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Abstract
Alpha-melanocyte stimulating hormone (α-MSH) is a highly conserved 13-aa neuropeptide

derived from pro-opiomelanocortin by post-translational processing, which has been

reported to exhibit potent anti-inflammatory activity and a wide range of immunosuppressive

activities in the skin. However, the regulatory effect of α-MSH is not completely clear in cuta-

neous innate immunity. In this study, we investigate the functional regulation of α-MSH in

TLR2-mediated inflammatory responses in normal human keratinocytes (HKs). α-MSH pre-

treatment down-regulated the Staphylococcus aureus LTA-induced expression of both

TLR2 and IL-8 as well as NF-κB nuclear translocation in HK cells. The inhibitory effect of

α-MSH was blocked by agouti signaling protein (ASP), an α-MSH receptor-1 antagonist. To

investigate the mechanism of this response in more detail, siRNA of IRAK-M, a negative

regulator of TLR signaling, was utilized in these studies. The α-MSH suppressive effect on

IL-8 production and NF-κB transactivation was inhibited by IRAK-M siRNA transfection in

HK cells. These results indicate that α-MSH is capable of suppressing keratinocyte TLR2-

mediated inflammatory responses induced by S. aureus-LTA, thus demonstrating another

novel immunomodulatory activity of α-MSH in normal human keratinocytes.

Introduction
Alpha-melanocyte-simulating hormone (α-MSH) is an endogenous tridecapeptide neurohor-
mone derived from proopiomelanocortin (POMC), which participates in modulating cutane-
ous inflammatory and immune responses in normal human keratinocytes, langerhans cells,
melanocytes and dermal fibroblasts [1, 2]. α-MSH exerts multiple biological effects on
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regulating cell proliferation, melanogenesis, immunomodulation, and cytoprotection in the
skin through melanocortin 1 receptor (MC1R), a specific G-coupled protein receptor [3]. It
was previously reported that α-MSH prevents TNFα-induced NF-κB transactivation through
MC1R in human dermal fibroblast cells [4]. MC1R activation increases intracellular cAMP by
stimulating adenylyl cyclase, which can be blocked by agouti signaling protein (ASP), a MC1R
antagonist [5]. α-MSH has been reported to be a potent inhibitor of acute and chronic inflam-
mation in a number of tissues [6], and it also inhibits the functional expression of immunoreg-
ulatory and pro-inflammatory cytokines such as IL-2, IFN-γ, TNFα, IL-6, and ICAM-1 [7]. As
an antimicrobial peptide, α-MSH has also been reported to inhibit Staphylococcus aureus col-
ony formation, and to reduce not only Candida albicans viability but also its germ tube forma-
tion [8]. Topical, subcutaneous, or intravenous administration of α-MSH inhibits contact
hypersensitivity (CHS) via up-regulation of IL-10 [9].

Toll-like receptors (TLRs) participate in both inflammatory responses and innate host
defense, and TLRs 2, 3, 4, 5 and 9 are functionally expressed in normal human keratinocytes
[10–13]. TLR2 is the primary receptor involved in skin inflammatory responses to gram-posi-
tive bacteria such as Staphylococcus aureus (S. aureus). TLR2 is increased in keratinocytes on
the skin lesions of acne, psoriasis, leprosy, and mycosis fungoides [14–17]. S. aureus is one of
the commensal bacteria on the epithelial surfaces of human skin carried by 20–30% of the gen-
eral human population [18–20]. S. aureus plays a role in a variety of dermatological diseases
such as impetigo, cellulitis folliculitis, abscesses, atopic dermatitis, and psoriasis, when the epi-
thelial barrier is breached. S. aureus-derived lipoteichoic acid (LTA) plays a major role in initia-
tion and progression of infection by this organism as a key TLR2 ligand [18–21].

Although α-MSH has been reported to suppress NF-κB activation induced by various
inflammatory agents, the mechanism of α-MSH-mediated functional regulation in S. aureus
LTA-induced inflammatory responses is not completely clear in normal human keratinocytes.
Thus, we investigate in this study the potential regulatory role of α-MSH in HK TLR2-me-
diated functional responses induced by S. aureus LTA.

Materials and Methods

Cell culture
Normal human keratinocytes (HKs) from foreskin were purchased from PromoCell (Heidel-
berg, Germany) and cultured in supplemented keratinocyte growth medium at 37°C in 5%
CO2 as described in detail previously [22]. Cultured HK cells were propagated to at least 70%
confluence, and, if required, were treated with Staphylococcus aureus-derived LTA (10 μg/ml;
Sigma-Aldrich, St. Louis, MO), which were pre-incubated with α-MSH (10−7 M; Sigma-
Aldrich, St. Louis, MO) for 2 hours in the presence or absence of agouti signaling protein (ASP,
10−7 M; Phoenix Pharmaceutical Inc., Burlingame, CA) as indicated in the results.

Determination of the expression of TLR2 and IL-8 mRNA by real-time
RT-PCR, and IL-8 protein by ELISA
The expression of TLR2 and IL-8 mRNA was measured by real-time RT-PCR 3 hours after
treatment with LTA with or without pre-incubation with 10−7 M α-MSH for 2 hours in the
presence or absence of ASP. Target gene mRNA expression was analyzed by real-time RT-PCR
as described in the manufacturer’s protocol (ABI 7500 real-time PCR system using SYBR
Green master mix; Applied Biosystems, Foster City, CA) as described in detail previously [22].
Oligonucleotide primers used to amplify human IL-8 and TLR2 cDNA were designed using
the manufacturer's software (Primer Express 3.0; Applied Biosystems) based on published
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sequences [23, 24]. Quantification of target gene expression was normalized using an internal
control gene, 18S rRNA [25]. The IL-8 primer sequences were 5'-GCAGTTTTGCCAAGGAG
TGCT-3' (sense) and 5'-TTTCTGTGTTGGCGCAGTGTG-3' (antisense). The TLR2 primer
sequences were 5’-TGTCTTGTGACCGCAATGGT-3’ (sense) and 5’-TGTTGGACAGGT
CAAGGCTTT-3’ (antisense). The 18S rRNA primer sequences were 5'-CGGCTACAT
CCAAGGAA-3' (sense) and 5'-GCTGGAATTACCGCGGCT-3' (antisense).

To quantitatively measure IL-8 protein, HK cell supernatants were tested by ELISA using
the Quantikine human IL-8 immunoassay kit (R&D Systems, Minneapolis, MN) according to
the manufacturer’s instructions as previously described [13]. Cultured HK cell supernatants
were collected 24 hours after LTA treatment. PBS and 500 ng/ml PMA served as negative and
positive controls, respectively. All experiments were performed in triplicate.

Determination of TLR2, IRAK-M and NF-κB protein expression in HK
cells by Western blot analysis
Cultured HK cells were pre-incubated with or without α-MSH 10−7 M for 2 hours followed by
treatment with LTA 10 μg/ml for 30 min, 60 min, 90 min and 24 hours. Cell lysis, and blotting
were as described in detail previously [26, 27]. The membrane was blotted with a specific anti-
body to anti-human TLR2, anti-human IRAK-M, anti-human histone H3 antibodies (Cell Sig-
naling, Danvers, MA), anti-human β-actin (Calbiochem, Gibbstown, NJ), and anti-human NF-
κB antibody (rel A) (Rockland, Gilbertsville, PA).

Immunofluorescence analysis to detect cellular localization of NF-κB,
and IRAK-M
Cultured HK cells in 8-well chamber slides (104 cells per well; Nalgene, Rochester, NY) were
pre-incubated with or without α-MSH 10−7 M for 2 hours followed by treatment with LTA
10 μg/ml for 30 minutes. Immunofluorescence analysis to determine cellular localization of
NF-κB localization and cellular localization was performed as previously described [13, 28].
Briefly, HK cells were incubated with a specific antibody to anti-human NF-κBp65 (Rockland,
Gilbertsville, PA), and anti-human IRAK-M (cell signaling, Danvers, MA), and subsequently
incubated for 1 hour at room temperature in the dark with FITC-conjugated affinity-purified
goat anti-rabbit IgG (H+L; Jackson ImmunoResearch Laboratories, INC., West Grove, GA),
which was diluted 1:300. The cells were visualized with the Zeiss fluorescent microscopic cam-
era (Zeiss MicroImaging, Inc., Thornwood, NY).

Statistical analysis
Results are expressed as mean±SD. For statistical analysis, ANOVA with probabilities were
performed for both the overall significance (P) and the pair-wise comparison, indicated by
asterisks. P<0.05 was considered to be significant.

Results

α-MSH suppressed LTA-induced expression of HK TLR2 and IL-8
through MCR1
To analyze α-MSH effect on TLR2 expression induced by a major staphylococcal cell wall com-
ponent, HK cells were treated with 10 μg/ml S. aureus-derived LTA in the presence or absence
of 10−7 M α-MSH. As shown in Fig 1, more than 2.5 fold-increased expression of TLR2 mRNA
and its proteins, which was induced by LTA for 3 and 24 hours, respectively, was efficiently
blocked by α-MSH treatment.
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Fig 1. Inhibitory effect of α-MSH throughMC1R on LTA-induced expression of HK TLR2 and IL-8.HK cells were treated with LTA, which were pre-
incubated with α-MSH for 2 hours in the presence or absence of ASP as described in “Materials and Methods”. (a) The expression of HK TLR2mRNA was
measured by real-time RT-PCR 3 hours after S. aureus-derived LTA treatment. (b) TLR2 protein expression was determined byWestern blot analysis using
specific anti-human TLR2 polyclonal antibody (1:1000 dilution) and anti-β-actin antibody (1:5000 dilution) 24 hours after LTA treatment. (c) The expression of
HK IL-8 mRNA was measured by real-time RT-PCR 3 hours after S. aureus-derived LTA treatment. (d) LTA-induced HK IL-8 secretion was measured by
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Since it was previously reported that α-MSH pre-incubation significantly reduced LTA-
induced IL-8 expression in HaCaT transformed keratinocytes [29], we examined α-MSH sup-
pression of LTA-induced IL-8 expression in primary normal human keratinocytes. LTA-
induced 10 fold-increased IL-8 mRNA was significantly inhibited up to 2 of the relative fold
increase by α-MSH (Fig 1C). The increased amount of secreted HK IL-8 protein, which was
induced by 24-hour LTA treatment, was also significantly suppressed from 500 to 300 pg/ml
by α-MSH (Fig 1D). The α-MSH inhibitory effect was released by treatment with agouti signal-
ing protein (ASP), a MC1R antagonist (Fig 1). These results demonstrate that the increased
expression of HK TLR2 and IL-8 induced by S. aureus-derived LTA is specifically down-regu-
lated by α-MSH.

α-MSH inhibited LTA-induced NF-κB nuclear translocation in HK cells
To determine α-MSH regulation of NF-κB transcriptional activation, which is closely associ-
ated with TLR2 signaling pathway [30], we quantified nuclear NF-κB by Western blot. The 2.5
fold-increased amount of nuclear NF-κB, which was induced by LTA, was significantly
reduced to 1.2 fold by α-MSH treatment (Fig 2A). We next analyzed LTA-induced NF-κB
nuclear translocation by immunofluorescent staining in the presence or absence of α-MSH. As
shown in Fig 2B, LTA treatment increased HK NF-κB nuclear translocation. In contrast, α-
MSH efficiently suppressed the LTA-induced NF-κB nuclear translocation. Phorbol 12-myris-
tate 13-acetate (PMA), a stimulus of pro-inflammation through NF-κB transcription factor
[30], served as a positive control in this study.

IRAK-M expression was induced by α-MSH in HK cells
IRAK-M is a potential negative regulator of TLR signaling [27], and α-MSH was previously
reported to suppress LPS-stimulated TLR4 activation through IRAK-M in macrophages [31].
Since α-MSH decreased HK IL-8 expression, which was associated with LTA-TLR2 signaling
in this study, we tested a regulatory role of IRAK-M in the α-MSH suppression in LTA-treated
HK cells. When we examined HK IRAK-M expression in the presence or absence of α-MSH,
the expression of IRAK-M mRNA and its proteins was significantly induced by 10−7 M α-
MSH (Fig 3A and 3B). The amount of HK nuclear IRAK-M was increased by α-MSH treat-
ment in LTA-stimulated HK cells. In contrast, cytosolic IRAK-M was not clearly changed in
the presence or absence of α-MSH (Fig 3C).

The α-MSH suppressive effect on IL-8 production was inhibited by
transfection of HK cells with IRAK-M siRNA
We next examined a regulatory effect of IRAK-M on IL-8 production, which is one of the
LTA-induced inflammatory signaling responses [27, 30]. When keratinocytes were transiently
transfected with IRAK-M siRNA, the mRNA expression of HK IRAK-M was significantly
blocked in comparison with its level in control siRNA transfected HK cells (Fig 4A). As shown
in Fig 4B, the expression of IL-8 mRNA was significantly increased by LTA treatment in
IRAK-M siRNA- and control siRNA transfected HK cells. The level of IL-8 increase was much
higher in IRAK-M siRNA transfected HK cells than that of control siRNA-transfected cells.
The LTA-induced IL-8 mRNA increase in control siRNA-transfected HK cells was significantly

ELISA. HK treated with PBS served as a negative control. The relative intensity of expression was normalized using the expression of 18S rRNA for mRNA
and β-actin for protein as internal controls. All values are expressed as mean ± SD. Statistically significant differences in the expression of HK TLR2 were
determined by ANOVA with probabilities shown for both the overall significance and the pairwise comparison (*P<0.001).

doi:10.1371/journal.pone.0136887.g001
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Fig 2. Inhibitory effect of α-MSH on LTA-induced NF-κB nuclear translocation. (a) Nuclear localization
of NF-κB was determined byWestern blot. Nuclear extracts of HK cells were prepared 1 hour after LTA
treatment, which were pre-incubated with α-MSH for 2 hours, and were subjected to Western blot analysis
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inhibited by 10−7 M α-MSH. In contrast, the α-MSH suppression was not observed in
IRAK-M siRNA transfected HK cells (Fig 4B).

The α-MSH suppressive effect on NF-κB nuclear translocation was
inhibited by transfection of HK cells with IRAK-M siRNA
In order to determine a more detailed regulatory mechanism of α-MSH in transcriptional acti-
vation of transiently transfected HK cells with IRAK-M siRNA, we analyzed NF-κB cellular

using specific anti-NF-κB antibody (Rel A (1:2500 dilution) and anti-histone H3 antibody (1:1000 dilution). The
relative intensity of NF-κB was normalized using histone H3 expression as an internal control. (b) Cellular
localization of NF-κB was determined by immunofluorescent staining of NF-κB as described in “Materials and
Methods”. NF-κB was detected using specific anti- NF-κBp65 polyclonal antibodies (1:200 dilution) for its
intracellular localization (green), which was compared with Hoechst-stained nuclei (blue). HK treated with
PBS and 50 ng/ml PMA served as a negative and a positive control, respectively. HK incubated with FITC-
conjugated anti-rabbit IgG(H+L) served as a technical negative control. Bars = 20 μm.

doi:10.1371/journal.pone.0136887.g002

Fig 3. HK IRAK-M expression induced by α-MSH. The expression of IRAK-MmRNA (a) and its protein (b) induced by α-MSH was determined by real-time
RT-PCR andWestern blot, respectively, as described in “Materials and Methods”. PBS-treated HK cells served as the negative control. The relative intensity
of expression was normalized using the expression of 18S rRNA for mRNA and β-actin for protein as internal controls. All values are expressed as
mean ± SD. Statistically significant differences in the expression of HK IRAK-M were determined by ANOVA with probabilities shown for both the overall
significance and the pairwise comparison (*P<0.001). (c) The HK cellular localization of IRAK-M was determined byWestern blot using specific anti-IRAM-M
antibody (1:1000 dilution) as described in “Materials and Methods”. The relative intensity of IRAK-M in cytoplasmic and nuclear extracts of HK cells was
normalized using β-actin and histone H3 expression, respectively.

doi:10.1371/journal.pone.0136887.g003

Alpha-MSH Effect on TLR2-Mediated Inflammatory Responses in HK Cells

PLOS ONE | DOI:10.1371/journal.pone.0136887 August 26, 2015 7 / 14



localization of the keratinocytes by immunofluorescent staining using specific NF-κBp65 anti-
bodies 30 minutes after LTA treatment in the presence or absence of α-MSH. As shown in
Fig 5, the ratio of nuclear localized NF-κB was significantly increased by LTA in both control
siRNA- and IRAK-M siRNA-transfected HK cells in the absence of α-MSH compared to that
of PBS-treated control HK cells. In control siRNA-transfected HK cells, α-MSH efficiently sup-
pressed the LTA-induced NF-κB nuclear translocation (Fig 5). However, the α-MSH suppres-
sive level of LTA-induced NF-κB nuclear translocation was not clearly observed in IRAK-M
siRNA-transfected keratinocytes. As shown in “S3 Fig”, the amount of nuclear localized NF-κB
in IRAK-M siRNA-transfected HK cells, which were treated with α-MSH+LTA, is very similar
with that of LTA-induced HK cells. These data indicate that NF-κB nuclear translocation may
not be completely inhibited during the LTA-induced transcriptional activation in IRAK-M
siRNA transfected HK cells. This is consistent with the nuclear NF-κB immunofluorescent
staining results with anti-NF-κB polyclonal antibodies in Fig 5.

Taken together, these results indicate that α-MSH suppression of LTA-induced NF-κB
transactivation is specifically associated with IRAK-M, which has a negative regulatory func-
tion in LTA-induced inflammatory signaling through TLR2.

Discussion
The activation of TLR signaling pathways induced by specific pathogens ultimately results in
NF-κB transactivation, followed by secreting inflammatory cytokines such as IL-1, IL-6, TNFα
and IL-8, by which innate inflammatory immune responses are initiated. NF-κB signaling acti-
vation associated with TLRs is thought to be a pivotal link between the innate and adaptive

Fig 4. Inhibitory effect of IRAK-M siRNA on α-MSH-suppressed HK IL-8 expression.HK cells were transiently transfected with IRAK-M siRNA or control
siRNA prior to LTA treatment. The mRNA expression of IRAK-M (a) and IL-8 (b) was determined by real-time RT-PCR 3 hours after LTA treatment in the
presence or absence of α-MSH. The relative intensity of expression was normalized using the expression of 18S rRNA. All values are expressed as
mean ± SD. Statistically significant differences in the expression of HK IRAK-M and IL-8 were determined by ANOVA with probabilities shown for both the
overall significance and the pairwise comparison (*P<0.001).

doi:10.1371/journal.pone.0136887.g004
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Fig 5. Inhibitory effect of IRAK-M siRNA on α-MSH-suppressed HK NF-κB nuclear translocation. After HK cells were transiently transfected with
IRAK-M siRNA or control siRNA prior to LTA treatment, NF-κB cellular localization was determined by immunofluorescent staining using a specific anti-
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immune systems since TLRs not only provoke the innate immune response and enhance adap-
tive immunity against pathogens, but also are involved in the pathogenesis of autoimmune and
chronic inflammation [32]. It was previously reported that the treatment of LPS-stimulated
macrophages with α-MSH inhibits the NF-κB nuclear translocation and p38 activation by
blocking TLR4 signaling using the intracellular TLR-inhibitor IRAK-M [31, 33, 34]. Although
human IRAK-M expression is restricted to monocytes and macrophages [26, 35], however,
there is no known information about the regulatory effect of α-MSH on TLR2-mediated
inflammatory responses in S. aureus LTA-induced keratinocytes. In this study, we specifically
investigate the negative regulation of α-MSH in S. aureus-LTA induced TLR2-signaling activa-
tion in primary normal human keratinocytes.

TLR2 in association with TLR1 or TLR6 recognizes the indicated ligands such as lipotei-
choic acid (LTA) and peptidoglycan [36]. Staphylococcal LTA-activated TLR2 recruits TIRAP,
a Toll-interleukin 1 receptor (TIR) domain-containing adaptor protein, which links the TLR to
MyD88. MyD88 in turn promotes an association with IRAK (IL-1 receptor- associated kinase)
family members such as IRAK4, IRAK1, and IRAK2. IRAK4 is activated first, followed by
sequential activation of IRAK1 and IRAK2 [37]. IRAK4 is known to be essential for TLR–IL-
1R-mediated cellular responses as a serine-threonine kinase to eventually induce TLR-associ-
ated cytokine production [31, 38]. The activated IRAK family proteins associate with TRAF6
(TNF receptor-associated factor 6), and TRAF6 activates TAK1, which in turn activates the
IKK complex composed of NEMO, IKKα and IKKβ. The activated IKK complex phosphory-
lates IκBα, which is then ubiquitinated and degraded by the proteasome, while NF-κB subunits
p50 and p65 translocate to the nucleus. TAK1 also activates the MAPK signaling pathway. The
activated NF-κB and MAPK in the nucleus initiate the transcription of inflammatory cytokine
genes such as IL-8 [39]. As a chemotactic factor to recruit neutrophils at the site of inflamma-
tion, IL-8 is usually thought to be an activation marker of TLRs-associated inflammatory
responses [40].

Donnarumma et al. previously reported that α-MSH reduces S. aureus internalization, and
down-regulates HSP70, integrins, and the expression of ICAM-1 and pro-inflammatory cyto-
kines such as IL-8 and TNFα in HaCaT keratinocyte cell line [29]. However, little is known
about a specific mechanism of the α-MSH down-regulation in S. aureus LTA-stimulated pri-
mary human keratinocytes. Our results demonstrate for the first time that the increased
expression of TLR2 and IL-8 mRNAs and their proteins, which is induced by S. aureus-derived
LTA through NF-κB transcriptional activation, is specifically down-regulated by α-MSH in
primary normal human keratinocytes (Figs 1 to 2).

The IRAK family consists of two active kinases, IRAK and IRAK-4, and two inactive
kinases, IRAK-2 and IRAK-M. IRAK-M expression is restricted to monocytes/macrophages,
whereas other IRAKs are ubiquitous [27, 41]. IRAK-M prevented dissociation of IRAK and
IRAK-4 from MyD88 and formation of IRAK-TRAF6 complexes. IRAK-M(-/-) cells exhibited
increased cytokine production upon TLR/IL-1 stimulation and bacterial challenge, and
IRAK-M(-/-) mice showed increased inflammatory responses to bacterial infection [27]. We
demonstrate in this study that primary normal human keratinocytes constitutively express
IRAK-M; moreover, the expression of IRAK-M mRNA and its protein was induced by α-MSH
treatment (Fig 3A and 3B, S1 Fig and S2 Fig). Su et al. previously reported that IRAK-M is pres-
ent in both the cytoplamic and nuclear fractions in resting THP-1 cells [42]. The authors

human NF-κBp65 antibody 30 minutes after LTA treatment in the presence or absence of α-MSH. The left column is the FITC fluorescent signal indicative of
NF-κB, the center column is the DAPI nuclear stain, and the right column is the merged image demonstrating nuclear or cytoplasmic of NF-κB localization.
PBS-treated HK cells served as the negative control. Bars = 20 μm.

doi:10.1371/journal.pone.0136887.g005
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showed that bacterial lipoprotein Pam3 CSK4 challenge caused significant reduction of nuclear
IRAK-M levels, indicating that IRAK-Mmay undergo nuclear export upon challenge [42]. We
indicated in this study that the amount of HK nuclear IRAK-M was increased by α-MSH in PBS-
and LTA-stimulated HK cells; in contrast, cytosolic IRAK-M was not clearly changed in the pres-
ence or absence of α-MSH in PBS- and LTA-treated keratinocytes (Fig 3C). In IRAK-M siRNA
transfected HK cells, which express significantly reduced IRAK-M (Fig 4A), the level of IL-8
mRNA expression was greatly increased by LTA treatment. While the LTA-induced IL-8
increase was significantly blocked by α-MSH in control siRNA transfected HK cells, the α-MSH
suppression was not observed in IRAK-M siRNA transfected HK cells (Fig 4B). Moreover, α-
MSH suppressive effect on NF-κB nuclear translocation was also inhibited by transfection of HK
cells with IRAK-M siRNA (Fig 5 and S3 Fig), indicating that α-MSH suppression of LTA-
induced IL-8 increase through NF-κB transactivation may be specifically associated with a nega-
tive functional regulation of IRAK-M in the HK TLR2 signaling pathway.

In conclusion our results indicate that α-MSH is capable of suppressing HK TLR2-mediated
inflammatory responses induced by S. aureus-derived LTA, thus demonstrating another novel
immunomodulatory activity of α-MSH in primary normal human keratinocytes.

Supporting Information
S1 Fig. The mRNA expression of IRAK-M in normal human keratinocytes. The mRNA
expression of IRAK-M in HK cells was determined by RT-PCR using specific oligonucleotide
primers, which were designed using the manufacturer's software (Primer Express 3.0; Applied
Biosystems) based on published sequences [43]. The IRAK-M primer sequences were 5’-
GTTGATGGCACATCCCACGTC-3’ (sense) and 5’-GTACAGGGCATAGACATGGC-3’
(antisense). The PCR products of IRAK-M (196 bp) were analyzed by 1.5% agarose gelelectro-
phoresis.
(TIF)

S2 Fig. HK IRAK-M immunofluorescent staining. The HK cellular localization of IRAK-M
was determined by immunofluorescent staining using specific anti-IRAK-M (1:50 dilution) as
described in “Materials and Methods”. THP-1 cells served as the positive control, and HK cells
treated with the secondary antibody alone served as the negative control.
(TIF)

S3 Fig. Nuclear localization of NF-κB determined by Western blot. Nuclear extracts of
IRAK-M siRNA-transfected HK cells were pre-incubated with/without α-MSH for 2 hours, pre-
pared 1 hour after LTA treatment, and then subjected toWestern blot analysis using specific anti-
NF-κB antibody (Rel A (1:2500 dilution) and anti-histone H3 antibody (1:1000 dilution). The rela-
tive intensity of NF-κB was normalized using histone H3 expression as an internal control. The
amount of nuclear localized NF-κB in IRAK-M siRNA-transfected HK cells, which were treated
with α-MSH+LTA, is very similar with that of LTA-induced HK cells. These data indicate that
NF-κB nuclear translocation may not be completely inhibited during the LTA-induced transcrip-
tional activation in IRAK-M siRNA transfected HK cells. This is consistent with the nuclear NF-
κB immunofluorescent staining results with anti-NF-κB polyclonal antibodies in Fig 5.
(TIF)
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