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Surface proteins in Gram-positive bacteria are often involved in biofilm formation, host-
cell interactions, and surface attachment. Here we review a protein module found
in surface proteins that are often encoded on various mobile genetic elements like
conjugative plasmids. This module binds to different types of polymers like DNA,
lipoteichoic acid and glucans, and is here termed polymer adhesin domain. We analyze
all proteins that contain a polymer adhesin domain and classify the proteins into distinct
classes based on phylogenetic and protein domain analysis. Protein function and
ligand binding show class specificity, information that will be useful in determining the
function of the large number of so far uncharacterized proteins containing a polymer
adhesin domain.
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BACTERIAL ADHESION IN GRAM-POSITIVE BACTERIA

Bacteria colonize host tissues by adhering to specific surfaces and by establishing bacterial biofilm
communities. In Gram-positive bacteria this is often mediated by surface proteins that are anchored
to the cell-wall through a sortase-dependent LPxTG-motif (Geoghegan and Foster, 2015; Foster,
2019). Pili and fimbriae are well known examples that form micrometer long filaments that
protrude out from the cell allowing easy attachment to targets (Kang and Baker, 2012; Lukaszczyk
et al., 2019). Other classes of adhesion proteins exist such as microbial surface components
recognizing adhesive matrix molecules (MSCRAMMs), near iron transporter (NEAT) motif family,
tandemly repeated three-helical bundles, G5-E domain repeat family, and legume-lectin-like
cadherin-like family. For these classes there are multiple thorough reviews and book chapters
detailing their structural and functional properties (Foster et al., 2014; Geoghegan and Foster,
2015; Foster, 2019; Dufrêne and Viljoen, 2020). In general, these proteins are comprised of a
C-terminal stalk region built from heavily glycosylated disordered regions, coiled-coils, or tandem
domain repeats. The N-terminus often feature one or several adhesion modules that are key to
the functional part of the protein, and the stalk projects this region away from the peptidoglycan
cell-wall, allowing access to the extracellular environment. They interact with key components in
the extracellular matrix of their host to facilitate one or several types of pathogenic mechanisms
such as surface attachment, host cell internalization, biofilm formation, immune evasion, and/or
bactericide/antibiotic resistance.

However, a family of adhesion proteins found in lactic acid bacteria (Lactobacillales) cannot
readily be categorized into any of the above-mentioned families. In Streptococcus these proteins
go by the names Glucan-binding protein C, Dextran-binding lectin, and Antigen I/II, and
in Lactococcus and Enterococcus they are called Aggregation substance. In Streptococcus these
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adhesion proteins promote cariogenicity through attachment to
tooth surfaces (Jenkinson and Demuth, 1997; Sato et al., 2002a;
Lynch et al., 2013). In Enterococcus and Lactococcus they are
found on conjugative plasmids where they facilitate mating pair
formation (Hirt et al., 2000; Waters and Dunny, 2001; Waters
et al., 2003; Chuang et al., 2009; Schmitt et al., 2018). Apart
from surface adherence and bacterial aggregation these proteins
all feature a specific adhesion domain at their N-terminus,
which most often is called Glucan-binding domain, Variable
domain or Adhesion domain. Despite many similarities between
these proteins no studies have yet systematically compared their
functions and mechanisms.

As we will discuss in this review, the conserved adhesion
module consistently adheres to various types of polymers
associated with the extracellular matrix, such as collagen (Love
et al., 1997; Holmes et al., 1998; Heddle et al., 2003), extracellular
DNA (eDNA; Kohler et al., 2018; Schmitt et al., 2018),
lipoteichoic acid (LTA; Waters et al., 2004; Schmitt et al., 2018), or
different types of glucans (Sato et al., 2002b; Tamura et al., 2014;
Mieher et al., 2018). Therefore, we will throughout this review
refer to this adhesion module as the polymer adhesin domain.

DOMAIN ARCHITECTURE AND
FUNCTION OF PROTEINS WITH A
POLYMER ADHESIN DOMAIN

In order to gather a diverse population of polymer adhesin-
containing proteins, we utilized the InterPro database (Mitchell
et al., 2019). InterPro combines information from numerous
other databases which uses various models such as hidden
Markov models, scoring matrices, regular expressions, or other
profiles that make up identifiable signatures to classify protein
families. We gathered all entries that contained an N-proximal
polymer adhesin domain (IPR013574) and a C-terminal LPxTG-
motif (IPR019931). After removing outdated, deprecated, and
fragmented entries the resulting list of 518 proteins was manually
cross-referenced for associated literature, which gave us a list of
proteins that had, to some extent, been functionally characterized
(Table 1). One limitation with this approach is that the InterPro
database relies on entries in UNIPROT. Thus it does not contain
all known sequences in other databases, such as NCBI. In fact, we
encountered two proteins in the literature that was not originally
captured by the InterPro search. However, the advantage of using
it is that all entries are curated. The final list thus corresponds to
21 proteins (Table 1).

As we aimed to focus our review on the polymer adhesin
domain we calculated a phylogenetic tree using only the polymer
adhesin domain sequences rather than full-length protein. This
was done to focus on the adhesive relationships of the polymer
adhesins without the influence of large sequence and domain
variety between the stalk regions. In this analysis we included all
proteins with <90% sequence identity (and as low as 15%) of their
polymer adhesin domain, plus all 21 reviewed proteins in Table 1,
resulting in a phylogenetic tree with 131 proteins (Figure 1A).
This phylogenetic analysis of only the polymer adhesin domain
corresponded well with the predicted domain architecture of

the 21 reviewed proteins (Figure 1B) and allowed us to divide
them into five distinct classes (Classes I–V; Figure 1). The full
phylogenetic analysis also indicates the presence of two additional
classes (Classes VI and VII), containing proteins that so far lack
any functional data in the literature (yellow and gray clades in
Figure 1A).

Apart from the polymer adhesin domain and the LPxTG-
motif, two other structural domains are found throughout the
classes (except Class I proteins); (i) The C-terminal cell surface
antigen domains (dark blue domain in Figure 1B), which
are tandemly arranged bacterial immunoglobulins that often
feature intramolecular isopeptide bonds and calcium-binding
sites (Forsgren et al., 2010; Heim et al., 2014) and (ii) The
N-terminal scaffold domain (orange domain in Figure 1B). It has
been proposed that its function is to attach to its own C-terminal
region to stabilize the structure and to make the polymer adhesin
domain the most matrix exposed feature (Brady et al., 2010;
Larson et al., 2010).

All known proteins belonging to these classes contain only
one copy of the polymer adhesin domain. The polymer adhesin
is often displayed quite a distance out from the cell wall,
as there is usually either a coiled-coil stalk and/or one or
more immunoglobulin domains between the polymer adhesin
domain and the LPxTG cell-wall anchor. Based on the literature,
we conclude that the polymer adhesin module likely exerts
a core function in most of these proteins. The surrounding
immunoglobulin domains likely act as helper modules to provide
additional functionality or to display the polymer adhesin
domain sufficiently far out from the cell surface. We wanted
to investigate whether our classification of the polymer adhesin
modules correlates with their variation in function, e.g., which
ligands they bind and which pathogenic mechanisms they
promote. To address this question, we went through the literature
and looked at the available data for proteins associated with
Classes I–V (as mentioned previously, Class VI and VII have no
associated literature).

STRUCTURE AND FUNCTION OF
POLYMER ADHESION CONTAINING
PROTEINS

To date, there are six unique polymer adhesin domain structures
deposited in the PDB, five of which are described in literature
(Table 1). These structures originate from Classes I, II, and
IV. Despite low sequence similarity (21–34%), the overall fold
of the polymer adhesin domain remains remarkedly similar
(Figure 2 and Table 2). In all structures, the core fold comprises
an antiparallel beta-sandwich of 12–16 strands. On one side
of this core, two lobes (made up of highly variable loops and
short alpha-helices) create a central ridge. This ridge harbors
a cation binding site that is conserved throughout the domain
family (Figure 2). Due to the differences in primary sequence,
the surface charge distribution of the domains also varies,
with surfaces ranging from mostly negatively charged to mostly
positively charged (Figure 3). None of these proteins have so
far had their full-length structure determined, but the current
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TABLE 1 | Proteins containing a polymer adhesin domain currently described in the literature and their associated meta data and references.

Class Protein name Gene(s) PDB(s) Accession code Protein length Organism References

I Glucan-binding protein C (GbpC) gbpC 5UQZ/6CAM Q8DTF1 583 Streptococcus mutans Sato et al., 1997, 2002a,b; Mieher et al.,
2018

I Glucan-binding protein C (GbpC) gbpC Q4W7G2 617 Streptococcus macacae Okamoto-Shibayama et al., 2006

I Dextran-binding lectin A (DblA) dblA G5EIN8 1093 Streptococcus criceti Tamura et al., 2014

I Dextran-binding lectin B (DblB) dblB G5EIN9 1717 Streptococcus criceti Tamura et al., 2014

I Dextran-binding lectin B (DblB) dblB A8QYL3/B5BNX9 1425 Streptococcus sobrinus Sato et al., 2009

II Streptococcal surface protein A (SspA) sspA Q54185 1575 Streptococcus gordonii Demuth et al., 1996; Holmes et al., 1998;
Egland et al., 2001; Heddle et al., 2003;
Jakubovics et al., 2005a,b; Giomarelli et al.,
2006; Nobbs et al., 2007

II Streptococcal surface protein B (SspB) ssp5/sspB 2WD6 P16952/Q54186 1500 Streptococcus gordonii Demuth et al., 1988; Duan et al., 1994;
Demuth et al., 1996; Holmes et al., 1998;
Heddle et al., 2003; Giomarelli et al., 2006;
Nobbs et al., 2007; Forsgren et al., 2009;
Forsgren et al., 2010

II Cell-surface protein antigen
(SpaP,PA/PAc/P1)

spaP P23504 1562 Streptococcus mutans
serotype c

Koga et al., 1986; Kelly et al., 1990;
Hajishengallis et al., 1994; Heim et al.,
2014; Jakubovics et al., 2005b

II Cell-surface protein antigen
(SpaP,PA/PAc/P1)

spaP, pa, pac 3IPK/3IOX/1JMM C9E3B4/A8R5D9/
P11657

1566 Streptococcus mutans Sommer et al., 1987; Oho et al., 1998;
Troffer-Charlier et al., 2002; Sato et al.,
2002a; Nakano et al., 2006; Busscher
et al., 2007; Larson et al., 2010; Heim
et al., 2014; Sullan et al., 2015

II Cell-surface antigen I/II (SpaA) spaA P21979 1528 Streptococcus sobrinus Kuykindoll and Holt, 1996

II Cell-surface antigen I/II pas 6E36 Q9KW51 1310 Streptococcus intermedius Petersen et al., 2001; Jakubovics et al.,
2005b

III SAG_1283 A8D815 1631 Streptococcus dysgalactiae Davies et al., 2009

III Agglutinin receptor I/II KGI30072.1 1646 Streptococcus pneumoniae Antic et al., 2017

III Glucan-binding protein C (GbpC) OYL08640.1 1634 Streptococcus pneumoniae
B1599

Antic et al., 2017

IV Aggregation substance (AS) prgB, asa1,
asp1, asc10

6EVU/6GED Q04112 1305 Enterococcus faecalis (plasmid:
pCF10)

Kreft et al., 1992; Bensing and Dunny,
1993; Rakita et al., 1999; Vanek, 1999; Hirt
et al., 2000; Wells et al., 2000; Waters and
Dunny, 2001; Isenmann et al., 2002;
Waters et al., 2003, 2004; Chuang et al.,
2009; Chuang-Smith et al., 2010; Bhatty
et al., 2015; Kohler et al., 2018; Schmitt
et al., 2018

IV Aggregation substance (AS) prgB, asa1,
asp1, asc10

P17953 1296 Enterococcus faecalis (plasmid:
pAD1/pTEF1)

Galli et al., 1990, 1992; Chow et al., 1993;
Süßmuth et al., 2000; Rozdzinski et al.,
2001

V Sex factor aggregation protein cluA Q48588 1243 Lactococcus lactis Godon et al., 1994; Gasson et al., 1995;
Stentz et al., 2004, 2006; Kojic et al., 2011;
Lukić et al., 2012
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FIGURE 1 | (A) Phylogenetic tree of a representative subset (<90% identity) of the polymer adhesin domain sequences as annotated in InterPro (Mitchell et al.,
2019). Alignments done by ClustalO were used to calculate the phylogenetic relationships with PhyML (Dereeper et al., 2008) using 100 bootstraps. Visualization
was done with iTol and brances with a bootstrap lower than 0.5 were collapsed. Each node is annotated with its respective UNIPROT accession code (in two
instances refseq) and organism name. Clades are color coded, and nodes with associated literature are marked with a star. (B) Pruned tree highlighting the 21
reviewed protein entries, using the same class color coding as in panel (A). Here the additional annotations include common protein name, and domain architecture
as annotated by InterPro (Mitchell et al., 2019).

structural evidence points toward that the N-terminal sequence
preceding the polymer adhesin domain forms a coiled-coil with
the sequence just C-terminal of said domain (Brady et al., 2010;

Larson et al., 2010). This means that the tip of the proteins,
thus the part extending furthest out from the cell wall, is the
polymer adhesin domain.
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FIGURE 2 | All available protein structures of unique proteins from three different classes of polymer adhesin containing proteins. Here drawn as cartoon
representations, colored blue to red from the N-terminus and viewed from the same angle, the similarities in overall fold is seen, as well as their conserved cation
binding site (red sphere) situated in the middle of the central ridge.

TABLE 2 | Sequence and r.m.s. deviations between the four structurally
characterised polymer adhesin domains.

RMSD PrgB 6EVU GbpC 5UQZ SspB 2WD6 SpaP 1JMM

% ID \
PrgB 6EVU 2.7Å 2.9Å 2.6Å

GbpC 5UQZ 25% 2.9Å 2.4Å

SspB 2WD6 26% 26% 2.9Å

SpaP 1JMM 21% 28% 34%

Class I – Glucan-Binding Protein C and
Dextran-Binding Lectin
This Class (green clade in Figure 1A) is divided into two
subgroups: glucan-binding protein C (GbpC) and Dextran-
binding lectin (Dbl) proteins. Counter-intuitively, both types
bind dextran (branched, primarily α-1,6-glucans) whereas the
Dextran-binding lectin proteins also bind to amylose (α-1,4-
glucans) and to the α-1,3-branches on dextran (Okamoto-
Shibayama et al., 2006). In contrast to the other classes,

they do not contain any immunoglobulin domains at their
C-terminus. Compared to GbpC, Dbl proteins have longer
flanking coils and a long sequence insertion in the middle
of the polymer adhesin domain (Figure 1). Dbls also feature
an N-terminal YSIRK-motif (pink in Figure 1B). The YSIRK
motif is unique to Streptococci and Staphylococci and enhances
the efficiency of protein secretion (Bae and Schneewind,
2003) and enforce spatial positioning to the septal wall
(Bierne and Dramsi, 2012).

The affinity of GbpC-polymer adhesins for various lengths
of dextrans has been measured by isothermal calorimetry (ITC;
Mieher et al., 2018). This enthalpy driven binding is stronger
for longer polymers (highest reported affinity was ∼17 µM for
a dextran with ∼390 glucose units). Based on these binding
experiments, it was estimated that each GbpC-polymer adhesin
unit adheres to 11–14 glucose units in a non-cooperative manner.
Of the two determined GbpC structures, one is in a apo-
state (PDB code: 5UQZ) whereas in the other (PDB code:
6CAM) two glucose molecules are modeled near the cation
binding site (Mieher et al., 2018). Removal of a loop region
overarching the cation binding site lead to a reduction, but
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FIGURE 3 | Same proteins as in Figure 2 but using electrostatic surface representations and in the case of PrgB its eDNA ligand is shown binding to the positively
charged surface.

not elimination, in glucose mediated biofilm formation (Mieher
et al., 2018). As no other confirmatory experiments have been
reported, the validity of this site being a glucan-binding site
remains uncertain.

It has been shown that GbpC can interact with the host
receptor salivary agglutinin (SAG) with nanomolar affinity and
independently of SAGs glycosylation state (Purushotham and
Deivanayagam, 2014; Mieher et al., 2018). SAG is also known as
gp340 and is expressed from the “deleted in membrane protein
1” gene (DMBT1). It is a large extracellular matrix protein
which features 13 repeats of the scavenger receptor cysteine rich
domain 1 (iSRCR; Reichhardt et al., 2020). GbpC has been shown
to interact with these iSRCR domains in a calcium-dependent
fashion (Purushotham and Deivanayagam, 2014; Mieher et al.,
2018), but since the fold of iSRCR is in itself calcium- dependent
(Reichhardt et al., 2020) it is unknown whether or not the

calcium-binding site of the polymer adhesin domain is involved
in this interaction. Both the interaction to the entire SAG and
the individual iSRCR domains are inhibited by the addition
of dextran, which could indicate that they compete for the
same binding site.

Class II – Cell Surface Antigen I/II
Class II polymer adhesins (purple clade in Figure 1A) have
been extensively studied for their prominent role in facilitating
dental caries. The proteins that are found in this Class are
usually named Agglutinin receptor I/II, as they were originally
characterized by their ability to bind SAG (Demuth et al., 1988;
Demuth et al., 1996). More recently Agglutinin receptor I/II are
more commonly referred to as Cell-surface antigen I/II. The
corresponding Class II proteins have been shown to interact with
collagens (Love et al., 1997; Holmes et al., 1998; Heddle et al.,
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2003; Sciotti et al., 2006), fibrinogen (Brady et al., 2010), and
laminin (Sciotti et al., 2006) – proteins characterized by long
triple coiled-coils. These proteins have also been confirmed to
bind to fibronectin (Giomarelli et al., 2006). All these proteins are
common extracellular protein components that are often utilized
by pathogens as an initial host interaction point (Vercellotti et al.,
1985; Schwarz-Linek et al., 2006; Kang et al., 2013). It is mainly
S. mutans, S. oralis, S. sanguinis, and S. gordonii that contain
Class II proteins. S. mutans especially is a cause of dental caries
(Hamada and Slade, 1980), whereas the other three species can
act as opportunistic pathogens.

For three polymer adhesins in this Class the structure
is known: SspB (S. gordonii; Forsgren et al., 2009), SpaP
(S. mutans; Troffer-Charlier et al., 2002; Larson et al., 2010),
and Pas (S. intermedius; Table 1). Pas has not been functionally
characterized but is 85% identical to SpaP. As these proteins are
similar, and it was known that sialic acid can inhibit SpaP binding
to SAG (Demuth et al., 1990), it was thought that these proteins
bind glucans. However, neither the SspB nor the SpaP polymer
adhesin domains bind dextran (Mieher et al., 2018) and even
though SspB was extensively tested on glycan arrays, no binding
to any glycoconjugates has been observed (Forsgren et al., 2009).
Despite the lack of direct interaction with glycans, the polymer
adhesin in SpaP is important for both biofilm formation and
dextran induced cellular aggregation (Mieher et al., 2018).

Furthermore, the Class II proteins SspB and SpaP can interact
with the scavenger receptor cysteine-rich domain 1 (iSRCR) in
a calcium-dependent fashion (Purushotham and Deivanayagam,
2014; Mieher et al., 2018) just as the Class I protein GbpC.
In contrast to GbpC, however, this interaction is not inhibited
by the addition of dextran. SspB and SpaP also have an
additional independent iSRCR-interaction site (Larson et al.,
2011). This site is located on the first two immunoglobulin
domains, which the domain Class I proteins do not have.
The second and third of these immunoglobulin domains on
both SspB and SpaP bind calcium with submicromolar affinity
(Duan et al., 1994; Forsgren et al., 2010; Larson et al., 2011;
Nylander et al., 2011).

Class III
Class III adhesins (cyan clade in Figure 1A) are most closely
related to Class II adhesins in domain architecture (Figure 1B).
Although not identified as such in Interpro, they do seem to
feature similar alanine-rich and proline-rich repeats prior to, and
after, the polymer adhesin domain as well. They also contain
five Ig-domains rather than the three seen in Class II adhesins.
Class III adhesins are found in Streptococcus species frequent
in the upper respiratory tract of pigs (S. suis) and humans
(S. pneumoniae), and in S. agalactiae, which can colonize the
intestinal and vaginal microbiota (Barcaite et al., 2008). Two
proteins have been shown to increase S. pneumoniae adhesion
to ocular epithelia (Antic et al., 2017), but that remains the full
extent of the known functions of this Class of adhesins. It is
interesting to note, however, that bioinformatics analysis of Class
III proteins have revealed that they are the result of horizontal
gene transfer and that they are found on multiple mobile genetic
elements (Davies et al., 2009).

Class IV – Aggregation Substance
Class IV proteins (pink clade in Figure 1A) are mostly found
in Enterococcus faecalis where they are found in sex pheromone
responsive conjugative plasmids. Here they facilitate horizontal
gene transfer via Type 4 Secretion Systems. Although they are
mostly connected to Enterococci, they can spread to other
species via conjugation. One protein in this Class has been
structurally studied, namely PrgB (Aggregation substance) from
the conjugative plasmid pCF10 (Schmitt et al., 2018). PrgB is
one of the surface proteins expressed from the prgQ operon
that encodes for all genes that are needed for conjugation. PrgB
aids conjugation via surface attachment, biofilm formation, and
cellular mating pair formation (Dunny et al., 1978; Bensing and
Dunny, 1993; Bhatty et al., 2015; Schmitt et al., 2018). PrgB-like
proteins are encoded by many other T4SS bearing plasmids in
Enterococci, such as pAD1 (Galli et al., 1990, 1992; Chow et al.,
1993; Süßmuth et al., 2000; Rozdzinski et al., 2001) and pD1
(Schmitt et al., 2020).

Expression of PrgB leads to cellular clumping (Dunny et al.,
1978; Bhatty et al., 2015), which is dependent on the polymer
adhesin domain binding to eDNA (Kohler et al., 2018; Schmitt
et al., 2018). Surprisingly, this interaction does not take place
at the conserved ridge with the cation binding site (Figure 2).
Instead, eDNA binds in a sequence unspecific manner via
charge interactions with surface exposed lysines and arginines
(Schmitt et al., 2018; Figure 3). The same site also binds the
core component of the Gram-positive cell-wall, LTA. As LTA
is mainly composed of repeating units of ribitol or glycerol
phosphate, it has a similar charge distribution to DNA. Compared
to other polymer adhesin domain structures, the surface of
the domain in PrgB is positively charged (Figure 3), enabling
it to bind the negatively charged eDNA and LTA. The ability
of PrgB to induce cellular aggregation and facilitate biofilm
formation is completely dependent on the polymer adhesin
domain, as deletion of this domain completely abrogates these
functions (Bhatty et al., 2015; Schmitt et al., 2018). In contrast,
when all domains between the polymer adhesin domain and
the C-terminal LPxTG motif are removed cell aggregation and
binding to LTA are still observed (Waters et al., 2004). Like Class
II adhesins, PrgB promote adherence to fibronectin (Rozdzinski
et al., 2001; Isenmann et al., 2002) and fibrinogen through its
polymer adhesin domain (Chuang et al., 2009). Using in-frame
deletions it has also been shown that the polymer adhesin domain
is responsible for adhering to macrophages (Süßmuth et al.,
2000). PrgB and its homologs are strong virulence factors in
various infection models, including C. elegans (Bhatty et al., 2015)
and rabbit endocarditis (Chow et al., 1993; Schlievert et al., 1998),
where they play an important role in both vegetation formation
and pathogenicity.

Class V – CluA-Like Aggregation
Substance
Only one protein in Class V (salmon clade in Figure 1A) has
been functionally characterized, namely CluA from Lactococcus
lactis. CluA is functionally homologous to the Class IV protein
PrgB, performing highly similar functions related to cellular
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aggregation and conjugation (Godon et al., 1994; Stentz et al.,
2004). The polymer adhesin domain of CluA has not been
explicitly studied, but due to the overall similarity in effect of
CluA compared to PrgB, it is likely that the polymer adhesin
of CluA works in a similar manner by adhering to cell-wall
components and host surfaces.

Class VI and VII
We completely lack studies on any protein from Class VI
or VII (yellow and gray clades, respectively, in Figure 1A).
Domain analysis of proteins from these two classes reveal that
they contain mucin (or mucin-like) binding protein domains,
indicating that these proteins could be involved in binding to
molecules associated with the extracellular matrix.

PROTEIN FUNCTIONALITIES SPAN THE
CLASSES

Polymer-Binding Induced Aggregation
The most striking common denominator between the different
classes of polymer adhesins is their propensity to bind specific
types of polymers; Class I directly interact with positively charged
oligosaccharides such as dextran (GbpC) and glucans (Dbl);

Class II interact with an array of host proteins with coiled-coil
features such as collagen, fibrinogen, and laminin; Class IV bind
negatively charged polymers such as eDNA and LTA.

The specific binding site of these polymers has remained
largely unknown until the eDNA binding site was elucidated for
PrgB recently (Schmitt et al., 2018). Somewhat surprisingly, the
PrgB polymer adhesin domain binds DNA on the opposite side
of the ridge with the cation binding site (Figure 3), which was
the proposed glycan binding site. For GbpC, the current literature
suggests that the GbpC polymer adhesin domain binds dextran in
the cleft containing the cation binding site (Mieher et al., 2018).
However, based on the available data of the polymer adhesin
domains, we hypothesize a different mechanism for polymer
binding by these proteins. In this model, the polymer adhesin
domains bind their target polymers via their surface, like the
eDNA and LTA binding in PrgB. The driving factor in this
adhesion is the avidity effects that naturally occur when polymers
accumulate, which has been demonstrated for both GbpC and
PrgB (Schmitt et al., 2018).

Post-translational Protease Processing
Several of the polymer adhesin domain containing proteins are
known to be post-translationally processed. PrgB from Class IV,
is post-translationally cleaved in the unstructured region between

FIGURE 4 | Planktonic cells utilize their polymer adhesin domain to attach to various surfaces by binding various molecules such as (i) coiled-coil proteins in
extracellular matrix, (ii) polysaccharides, and (iii) negatively charged polymers such as eDNA and lipoteichoic acid. The attachment to these further drives the
formation of cellular biofilms. Enzymatic cleavage of the polymer adhesin domain might aid in the dispersal of cells from mature biofilms. Created with BioRender.
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the polymer adhesin-domain and the following immunoglobulin
module (Nakayama et al., 1992; Schmitt et al., 2020). This has
been linked to another surface protein, PrgA, which is expressed
from the same operon (Hirt et al., 2000; Bhatty et al., 2015;
Schmitt et al., 2020). The polymer adhesion domain of SpaP
from Class II is also known to be enzymatically released from
the cell surface (Russell et al., 1980; Sommer et al., 1987), thereby
changing the cell’s hydrophobicity properties and facilitating
biofilm release (Lee, 1992; Lee et al., 1996). Whether this
enzymatic release is specific to these two proteins or something
that is more common throughout the classes is not yet known. It
does point to these proteins being actively degraded to facilitate
involved biofilm dispersion, a poorly understood key phase of
the biofilm life cycle (Rumbaugh and Sauer, 2020). An analogous
feature can be observed in the well-studied Gram-negative
RTX-adhesins, which are proteolytically released in response to
nutrient restriction (Guo et al., 2019).

Host Receptor Interactions
As these polymer adhesin-containing proteins are cell-wall
anchored and surface exposed, they are often used in the
interaction with host receptors. As mentioned previously, the
polymer adhesin domains from GbpC (Class I), SspB and SpaP
(Class II) have strong affinity for SAG and its subdomain
iSRCR in a calcium-dependent fashion (Purushotham and
Deivanayagam, 2014; Mieher et al., 2018). Whether or not
other classes also bind SAG is unknown as this has not
been tested. Class II proteins interact with collagen type I,
fibrinogen, laminin, and fibronectin (Love et al., 1997; Holmes
et al., 1998; Heddle et al., 2003; Giomarelli et al., 2006; Sciotti
et al., 2006; Brady et al., 2010). Similarly, in vivo studies
suggest that PrgB promote adhesion to fibrinogen, fibronectin,
thrombospondin, vitronectin, and collagen type I (Rozdzinski
et al., 2001; Isenmann et al., 2002). These extracellular matrix
proteins are common targets for bacterial adhesion mechanisms
(fibronectin in particular) and are thought to be a key component
in establishing bacterial infections. However, the exact nature of
the interactions of polymer adhesin domain containing proteins
and various host receptors can vary widely and exact binding sites
have not been established.

A Concluding Model
Each class of polymer adhesin containing protein has developed
its own niche and affinity toward different types of ligands,
but the overall purpose of its existence appears to be largely
conserved. We propose an overall model for polymer adhesin-
contribution to life cycle of cellular biofilms in Figure 4,
where they are involved in transitioning between the phases.
In the transition from planktonic cells to attachment, different
types of extracellular matrix molecules are recognized. GbpC
and Dbl recognize dextran, amylose, and SAG. Antigen I/II
recognize SAG and common subendothelial matrix proteins
such as fibrinogen. Aggregation substance recognize negatively
charged polymers (eDNA and LTA), as well as fibrinogen
and similar matrix proteins. Because the polymer adhesion is
avidity driven, initial attachment lead to further aggregation as
the concentration of polymers and cells continue to increase

and promote biofilm formation. They also actively recruit
polysaccharides and eDNA which are two major components of
bacterial biofilm. Finally, we hypothesize that proteolytic cleavage
of the polymer adhesin domain might aid in cell dispersal events
in mature biofilms.

OUTLOOK

Albeit more than 518 proteins contain a polymer adhesin
domain, we conclude that this family of bacterial adhesins is
relatively poorly characterized, since only 21 polymer adhesion
domain containing proteins from 5 of the 7 classes have been
studied functionally (Table 1). Interestingly, we found that these
21 studied proteins naturally fall into the same five separate
classes whether they are clustered by polymer adhesin domain
sequence identity or by the domain organization of the full-length
protein (Figure 1B). Furthermore, the type of polymer that the
proteins bind might correlate to the different classes, with Class I
binding (positively charged) glucans, Class II mainly interacting
with coiled-coil proteins and Class IV binding (negatively
charged) eDNA and LTA. However, the ligand preferences of
the polymer adhesin domain of the other classes have not been
conclusively determined to date, so we cannot conclude that each
class binds its own kind of polymer.

Class IV PrgB is one of the better studied proteins with a cell-
wall anchor and a polymer adhesion domain. However, there are
many more proteins with these same two properties that are also
encoded from genes on conjugative plasmids in bacilli, plasmids
that most often also encode for antibiotic resistance. Like their
characterized counterparts, these proteins are very likely to be
involved in biofilm formation and adhesion to specific host
receptors, and therefore probably also strong virulence factors.
Studying these proteins will be useful to further understand
virulence and the mechanism of adhesion processes in Gram-
positive bacteria.
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