermal
performance of the nanoscale systems, for example, biological cell membranes for medical science [32].

2. Mathematical Modeling

We consider thermally fully developed flow through slit soft nanochannels with wall spacing
2h* under the influences of imposed pressure gradient –dp*/dx*. Soft nanochannels are formed by
grafting positively charged a polyelectrolyte layer (PEL) thickness d* (d*< h*) at the inner wall surface
of rigid nanochannels. The bottom and upper walls of the channel are featured by the same constant
charge density. As shown in Figure 1, the two-dimensional coordinate system is established at the
centerline of the soft nanochannels. The flow is assumed to be steady, hydrodynamically and thermally
fully developed. Also, it is assumed that the wall heat flux qw

* is uniform and constant. Based on its
symmetry, we study only the bottom half of soft nanochannels (i.e., −h* ≤ y* ≤ 0) for the analysis and
its flowing direction is only along the positive x*-axis. Due to the presence of the PEL, the temperature
distribution and the entropy generation are discussed inside and outside the PEL, respectively.
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Figure 1. Schematic of slit soft nanochannels. 

3. The temperature distribution and entropy generation analysis 
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electrostatic potential, velocity and streaming potential, which have been given analytically by 
solving the linearized Poisson-Boltzmann equation (valid for low electric potential), the Cauchy 
momentum equation and the net ionic current equilibrium equation in Ref. [30]. For the brevity, we 
no longer list these results here. In this paper, the relative permittivity ɛr*, the density of fluid ρ*, the 
specific heat of the fluid Cp*, the thermal conductivity of the fluid k*, the electrical resistivity of the 
liquid σ* and the dynamic viscosity of the electrolyte μ* are taken the same values in the regions 
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heat flux, i.e., qw* and h’* are constant, we can get T*w(x*) − T*m(x*) = const., i.e., dT*w(x*)/dx *= dT*m(x*)/dx*. 
Substituting dT*w(x*)/dx* = dT*m(x*)/dx* into Equation (3), we have 
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3. The Temperature Distribution and Entropy Generation Analysis

Prior to analyzing the temperature field in soft nanochannels, we firstly need to derive the
electrostatic potential, velocity and streaming potential, which have been given analytically by solving
the linearized Poisson-Boltzmann equation (valid for low electric potential), the Cauchy momentum
equation and the net ionic current equilibrium equation in Ref. [30]. For the brevity, we no longer list
these results here. In this paper, the relative permittivity εr

*, the density of fluid ρ*, the specific heat of
the fluid Cp

*, the thermal conductivity of the fluid k*, the electrical resistivity of the liquid σ* and the
dynamic viscosity of the electrolyte µ* are taken the same values in the regions outside and inside the
PEL [33–35] by assuming a low chain grafting density. The energy equations can be presented as

ρ∗C∗p(
∂T∗

∂t∗
+
→
u∗ · ∇T∗) = k∗∇2T∗ + σ∗ES

∗2 + µ∗Φ∗, (−h∗ + d∗ ≤ y∗ ≤ 0) (1)

ρ∗C∗p(
∂T∗

∂t∗
+
→
u∗ · ∇T∗) = k∗∇2T∗ + σ∗ES

∗2 + µ∗Φ∗ + µ∗c u∗2, (−h∗ ≤ y∗ < −h∗ + d∗) (2)

where T* is the local temperature of the fluid, µc
* is the (per unit volume) drag coefficient and Φ*

is the viscous dissipation. The right hand side of the energy equations represents heat dissipation,
volumetric Joule heating and viscous dissipation. It should be mentioned that the viscous dissipation
within the PEL of Equation (2) is determined by the viscous flow of the electrolyte and the extra drag
force of these special ions. Owing to the uniform flow in x* direction and the steady temperature
distribution assumption, we have Φ* = (du*/dy*)2 and ∂T*/∂t* = 0. Since heat is added or removed from
the fluid, it follows that its local temperature varies with distance x* along the channel. However, we
can define a fully developed dimensionless temperature profile which has a single distribution in the
vertical direction at all location x*, i.e.,

∂

∂x∗
[
T∗w(x∗)− T∗(x∗, y∗)

T∗w(x∗)− T∗m(x∗)
] = 0 (3)

where Tw
*(x*) is local wall and Tm

*(x*) is the velocity-weighted average temperature, determined
as T∗m =

∫ h∗
0 u∗(y∗)T∗(y∗)dy∗/

∫ h∗
0 u∗(y∗)dy∗. Application of Newton’s law of cooling gives qw

*= h′*

[T*
w(x*) − T*

m(x*)], where h′* is the convective heat transfer coefficient. In the case of a constant wall
heat flux, i.e., qw

* and h
′* are constant, we can get T*

w(x*) − T*
m(x*) = const., i.e., dT*

w(x*)/dx * =
dT*

m(x*)/dx*. Substituting dT*
w(x*)/dx* = dT*

m(x*)/dx* into Equation (3), we have

∂T∗(x∗, y∗)
∂x∗

=
dT∗m(x∗)

dx∗
=

dT∗w(x∗)
dx∗

= const,
∂2T∗(x∗, y∗)

∂x∗2
= 0 (4)
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Under these assumptions, the energy governing equations (Equation (1) and (2)) becomes

ρ∗C∗pu∗
dT∗m
dx∗

= k∗(
d2T∗

dy∗2
) + σ∗ES

∗2 + µ∗(
du∗

dy∗
)

2
, (−h∗ + d∗ ≤ y∗ ≤ 0) (5)

ρ∗C∗pu∗
dT∗m
dx∗

= k∗(
d2T∗

dy∗2
) + σ∗ES

∗2 + µ∗(
du∗

dy∗
)

2
+ µ∗c u∗2, (−h∗ ≤ y∗ < −h∗ + d∗) (6)

The boundary conditions of Equations (5) and (6) are

dT∗

dy∗
|y∗=0 = 0,

dT∗

dy∗
|y∗=(−h∗+d∗)− =

dT∗

dy∗
|y∗=(−h∗+d∗)+ (7)

T∗
∣∣∣y∗=(−h∗+d∗)− = T∗

∣∣∣y∗=(−h∗+d∗)+ , T∗
∣∣∣y∗=−h∗ = T∗w (8)

In physics, the boundary conditions in Equation (7) respectively denote that the temperature
is symmetrical about the y*-axis and the heat flux is continuous at the interface of the PEL and the
electrolyte solution. Further, Equation (8) respectively represents that the temperature is continuous at
the interface of the PEL and the electrolyte solution and the wall heat flux is constant. Non-dimensional
parameters and variables of electrical potential and velocity have been used in Ref. [30]. Furthermore,
an overall energy balance for an elemental control volume on a length of duct dx* along the x*-axis is
applied, integrating the Equations (5) and (6) in two regions respectively and we have

(−h∗ + d∗)ρ∗C∗pu∗m1dT∗m + d∗ρ∗C∗pu∗m2dT∗m =

q∗wdx∗ + h∗σ∗E∗2S dx∗ + µ∗
∫ 0
−h∗+d∗ (

du∗
dy∗ )

2
dy∗dx∗ + µ∗

∫ −h∗+d∗
−h∗ ( du∗

dy∗ )
2
dy∗dx∗ +

∫ −h∗+d∗
−h∗ µ∗c u∗2dy∗dx∗

(9)

Rearranging Equations (9), the axial bulk temperature gradient in the thermally fully developed
situation has yielded as

dT∗m
dx∗

=
q∗w + h∗σ∗ES

∗ + µ∗u∗2p,0β3/h∗ + µ∗u∗2p,0β4/h∗ + h∗µ∗c u∗2p,0β5

(h∗ − d∗)ρ∗C∗pu∗m1 + d∗ρ∗C∗pu∗m2
(10)

where up,0
* is pressure-driven velocity scale, um1

*, um2
* represent the axial mean velocity within and

without PEL, respectively. They can respectively be calculated by integration of u*(y*) across the section
of the soft nanochannels

u∗m1 =
1

h∗ − d∗

∫ 0

−h∗+d∗
u∗(y∗)dy∗ =

u∗p,0

1− d

∫ 0

−1+d
u(y)dy =

u∗p,0

1− d
β1 (11)

u∗m2 =
1
d∗

∫ −h∗+d∗

−h∗
u∗(y∗)dy∗ =

u∗p,0

d

∫ −1+d

−1
u(y)dy =

u∗p,0

d
β2 (12)

β1 =
∫ 0
−1+d udy, β2 =

∫ −1+d
−1 udy, β3 =

∫ 0
−1+d (

du
dy )

2
dy, β4 =

∫ −1+d
−1 ( du

dy )
2
dy

β5 =
∫ −1+d
−1 u2dy

(13)

Based on the analytical solutions of dimensionless velocity in Ref. [30], β1, β2, β3, β4 and β5 can
be calculated analytically. However, they are not listed here due to their long expressions. Introducing
the following dimensionless temperature

θ(y) =
T∗(y∗)− T∗w

q∗wh∗/k∗
(14)

the dimensionless energy equations and boundary conditions can be presented as:
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d2θ

dy2 =
u(1 + JE2

0 + Brβ3 + Brα2β5)

β1 + β2
− JE2

0 − Br(
du
dy

)
2
, (−1 + d ≤ y ≤ 0) (15)

d2θ

dy2 =
u(1 + JE2

0 + Brβ3 + Brβ4 + Brα2β5)

β1 + β2
− JE2

0 − Br(
du
dy

)
2
− Brα2u2, (−1 ≤ y < −1 + d) (16)

dθ

dy
|y=0 = 0,

dθ

dy
|y=(−1+d)− =

dθ

dy
|y=(−1+d)+ (17)

θ
∣∣∣y=(−1+d)− = θ

∣∣∣y=(−1+d)+ , θ
∣∣∣y=−1 = 0 (18)

Physically, the parameter J (i.e., J = h*σ*ES
*2/qw

*) commonly called the dimensionless Joule heating
parameters represents the ratio of Joule heating to the wall heat flux of soft nanochannels, and the
parameter Br, termed the Brinkmann number, Br = µ*up,0

*2/ qw
*h*, denotes the ratio of heat generated

by viscous dissipation to heat transport by molecular conduction. Then using the dimensionless
velocity distribution in the dimensionless energy equations (15) and (16), the analytical solution
of non-dimensional temperature can be obtained by integrating twice and applying the boundary
conditions (15–18)

θ = ( A11
24 −

Br
12 )y

4 + λ2 A11 A1 cosh( y
λ ) +

A11 A2−J
2 y2 − 2BrA1[λysinh( y

λ )− 2λ2 cosh( y
λ )]

− BrA2
1

λ2 [ λ2

4 cosh( 2y
λ )− y2

2 ] + C′1, (−1 + d ≤ y ≤ 0)
(19)

θ = D1eαy

α2 − D2e−αy

α2 + λ2D3 cosh( y
λ ) + λ2D4sinh( y

λ ) +
D5e2αy

4α2 + λ2D7
4 cosh( 2y

λ ) + λ2D8
4 sinh( 2y

λ )

+ (D9αλ2−D10λ)αλ2

(λ2α2−1)2 [sinh( y
λ )e

αy − eαy

λα cosh( y
λ )] +

(D10λ2α−D9λ)λ2α

(λ2α2−1)2 [cosh( y
λ )e

αy − eαy

αλ sinh( y
λ )]

+ (D11λ2α−D12λ)λ2α

(λ2α2−1)2 [sinh( y
λ )e
−αy + e−αy

αλ cosh( y
λ )] +

(D11λ+D12λ2α)λ2α

(λ2α2−1)2 [cosh( y
λ )e
−αy − e−αy

αλ sinh( y
λ )]

+D6e−2αy

4α2 + D13y2

2 + C′2y + C′3, (−1 ≤ y < −1 + d)

(20)

Relevant coefficients are expressed in Appendix A. According to the calculated velocity and
temperature distributions, the non-dimensional bulk temperature can be defined as

θm =
∫ 1

0
u(y)θ(y)dy/

∫ 1

0
u(y)dy = k∗(T∗m − T∗w)/q∗wh∗ (21)

Furthermore, we can define the significant heat transfer rate regarded as the Nusselt number Nu,
which is written as

Nu =
2h∗q∗w

k∗(T∗w − T∗m)
(22)

Substituting Equation (21) into Equation (22), Nu can be finally presented as

Nu = − 2
θm

(23)

Finally, based on the analytical solutions of velocity and temperature distributions in Equations
(19) and (20), Nu can be calculated by Equation (23).

For prescribed velocity and temperature distributions, we can define the entropy generation rate
in the soft nanochannels. Based on the theory of Bejan [36], the entropy generation rate of the volume
for the current problems can be defined as

S∗G,L = S∗G,H + S∗G,J + S∗G,V (24)
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where SG,L
* represents the volumetric entropy generation rate (per unit volume), and the terms on

the right hand side of equation denote the irreversibility of local volumetric entropy generation rate
by virtue of heat diffusion, Joule heating and viscous friction of the fluids, respectively. They can be
written as

S∗G,H =
k∗

T∗2
(

dT∗

dy∗
)

2
, S∗G,J =

σ∗

T∗
E∗2S , S∗G,V =

µ∗

T∗
(

du∗

dy∗
)

2
(25)

Using the characteristic entropy transfer rate k*/h*2 to non-dimensional the volumetric entropy
generation, and its dimensionless form is

SG = SH + SJ + SV (26)

where

SH =
1

(θ + Θ)2 (
dθ

dy
)

2
, SJ = S1

1
θ + Θ

, SV = Br
1

(θ + Θ)
(

du
dy

)
2

(27)

here Θ = k*Tw
*/h*qw

* is a nondimensional wall temperature, which is set to a constant in the following
computation. The dimensionless global entropy generation rate can be calculated by integrating
Equation (26) in soft nanochannels, i.e.,

Stotal =
∫ −1+d

−1
SGdy +

∫ 0

−1+d
SGdy (28)

4. Results and Discussions

Chanda et al. [30] have discussed the electrostatic potential and streaming potential in soft
nanochannels and found that the electrostatic potential increases as the growth of d or the decreases of
the ratio Kλ of the electrical double layer (EDL) thickness in PEL to the EDL thickness on the solid wall.
Accordingly, we only discuss the variations of the dimensionless velocity, temperature and entropy
generation in soft nanochannels based on the above obtained analytical solutions. It needs to discuss
the permissible ranges of relevant parameters in analyzing the electrokinetic flow and heat transfer
of fluids. The classical parameter values are determined as follow: the permittivity of free space ε0

*

approximately equals to 8.854 × 10−12 C2/N·m2, the absolute temperature Ta
* equals to 298 K, e*

equals to 1.602 × 10−19 C, the reference Helmholtz-Smoluchowski electroosmotic velocity ue,0
* is set

to be 10−4 m s−1, and the value of kB
* (Boltzmann constant) is 1.381 × 10−23 J·K−1. The height of the

soft nanochannels is h* > 20nm, the coefficient of viscosity of the liquid µ*~10−3–1.5 × 10−3 kg/(m s),
the Brinkmann number is Br~0–0.1 and the dimensionless Joule heating parameters J~0–10 [37,38].
In this paper, d should satisfy the range of d ≤ λ [24,30]. Furthermore, in order to satisfy the linearized
approximation of the potential distribution, the Kλ should satisfy Kλ ≥ 1 [24,30].

Due to no discussions of the variations of the velocities with related parameters in Chanda
et al. [30], we will depict the change of the dimensionless velocity given by Chanda et al. [30] in the
soft nanochannels with y for different values d and Kλ in Figure 2. It can be found from Figure 2 that
the dimensionless velocity of the electrolyte solution increases with y, which indicates the velocity
attain the largest value at the centerline of soft nanochannels. The velocity inside the PEL is less than
the one outside the PEL. In addition, we can also see from Figure 2a that the velocity throughout the
entire soft nanochannels decreases with the increase of d. As a matter of fact, an increase of the d gives
rise to an increase of the electric potential, i.e., the increasing ionic concentration, which further causes
an enhancement of the drag force and finally leads to a decrease of the velocity. It is observed From
Figure 2b that the velocity has an increasing trend as an augment of Kλ. From a physical point of view,
this is because an increase of Kλ gives rise to a decrease of the electric potential throughout the entire
soft nanochannels, which further leads to a decrease of the streaming potential, finally causing a rise of
the velocity.
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0.15, 0.20) when Kλ = 1; (b) Influence of Kλ (1, 1.3, 1.6, 2) when d = 0.15. 
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Appendix B. It is shown that the analytical solutions agree well with the numerical results. It can be 
found from the expression of dimensionless temperature (14) that θ is related to the temperature 
difference (T*w−T*) between the wall of soft nanochannels and electrolyte solution. Hence, the 
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Figure 3 gives the comparison of the analytical solutions of temperature with numerical solutions
obtained by using a finite difference method. The detailed algorithm can be found in Appendix B. It is
shown that the analytical solutions agree well with the numerical results. It can be found from the
expression of dimensionless temperature (14) that θ is related to the temperature difference (T*

w−T*)
between the wall of soft nanochannels and electrolyte solution. Hence, the magnitude of dimensionless
temperature θ becomes larger with the temperature difference. From Figure 3, the magnitude of
dimensionless temperature θ has an increasing trend far away from the wall. It can also be observed
from Figure 3a that the dimensionless temperature reduces as the increasing value of Kλ. This can
be interpreted by using energy balance. As a matter of fact, the velocity grows with Kλ, which can
enhance thermal energy further. This is because the thermal energy is transferred from the wall of
soft nanochannels to the fluid by the flowing fluid, which eventually brings about rising in local
temperature of the fluid and a decrease of the wall temperature, i.e., the decreasing temperature
difference. Figure 3b reflects that the dimensionless temperature curve falls as the increasing d. Similar
to the above analysis, an increase of d can result in a decline of the velocity, which further weakens the
thermal energy and eventually leads to an increase of the dimensionless temperature.
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Figure 4 describes the variation of the heat transfer rate Nu with the Brinkmann number Br. It can
be seen from Figure 4 that Nu decreases with increasing Br. The Br actually represents the degree of
the viscous dissipation effect physically. The wall temperature is larger than the main temperature
as the growing Br, i.e., the value of (T*

w−T*) will become larger. According to the definition of the
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constant wall heat flux qw
* = h′* (T*

w−T*), the convective heat transfer coefficient h′* naturally falls.
Hence, Nu will finally reduce. Figure 4 (a) demonstrates the heat transfer rate become larger with Kλ.
The reason for this is that increasing Kλ will bring about a decrease of the nondimensional temperature,
i.e., the value of (T*

w−T*) will become smaller. Thus, the heat transfer rate enhances.
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Figure 4b shows the variation of the heat transfer rate Nu with the Br for the soft and the
rigid nanochannels for the same set of parameters. In order to compare the heat transfer rate
in soft and rigid nanochannels, we need to calculate the dimensionless temperature for the rigid
nanochannels. The dimensionless velocity for the soft nanochannels is obtained from Ref. [30], whereas
that for the rigid nanochannels can be expressed as u = y2/2 + Ar2cosh(y/λ) − 1

2 − urESζ, ζ = ψ0.
Based on the analytical solution of dimensionless electrostatic potential (in Ref. [30]), velocity and
streaming potential (in Ref. [30]) for the rigid nanochannels, the dimensionless temperature for the
rigid nanochannels can be expressed as

θ = ( Ar1
24 −

Br
12 )y

4 +
y2

2 (− Ar1
2 − urESζ Ar1 − JE2

0 +
BrA2

r2
2λ2 )− 2BrAr2λysinh(y/λ)− BrA2

r2
8 cosh(2y/λ)

+(4BrAr2λ2 + Ar1 Ar2λ2) cosh(y/λ) + D′2
(29)

Relevant coefficients are expressed in Appendix A. Then, we can acquire Nu by calculating. It is
clearly shown in Figure 4b that the heat transfer rate for rigid nanochannels is higher than that for soft
nanochannels and the heat transfer rate drops with increasing d. This is due to an enhancement of the
nondimensional temperature with the increase of d.

The effects of the EDL thickness λ and Joule heating parameters J on Nu have been severally
shown in Figure 5. The influence of λ on the streaming potential has been described [30]. When λ

increases, the streaming potential will become larger and velocity will become small, which results
in a larger value of the nondimensional temperature. Based upon the discussion of Figure 4, the
larger nondimensional temperature yields small h′*. Thus, the heat transfer rate drops as an increase
of λ (see Figure 5a). Meanwhile, it is seen from Figure 5b that the heat transfer rate decreases with
enhancing J. The enhancement in J weaken the fluidic heat transfer effect under the effect of the
imposed pressure gradient. Moreover, the heat transfer rate does not vary with the change of J in the
case of d = 0. This is because the streaming potential equals to zero in this situation. So, the Joule
heating effect is ignored, leading to a constant Nu.
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Figure 6 provides the change of the local entropy generation for different values of Kλ. We can
observe from Figure 6 that the entropy generation grows from the center axis to the wall of soft
nanochannels and has a minimum at the centerline of soft nanochannels. In addition, the entropy
generation rate drops as growth of Kλ. In other words, growth of Kλ can reduce the irreversibility of
the fluids.
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The influence of Brinkmann number Br on the total entropy generation rate throughout entire
soft nanochannels has been depicted in Figure 7. It can be seen from Figure 7 that the total entropy
generation rate obviously increases with Br. That is to say, an enhancement of viscous dissipation
effect leads to the enhancement of the fluidic irreversibility. In this case, the viscous dissipation plays a
crucial role.
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5. Conclusions

In this work, we studied thermally fully developed thermal transport and entropy generation of
electrokinetic flow under the influences of imposed pressure gradient throughout the entire slit soft
nanochannels. Consequently, we deduced the analytical and numerical solution of the temperature
and discuss the effects of d and Kλ on the fluidic flow and heat transfer. The following conclusions
can be drawn. Firstly, when d rises or Kλ decreases, the nondimensional temperature increase and the
heat transfer rate Nu decreases. Secondly, the heat transfer rate declines as the enhancement of J or λ

and the heat transfer rate for rigid nanochannels is higher than that for soft nanochannels. The local
entropy generation grows from the centerline to the wall of soft nanochannels. Additionally, the total
entropy generation grows significantly with the Br. And the total entropy generation reduces as the
increase in Kλ, which weakens the thermal irreversibility in the microfluidic system.
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Appendix A

A11 =
1 + JE2

0 + Brβ3 + Brβ4 + Brα2

β1 + β2
(A1)

A1 = 2urESC1 (A2)

A2 = M1 + urES M2 (A3)

D1 = AC5 − 2BrC5 A3α2 (A4)

D2 = A11C6 − 2BrC6α2 (A5)

D3 = A11 A4 cosh(1/λ)− 2Brα2 A3 A4 cosh(1/λ) (A6)

D5 = −2α2BrC2
5 (A7)
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D11 =
2αBrC6 A4

λ
cosh(1/λ)− 2α2BrC6 A4sinh(1/λ) (A8)

D7 = −
BrA2

4
2λ2 cosh(2/λ)−

α2BrA2
4

2
cosh(2/λ) (A9)

D8 = −
BrA2

4
2λ2 sinh(2/λ)−

α2BrA2
4

2
sinh(2/λ) (A10)

D9 = −2α2BrC5 A4sinh(1/λ)− 2αBrC5 A4

λ
cosh(1/λ) (A11)

D6 = −2α2BrC2
6 , D10 = −2α2BrC5 A4 cosh(1/λ)− 2αBrC5 A4

λ
sinh(1/λ) (A12)

D12 =
2αBrC6 A4

λ
sinh(1/λ)− 2α2BrC6 A4 cosh(1/λ) (A13)

D4 = A11 A4sinh(1/λ)− 2α2BrA3 A4sinh(1/λ) (A14)

D13 = A11 A3 − J +
BrA2

4
2λ2 + 2α2BrC5C6 − α2BrA2

3 −
α2BrA2

4
2

− 2α2BrC5C6 (A15)

C′1 = D1eα(−1+d)

α2 − D2e−α(−1+d)

α2 + λ2D3 cosh(−1+d
λ ) + λ2D4sinh(−1+d

λ ) + λ2D7
4 cosh[ 2(−1+d)

λ ]

+ λ2D8
4 sinh[ 2(−1+d)

λ ] + (D9αλ2−D10λ)αλ2

(λ2α2−1)2 [sinh(−1+d
λ )eα(−1+d) − eα(−1+d)

λα cosh(−1+d
λ ) + D5e2α(−1+d)

4α2 ]

+ (D10λ2α−D9λ)λ2α

(λ2α2−1)2 [cosh(−1+d
λ )eα(−1+d) − eα(−1+d)

αλ sinh(−1+d
λ )] + D13(−1+d)2

2 − A11 A2−J
2 (−1 + d)2

+ (D11λ2α−D12λ)λ2α

(λ2α2−1)2 [sinh(−1+d
λ )e−α(−1+d) + e−α(−1+d)

αλ cosh(−1+d
λ )]− ( A11

24 −
Br
12 )(−1 + d)4 + D6e−2α(−1+d)

4α2

+ (D11λα+D12λ2α)λ2α

(λ2α2−1)2 [cosh(−1+d
λ )e−α(−1+d) + e−α(−1+d)

αλ sinh(−1+d
λ )] + 2BrA1[λ(−1 + d)sinh(−1+d

λ )

−2λ2 cosh(−1+d
λ )] +

BrA2
1

λ2 [ λ2

4 cosh(−2+2d
λ )− (−1+d)2

2 ]− λ2 A11 A1 cosh( (−1+d)
λ ) + C′2(−1 + d) + C′3

(A16)

C′2 = sinh(−1+d
λ )[λA11 A1 + 2BrA1λ− λD3]− D1eα(−1+d)

α + D2e−α(−1+d)

α − cosh(−1+d
λ )[2BrA1(−1 + d) + λD4]

−( BrA2
1

4λ + λD7
2 )sinh[ 2(−1+d)

λ ] + D6e−2α(−1+d)

2α + λD8
2 cosh[ 2(−1+d)

λ ] + (A11 A2 − J + BrA2
1

2λ2 − D13)(−1 + d)

+sinh(−1+d
λ )[eα(−1+d)( D10λ

λ2α2−1 −
D9αλ2

λ2α2−1 ) + e−α(−1+d)( D11αλ2

λ2α2−1 −
D12λ

λ2α2−1 )] + ( A
6 −

Br
3 )(−1 + d)3

+ cosh(−1+d
λ )[eα(−1+d)( D9λ

λ2α2−1 −
D10αλ2

λ2α2−1 ) + e−α(−1+d)( D12αλ2

λ2α2−1 + D11λ
λ2α2−1 )]−

D5e2α(−1+d)

2α

(A17)

C′3 = D2eα

α2 − D1e−α

α2 + cosh( 1
λ )[−λ2D3 +

(D9αλ2−D10λ)λ

(λ2α2−1)2 e−α − (D10λ2α−D9λ)αλ2

(λ2α2−1)2 e−α]− D5e−2α

4α2

+sinh( 1
λ )[λ

2D4 +
(D9αλ2−D10λ)αλ2

(λ2α2−1)2 e−α − (D10λ2α−D9λ)λ

(λ2α2−1)2 e−α] + λ2D8
4 sinh( 2

λ )

+sinh( 1
λ )e

α[ (D11λ2α−D12λ)λ2α

(λ2α2−1)2 − (D11λ+D12λ2α)λ

(λ2α2−1)2 ]− D6e2α

4α2 − D13
2 −

λ2D7
4 cosh( 2

λ )

− cosh( 1
λ )e

α[ (D11λ2α−D12λ)λ

(λ2α2−1)2 + (D11λ+D12λ2α)λ2α

(λ2α2−1)2 ] + C′2

(A18)

where,

A3 = − 1
α2 −

urES

α2λ2K2
λ

, A4 = − urESsinh(D)

K2
λsinh(1/λ)(1− α2λ2)

(A19)

C5 = e−α(−1+d)

α2(e−αd+eαd)
+ urESe−α(−1+d)

α2λ2K2
λ(e
−αd+eαd)

+
urESeαsinh(D)sinh( d

λ )

λαK2
λsinh(1/λ)(1−α2λ2)(e−αd+eαd)

+ (−1+d)eα

α(e−αd+eαd)

+ urESsinh(D)e−α(−1+d)

K2
λsinh(1/λ)(1−α2λ2)(e−αd+eαd)

− urESeαsinh(D)sinh(d/λ)

αλK2
λsinh(1/λ)(e−αd+eαd)

(A20)
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C6 = − urESe−αsinh(D)sinh(d/λ)

αλK2
λsinh(1/λ)(1−α2λ2)(e−αd+eαd)

− (−1+d)e−α

α(e−αd+eαd)
+ urESe−αsinh(D)sinh(d/λ)

αλK2
λsinh(1/λ)(e−αd+eαd)

+ eα(−1+d)

α2(e−αd+eαd)
+ urESeα(−1+d)

α2λ2K2
λ(e
−αd+eαd)

+ urESe−αsinh(D)eα(−1+d)

K2
λsinh(1/λ)(1−α2λ2)(e−αd+eαd)

(A21)

M4 =
C2

4λ

α
[

eαd

αK2
λλ2

+
C4

(1− α2λ2)
(

eS − eD

λ
− 2αeT1) +

2C1

λ
sinh(D)]

1
eE + eA (A22)

B2 = 4C2
1 [

λsinh(2D)
4 + (1−d)

2 ] +
C2

4 λ

(1−α2λ2)
[2e2/λ d

λ + e2S−e2D

2 − 2 eD+T1−e2/λ

αλ−1 − 2 eS+T1−e2/λ

αλ+1 ]

+
C2

4 λ

K2
λ(1−α2λ2)

[eS − eD − 2(eT1−e1/λ)
αλ ] + C4M4λ[ eS+E+eD+A−2eT2

1−αλ ] + 2C1M2λsinh(D)

+ C4
α2K2

λλ
[ eS+αd−e1/λ

αλ+1 + eD+αd−e1/λ

αλ−1 − eS + eD]− C4M4λ[ eD+E+eS+A−2eT2
1+αλ ]

+ 1
K2

λ

[−M4(eE+eA−2eα)
α + 1

α2K2
λλ2 (

eαd−1
α − d)]

(A23)

C3 = λ/sinh(1/λ) (A24)

Ar1 =
1 + JE2

0 + Br
∫ 0
−1 (du/dy)2dy∫ 0

−1 udy
(A25)

Ar2 =
urESζ

cosh(1/λ)
(A26)

D′2 = ( Br
12 −

Ar1
24 ) + 1

2 (
Ar1
2 + urESζ Ar1 + JE2

0 −
BrA2

r2
2λ2 )− 2BrAr2λsinh(−1/λ) +

BrA2
r2

8 cosh(2/λ)

−(4BrAr2λ2 + Ar1 Ar2λ2) cosh(1/λ)
(A27)

Other parameters can be found in Ref. [30].

Appendix B

∂2θ

∂y2 = f1(y) (A28)

∂2θ

∂y2 = f2(y) (A29)

where,

f1(y) = Au1 − JE∗20 − Br(
du1

dy
)

2
, f2(y) = Au2 − JE∗20 − Br(

du2

dy
)

2
− Brα2u2

2 (A30)

The central difference schemes are used to approximate the second order derivate of temperature

∂2θ

∂y2 =
θi+1 − 2θi + θi−1

∆y2 , i = 2, 3 · · · n− 1. (A31)

where ∆y is the grid spacing in the axial direction. The difference formalism of the energy equation
and the corresponding boundary conditions can be expressed as

1
∆y2 θi+1 −

2
∆y2 θi +

1
∆y2 θi−1 = f (yi) (A32)

θn − θn−1

∆y
= 0, θ1 = 0 (A33)

where

f1(yi) = Au1i − JE∗20 − Br(
du1i
dyi

)
2
, i = 2, 3 · · ·N (A34)
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f2(yi) = Au2i − JE∗20 − Br(
du2i
dyi

)
2
− Brα2u2

2i, i = N + 1, N + 2, N + 3 · · · n− 1 (A35)

The discretized energy Equation (A31) has been turned into a linear tri-diagonal system and
the non-dimensional temperature, combining the appropriate discretized boundary conditions
Equation (A32), can be numerically derived by the tri-diagonal matrix algorithm (TDMA).
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