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ABSTRACT
The propensity for some monoclonal antibodies (mAbs) to aggregate at physiological and manufacturing 
pH values can prevent their use as therapeutic molecules or delay time to market. Consequently, 
developability assessments are essential to select optimum candidates, or inform on mitigation strategies 
to avoid potential late-stage failures. These studies are typically performed in a range of buffer solutions 
because factors such as pH can dramatically alter the aggregation propensity of the test mAbs (up to 100- 
fold in extreme cases). A computational method capable of robustly predicting the aggregation propen-
sity at the pH values of common storage buffers would have substantial value. Here, we describe a mAb 
aggregation prediction tool (MAPT) that builds on our previously published isotype-dependent, charge- 
based model of aggregation. We show that the addition of a homology model-derived hydrophobicity 
descriptor to our electrostatic aggregation model enabled the generation of a robust mAb developability 
indicator. To contextualize our aggregation scoring system, we analyzed 97 clinical-stage therapeutic 
mAbs. To further validate our approach, we focused on six mAbs (infliximab, tocilizumab, rituximab, 
CNTO607, MEDI1912 and MEDI1912_STT) which have been reported to cover a large range of aggregation 
propensities. The different aggregation propensities of the case study molecules at neutral and slightly 
acidic pH were correctly predicted, verifying the utility of our computational method.
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Introduction

The number of therapeutic antibodies in development con-
tinues to grow at a remarkable rate.1 Increasing competition 
for a limited number of targets has put greater emphasis on 
speed to market, decreased production costs and reduced fail-
ure rates.2 In addition, industry assurances for improving 
patient satisfaction have focused attention on selecting drugs 
that elicit fewer adverse events and allow greater quality of life. 
Accordingly, these factors drive the selection of drugs with 
lower aggregation propensity.3

Antibody aggregation mechanisms are governed by 
a combination of sequence characteristics and environmen-
tal factors which can be categorized by native and non- 
native state protein–protein interactions. Non-native state 
aggregation is induced by physical stresses such as extreme 
pH, temperature and mechanical agitation that affect the 
conformational stability of the protein. For example, the 
purification of antibodies typically requires exposure to 
low pH (3.4–3.6) to elute the antibody molecules bound 
to an affinity chromatography column. The low pH disrupts 
the native conformation, partially exposing the hydrophobic 
core, a subsequent pH adjustment step yields refolded anti-
body molecules but is associated with varying amounts of 
aggregation-prone misfolded molecules. Additional purifi-
cation steps remove these products.4,5 In this work, we 
focus on native state protein–protein interactions that affect 
aggregation propensity at physiological pH values, while 

appreciating that stress-induced, non-native state interac-
tions can also affect overall developability of an antibody.

Antibody therapeutics are often required to be stable at high 
concentrations (typically greater than >100 mg/mL) to enable 
subcutaneous administration. This route of administration is 
advantageous due to lower cost and patient preference. 
However, risk of aggregate formation is greatly increased at 
these high protein concentrations.6 The FDA guidelines state 
that aggregate formation should be avoided, due to their poten-
tial to elicit immune responses, which can lead to adverse 
events, and impaired pharmacokinetics.7 As it is therefore 
important to minimize aggregation, substantial effort has 
been put into developing assays that measure aggregation 
propensity, a key determinant of developability.8

To establish the native state aggregation propensity of a mAb, 
the preferred approach is to concentrate the sample, then apply 
various analytical techniques to detect the formation of aggregates. 
This methodology requires large amounts of purified sample (up 
to 200 mg), which precludes its use early in the antibody drug 
discovery phase where sample availability is limited. Other meth-
ods to determine aggregation propensity that require smaller 
quantities of sample (<0.5 mg) include ammonium sulfate- 
induced precipitation,9 affinity-capture self-interaction nanopar-
ticle spectroscopy (AC-SINS)10,11 and the polyethylene glycol 
(PEG)-induced protein precipitation assay.12–15 We selected 
PEG precipitation to study native state aggregation because 
ammonium sulfate precipitation requires the addition of high 
salt concentrations, which can perturb native electrostatic 
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interactions between protein molecules. Suppression of electro-
static interactions could bias results toward a hydrophobicity- 
driven predictive model. AC-SINS is reported to be an effective 
measure of protein–protein interactions and is compatible with 
very dilute solutions (1–100 µg/mL). However, the assay requires 
the test mAb to be immobilized, therefore a substantial portion of 
the molecule is obscured limiting interactions that would other-
wise occur in solution. A study examining the developability of 
137 clinical stage mAbs suggested that this assay was likely to be 
a measure of self-interaction and varying levels of cross interac-
tions with the nanoparticle complexes.16 This observation could 
explain why samples sharing similar AC-SINS scores were shown 
to have remarkably different solubility values.17,18 These reports 
suggested that the AC-SINS assay was not a suitable method for 
detailed analysis of aggregation propensity.

There are numerous computational tools that predict aggre-
gation of proteins, most are based on amyloid formation and 
therefore focus on an aggregation mechanism driven by 
hydrophobicity.19 Few tools have been developed that predict 
native state antibody aggregation, those that have also tend to 
focus on hydrophobic interactions, disregard differences 
between isotype constant domains and simplify electrostatic 
effects, furthermore the effect of buffer pH is largely 
overlooked.20–22 A mAb that has a low aggregation propensity 
at neutral pH could have a remarkably high aggregation pro-
pensity at slightly acidic pH, and vice versa. Therefore, aggre-
gation studies should be performed at more than one pH to 
better reflect developability challenges.23 Thus, an in-silico 
screening approach that robustly predicts aggregation propen-
sity at different pH values would have improved utility.

We have previously demonstrated that the different aggre-
gation propensities of human IgG1 and IgG4(P) mAbs (shar-
ing the same Fv domain) at slightly acidic and neutral pH could 
be predicted based on the net charge sign of the Fv domain 
relative the electrostatic properties of the Fc domain.24 In this 
work we add a hydrophobic descriptor to our isotype depen-
dent charge-based relative aggregation model to generate 
a mAb aggregation prediction tool (MAPT). We hypothesized 
that an attractive intermolecular electrostatic force in combi-
nation with high hydrophobicity would result in greater native 
state aggregation propensity, reducing developability. Absence 
of substantial intermolecular attractive electrostatic forces or 
presence of strong intermolecular electrostatic repulsive forces 
would mitigate the short-range hydrophobic force contribu-
tions reducing native state mAb aggregation propensity.

A common approach in scoring hydrophobicity is assign-
ment of hydrophobic patches. Several groups have used patch 
definitions as a metric to predict aggregation propensity,25–27 

but there does not appear to be strong data to suggest that 
a patch score would be superior to an overall surface hydro-
phobicity score. Furthermore, defining a hydrophobic patch is 
not trivial and is complicated by the dynamic nature of the 
complementarity-determining region (CDR). We elected not 
to define hydrophobic patches due to the high possibility of 
error. Instead, we decided to use a simpler measure summariz-
ing the homology model-derived surface hydrophobicity of the 
entire variable region. This offers the advantage of requiring 
very little optimization and being intuitive and easily 

interpretable. Despite not directly defining a hydrophobic 
patch, it would be expected that an Fv domain with a large 
hydrophobicity score would have hydrophobic residues in 
close proximity. A visual inspection of the homology model 
would permit informed selection of amino acid residues within 
a hydrophobic cluster for targeted mutation if required. We 
note that there is disagreement in the literature as to the 
classification of hydrophobic residues.28–31 Therefore, we 
defined a hydrophobic residue as being one of the eight most 
hydrophobic residues according to the normalized hydropho-
bicity consensus scale published by Eisenberg et al.32 Every 
hydrophobic amino acid’s side chain ABSASA was calculated 
and these numbers were summed over the entire Fv region to 
yield a single overall score. This score was therefore weighted 
by the size of each hydrophobic amino acid sidechain, as well as 
its surface exposure within the local environment. We show 
that this relatively simple measure is sufficient to predict anti-
body aggregation behavior as part of our MAPT methodology.

To determine a hydrophobic score that would reflect 
a molecule with poor developability, we examined the surface 
hydrophobicity of 97 clinical stage therapeutic mAbs. To vali-
date our method, we tested three approved therapeutic mAbs 
(infliximab, tocilizumab and rituximab), that were reported to 
show high and low aggregation propensity.16 In addition, we 
generated two IgG4P mAbs that were reported to exhibit 
unusually high aggregation propensities as the IgG1 isotype 
(CNTO607 and MEDI1912). We also produced 
MEDI1912_STT as an IgG4P mAb; this mutated form of 
MEDI1912 was reported to show lower aggregation propensity 
compared to the parental molecule.33,34

This work demonstrates that the intermolecular electro-
static interactions between Fv domains and constant domains 
govern native state aggregation by modulating the hydropho-
bic contribution. Importantly, the predictive power of MAPT is 
maintained at slightly acidic and neutral pH for Fv domains 
formatted as either the IgG1 or IgG4(P) isotypes.

Results

Fv domain hydrophobicity analysis

A high surface hydrophobicity is an undesirable characteristic 
and is often cited as a principal component of aggregation. To 
determine hydrophobicity values that might impede the 
development of therapeutic mAbs due to increased aggrega-
tion propensity, we analyzed 97 clinical stage Fv domain 
sequences (76 IgG1 mAbs and 21 IgG4(P) mAbs SI 
Table 1). The therapeutic Fv domains exhibited a wide 
range of hydrophobicity scores, with a mean absolute solvent- 
accessible surface areas (ABSASA) hydrophobicity score of 
545.6 Å2 (Figure 1). We elected to use the 90th percentile as 
a reasonable cutoff point for molecules displaying a favorable 
surface hydrophobicity score. Therefore, based on this sample 
set, Fv domains with ABSASA hydrophobicity scores > 638.5 
Å2 would be expected to show a high probability of poor 
developability due to high aggregation propensity (depending 
on charge characteristics and environmental conditions such 
as buffer pH).
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Fv domain charge analysis

We have previously reported that IgG1 mAbs with positively 
charged Fv domains showed a decreased propensity for native 
state aggregation whereas IgG4(P) mAbs with positively 
charged Fv domains showed increased aggregation propen-
sity at pH 7.4.24 Analysis of the 97 clinical stage Fv domains 
(Figure 2) showed bias toward positive charge; the majority of 
these Fv domains were formatted as the IgG1 isotype. The 
overall number of acidic and basic residues varied substan-
tially, ranging from 12 to 23 and 15 to 26, respectively. 
Analysis of surface hydrophobicity for the samples at the net 
charge extremes showed relatively low ABSASA hydrophobi-
city scores for the majority of the samples. Five samples had 
Fv domains with negative charge ≥ −3, two were of the IgG4 
(P) isotype, 12 samples had Fv domains with net charge 
greater than ≥ +6, all of which were of the IgG1 isotype 
(Table 1). Analysis of the nine Fv domains with high 
ABSASA hydrophobicity scores (>638.5 Å2) (Table 2) showed 
a relatively small net charge range of −4 to +1 at pH 7.4 and 
−1 to +3 at pH 5.0. Five of these antibody candidates have 
been discontinued as of October 2022.35,36 This subset of 
samples with high surface hydrophobicity contained four 
mAbs that have been approved, belimumab, Tralokinumab, 

daratumumab and dupilumab,36 each had a low or favorable 
net charge (isotype dependent) at pH 7.4.

MAPT methodology

MAPT is built on the hypothesis that the Fv domain 
hydrophobic contribution to aggregation propensity is 
modulated by the number of charged residues in the Fv 
domain relative to the number of charged residues in the 
constant domains. A greater number of charged residues 
increases the frequency of electrostatic interactions. The 
probability of unfavorable electrostatic interactions is deter-
mined by Fv domain net charge sign in relation to the 
antibody isotype. A greater Fv domain net charge results 
in substantially different aggregation propensities at pH 5.0 
vs pH 7.4, the magnitude of the difference is dependent on 
the ABSASA hydrophobicity score.
MAPT Score = (H + H × N) × C
H = re-scaled ABSASA hydrophobicity score (ABSASA hydro-
phobicity – 300) ÷ 500
N is the weighted Fv domain net charge.
N = 5.00 + (-0.50 × Q5), if isotype = IgG1 and pH = 5.0
N = 6.00 + (-0.50 × Q7), if isotype = IgG1 and pH = 7.4

Table 1. Clinical stage antibody therapeutic Fv domains with extremes of charge.

Identifier Isotype Clinical status* ABSASA Hydrophobicity (Å2)

Fv domain net charge

pH 7.4 pH 5.0

Lenzilumab IgG1 discontinued 492.6 9 10
Foralumab IgG1 discontinued 539.2 7 9
Alemtuzumab IgG1 approved 451.3 6 8
Basiliximab IgG1 approved 508.4 6 9
Bimagrumab IgG1 discontinued 534.1 6 7
Briakinumab IgG1 discontinued 474.4 6 10
Dacetuzumab IgG1 discontinued 554.0 6 10
Gantenerumab IgG1 phase 3 525.6 6 7
Imgatuzumab IgG1 discontinued 474.1 6 8
Rituximab IgG1 approved 532.6 6 8
Sifalimumab IgG1 discontinued 459.6 6 6
Tocilizumab IgG1 approved 474.3 6 8
Blosozumab IgG4P discontinued 517.9 −3 −1
Infliximab IgG1 approved 591.3 −3 1
Omalizumab IgG1 approved 470.6 −3 1
Mavrilimumab IgG4 discontinued 668.7 −4 −2
Duligotuzumab IgG1 discontinued 622.4 −5 −4

*Clinical status is dynamic, discontinued status can alter; assignments correct as of October 2022.35,36

a       b

Descriptor Value 

10% 453.4 

90% 638.5 

Minimum 393.8 

Maximum 757.5 

Mean 545.6 

Std. Deviation 73.0 

Figure 1. A) Boxplot (demonstrating minimum, maximum, quartiles and median values) of absolute solvent accessible surface area (ABSASA) hydrophobicity scores for 
97 clinical stage antibody therapeutics Fv domains. B) Descriptive statistics of plot.
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N = 5.75 + (-0.25 × Q5), if isotype = IgG4(P) and pH = 5.0
N = 5.25 + (0.50 × Q7), if isotype = IgG4(P) and pH = 7.4
(Q5 is the unweighted net charge at pH 5.0. Q7 is the 
unweighted net charge at pH 7.4).
C is the re-scaled number of amino acids with charged side 
chains, either acidic or basic depending on isotype and pH. Ccr 
is the number of charged residues (either acidic or basic resi-
dues depending on isotype and pH) within the variable region 
sequence.
C = 1 + (Ccr - 17.5) ÷ 20
Ccr = number of K or R in variable region, if isotype = IgG4(P) 
and pH = 7.4 otherwise
Ccr = number of D or E in variable region.

The relative Fv domain charge weightings (N) were based 
on our previous work describing a differential electrostatic 
aggregation model for hIgG1 and hIgG4P mAbs at pH 7.4 
and pH 5.0.24 The weighted Fv domain net charge justifications 
are detailed below:

● The magnitude of the Fv domain net charge is propor-
tional to differential aggregation propensity of the anti-
body formatted as either the IgG1 or IgG4(P) isotypes.

● At pH 7.4 positively charged Fv domains showed lower 
aggregation propensity formatted as the hIgG1 isotype 
relative to the hIgG4(P) isotype. Conversely, negatively 
charged Fv domains showed lower aggregation 

a b

c d                                                              

Descriptor pH 7.4 pH 5.0 

10% -1 0 

90% 6 8 

Minimum -5 -4 

Maximum 9 10 

Range 14 14 

Mean 1.8 3.5 

Std dev 2.7 3.1 

Descriptor 
Acidic 

residues 
D&E 

Basic 
residues 

R&K 

Basic 
residues 
H&R&K 

10% 15 17 18 
90% 20 21 24 
Minimum 12 15 15 
Maximum 23 24 26 

Range 11 9 11 

Mean 17.0 19 21 
Std dev 2.2 1.8 2.3 

Figure 2. A) Boxplot (demonstrating minimum, maximum, quartiles and median values) of net charge score for Fv domains of 97 clinical stage antibody therapeutics at 
pH 7.4 and pH 5.0. B) Descriptive statistics of plot data. C) Boxplot for number of acidic and basic residues. D) Descriptive statistics of acidic and basic plot.

Table 2. Net charge of Fv domains at pH 7.4 and pH 5.0 for IgG1 and IgG4(P) clinical stage antibody therapeutics with an Fv domain ABSASA 
hydrophobicity score greater than the 90th percentile cut off (>638.5 Å2).

Identifier Isotype Clinical Status* ABSASA Hydrophobicity (Å2)

Fv net charge

pH 7.4 pH 5.0

Sirukumab IgG1 discontinued 757.5 −1 −1
Cixutumumab IgG1 discontinued 741.5 +1 +3
Belimumab IgG1 approved 709.5 0 +3
Tralokinumab IgG4 approved 691.3 −1 0
Daratumumab IgG1 approved 689.7 +1 +1
Drozitumab IgG1 discontinued 681.5 0 +1
Galiximab IgG1 discontinued 669.6 0 +1
Mavrilimumab IgG4 discontinued 668.7 −4 −2
Dupilumab IgG4P approved 648.7 +1 +1

*Clinical status is dynamic, discontinued status can change; assignments correct as of October 2022.35,36
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propensity formatted as the hIgG4(P) isotype relative to 
the hIgG1 isotype.

● At pH 5.0 hIgG1 mAbs showed lower aggregation pro-
pensity relative to the pH 7.4 result.

● At pH 5.0 the hIgG4P mAb Fv domain charge sign pre-
ference for lower aggregation propensity was reversed.

● The reduction in aggregation propensity at pH 5.0 for 
hIgG4(P) mAbs with positively charged Fv domains was 
not as large as that observed for the hIgG1 isotype.

Fv domain net charge sign gives the probability of an unfavorable 
electrostatic interaction. To reflect the frequency of unfavorable 
electrostatic interactions, we included a simple weighting function 
(C) that accounts for an unusually high or low number of unfa-
vorably charged residues (isotype specific).

MAPT scores can be interpreted as a traffic light system, 
where low scores represent decreased native state aggregation 
risk (score < 4, green), high numbers indicate high native state 
aggregation risk (score > 5, red). The generation of the risk 
assignments were based on a proprietary data set (not shown) 
and supported by a statistical analysis of 97 clinical stage anti-
body therapeutics utilizing percentiles and standard deviations 
away from the mean to define relative MAPT score standings 
(described in the next section).

Aggregation propensity is affected by factors other than 
charge and hydrophobicity (for example, structural stability 
and post-translational modifications). Therefore, confidence 
in the predictions is greater for samples with MAPT scores of 
<3 or >6. In general, a direct comparison between the out-
putted MAPT score and stress-induced aggregation would be 
inappropriate. The MAPT algorithm metrics are derived from 

native-state structures and typical storage buffer pH values. 
The prediction of stress-induced aggregation propensity is 
beyond the scope of this work.

MAPT scores for 97 clinical stage antibody therapeutics

MAPT analysis of 97 therapeutic mAbs (Figure 3) revealed that 
the majority of samples that reach the clinical stage have low 
MAPT scores (<4). Only one mAb from the approved panel 
(infliximab) had a MAPT pH 7.4 score two standard deviations 
above the mean (≥6.1), indicating a high aggregation propen-
sity for this sample. Four samples had MAPT pH 7.4 scores 
>6.1 in the discontinued panel (duligotuzumab, cixutumumab, 
sirukumab and drozitumab).

MAPT pH 5.0 scores were generally lower, with all the 
approved samples having MAPT scores <5.0, except dupilumab, 
which had a score of 5.1. The discontinued samples with high 
MAPT scores at pH 7.4 also had relatively high MAPT scores at 
pH 5.0. Duligotuzmab had the largest MAPT pH 5.0 score (6.3) 
and also had the largest MAPT pH 7.4 score of 7.5. It is notable 
that infliximab had a MAPT score of 3.9 at pH 5.0, suggesting 
that this sample would exhibit low aggregation propensity at 
a slightly acidic pH (Table 3).

Our approach in classifying developability indicated that 
infliximab, an approved therapeutic IgG1 mAb for the treat-
ment of autoimmune diseases, would have high aggregation 
propensity at pH 7.4, which could have been mitigated by 
formulation at pH 5.0. This mAb has an unusually high num-
ber of acidic residues (22), and histidine residues (4). The Fv 
domain has −3 net negative charge at pH 7.4, at pH 5.0 the Fv 
domain net charge is +1 (Table 4). To confirm our prediction, 

a                                                               b 

Descriptor pH 7.4 pH 5.0 

10% 1.4 0.6 

90% 5.2 4.4 

Minimum 0.8 0.3 

Maximum 7.5 6.3 

Range 6.7 6.0 

Mean 3.1 2.3 

Std dev 1.5 1.4 

Figure 3. A) Boxplot (demonstrating minimum, maximum, quartiles and median values) for MAPT scores of 97 clinical stage antibody therapeutics (76 IgG1 and 21 IgG4 
(p)). B) Descriptive statistics of plot.

Table 3. Clinical stage antibody therapeutics with MAPT pH 7.4 scores >6.0.

Identifier Isotype Clinical Status*

MAPT score

pH 7.4 pH 5.0

Duligotuzumab IgG1 discontinued 7.5 6.3
Cixutumumab IgG1 discontinued 6.5 4.5
Sirukumab IgG1 discontinued 6.3 5.5
Drozitumab IgG1 discontinued 6.2 4.9
Infliximab IgG1 approved 6.1 3.9

*Clinical status is dynamic, discontinued status can change; assignments correct as of October 2022.35,36

MABS e2138092-5



we analyzed this molecule in the PEG aggregation assay. For 
comparison, we also tested tocilizumab and rituximab, which 
MAPT predicted to have low aggregation propensity at pH 7.4 
and very low aggregation propensity at pH 5.0 (Figure 4). 
A PEGmdpnt score for infliximab at pH 7.4 could not be gener-
ated as 70% of the sample aggregated at the lowest test con-
centration of PEG3350. At pH 5.0 the PEGmdpnt score was 11.0, 
indicating a large reduction in aggregation propensity. 
Tocilizumab and rituximab had pH 7.4 PEGmdpnt scores of 

11.3 and 11.4, respectively, at pH 5.0 both samples exhibited 
substantially increased PEGmdpnt scores, indicating very low 
aggregation propensity.

To further validate MAPT as a suitable method for identify-
ing IgG1 and IgG4(P) mAbs with poor developability, we 
examined the literature for mAbs reported to have high native 
state aggregation propensity with sequences in the public 
domain (Table 5). MEDI1912 is a phage-display derived anti-
body formatted as an IgG1 mAb which was reported to 

Table 4. Fv domain electrostatic descriptors and ABSASA hydrophobicity scores of 
three approved therapeutic mAbs. Fv domain homology model surface map: 
Green = hydrophobic side chains, red = acidic side chains (D&E), blue = basic 
side chains (R&K) and cyan = basic side chain (H).

Identifier Infliximab Tocilizumab Rituximab

FV domain 
homology  

model 
(top down view)

ABSASA 
Hydrophobicity 

(Å2)

592.6 474.4 531.3

Acidic residues 
(D&E)

22 13 12

Basic residues 
(R&K)

19 19 18

Basic residues 
(R&K&H)

23 21 20

Net charge 
(pH 7.4)

−3 6 6

Net charge 
(pH 5.0)

1 8 8

Table 5. Fv domain electrostatic descriptors and ABSASA hydrophobicity scores of 
CNTO607, MEDI1912 and MEDI1912_STT. Fv domain surface map: 
Green = hydrophobic side chains, Red = Acidic side chains (D&E), Blue = basic 
side chains (R&K) and Cyan = basic side chain (H).

Identifier CNTO607 MEDI1912 MEDI1912_STT

FV domain 
homology model 
(top down view)

ABSASA 
Hydrophobicity 

(Å2)

671.1 744.9 622.8

Acidic residues 
(D&E)

20 17 17

Basic residues 
(R&K)

14 16 16

Basic residues 
(R&K&H)

15 16 16

Net charge 
(pH 7.4)

−6 −1 −1

Net charge 
(pH 5.0)

−5 −1 −1

 Infliximab Tocilizumab Rituximab 

pH 7.4 pH 5.0 pH 7.4 pH 5.0 pH 7.4 pH 5.0 

PEGmdpnt <7.7* 11.0 11.3 17.0 11.4 >18** 

Goodness of 
fit R2 - 0.995 0.994 0.994 0.9964 - 

MAPT risk High 
(6.1) 

Low 
(3.9) 

Low 
(1.1) 

Low 
(0.5) 

Low 
(1.3) 

Low 
(0.7) 

* Approximately 70% of sample aggregated at lowest test concentration of PEG3350 therefore a PEGmdpnt 
could not be generated. **Sample did not reach base line therefore a PEGmdpnt could not be generated. 

Figure 4. Plot shows Infliximab (red line), Tocilizumab (green line), and Rituximab (blue line) concentration versus PEG 3350 concentration in PBS pH 7.4 (squares) and 
50 mM acetate 125 mM sodium chloride pH 5.0 (triangles). Table insert shows MAPT scores and PEGmdpnt scores derived from a nonlinear regression, sigmoidal dose 
response variable slope fit.
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aggregate at 1.0 mg/mL at a near neutral pH. A variant of this 
mAb with reduced hydrophobicity (MEDI1912_STTIgG1) was 
reported to show decreased aggregation propensity compared 
to MEDI1912IgG1.34 Our analysis of the MEDI1912 Fv domain 
sequence revealed a high ABSASA hydrophobicity score of 
718.6 Å,2 and a net negative charge of −1; MAPT assigned 
high aggregation risk to this molecule as an IgG1 mAb at pH 
7.4. The MEDI1912_STT Fv domain showed a substantial 
decrease to the ABSASA hydrophobicity score (605.6 Å2) 
bringing it below our hydrophobic risk cutoff point defined 
by the clinical stage mAb panel, resulting in MAPT score 
predicting low aggregation risk.

To exemplify the utility of our MAPT method, we produced 
MEDI1912 and MEDI1912_STT as IgG4P mAbs. PEG preci-
pitation assay data (Figure 5) showed that both MEDI1912IgG4P 
and MEDI1912_STTIgG4P at pH 7.4 exhibited reduced native 
state aggregation relative to the respective sample at pH 5.0, 
consistent with the MAPT prediction. A PEGmdpnt for 
MEDI1912IgG4P at pH 7.4 could not be determined because 
~70% of the sample aggregated at the lowest test concentration 
of PEG, indicating a high propensity for native state aggrega-
tion. The sample was stable at 2.0 mg/mL at pH 7.4. Size 
exclusion chromatography data indicated the sample was 
98% monomer (data not shown). Buffer exchanging 
MEDI1912IgG4P into pH 5.0 buffer resulted in visible aggrega-
tion at <2.0 mg/mL, indicating extremely high aggregation 
propensity, therefore this sample could not be measured in 
the PEG aggregation assay. MEDI1912-STTIgG4P exhibited 
a large reduction in aggregation propensity compared to 
MEDI1912IgG4P, with a PEGmdpnt score of 12.2, at pH 7.4 and 
10.8 at pH 5.0. We noted that the generated MAPT score of 4.6 
(moderate-to-high aggregation risk) did not reflect the remark-
able aggregation propensity of MEDI1912IgG4P. This was 

probably due to additional, specific factors that contributed 
to the unusually poor solubility of this in vitro affinity matured 
mAb. For example, Dobson et al. reported that MEDI1912IgG1 
exhibited unique Fab – Fab domain interactions,34 which 
would help to explain the extremely high propensity for self- 
interaction. Nevertheless, the molecule was correctly identified 
as having aggregation risk by our methodology, and impor-
tantly, the effect of altering the buffer pH, and isotype was 
consistent with the prediction.

Wu et al. reported that CNTO607, an IgG1 mAb that binds 
IL-13 with high affinity, exhibited poor solubility, aggregating at 
~13.3 mg/mL in phosphate-buffered saline (PBS) pH 7.2.33 In 
contrast to the mAb, the Fab of CNT0607 was reported to be 
highly soluble in PBS, reaching 160 mg/mL without any visible 
aggregation.37 Our analysis of this Fv domain revealed a high 
ABSASA hydrophobicity score of 671.1 Å.2 The net charge state 
of this Fv domain is −6. MAPT analysis assigned high aggrega-
tion risk to this Fv domain formatted as the IgG1 isotype at pH 
7.4, consistent with the published experimental findings.

MAPT predicted that CNTO607, formatted as the IgG4P 
isotype, would show substantially different aggregation pro-
pensities at pH 7.4 and pH 5.0 compared to the IgG1 isotype. 
To test this, we generated CNTO607 as an IgG4P mAb. The 
PEG precipitation assay (Figure 5) gave a PEGmdpnt of 11.4 for 
this molecule at pH 7.4, indicating low aggregation propensity. 
During buffer exchange to the test pH 5.0 buffer the sample 
precipitated, therefore we could not generate a PEGmdpnt. 
These results were consistent with the MAPT prediction.

MAPT comparison to developability profiling tool

To measure the performance of MAPT, we compared our 
methodology to a refined version38 of the therapeutic antibody 

CNTO607IgG4P MEDI1912IgG4P MEDI1912_STTIgG4P

pH 7.4 pH 5.0 pH 7.4 pH 5.0 pH 7.4 pH 5.0 

PEGmdpnt 11.4 <7.7* <7.7** - 12.2 10.8 

Goodness 
of fit R2 0.997 - - - 0.997 0.995 

MAPT risk 
score 

low  
(2.0) 

high  
(6.7) 

moderate 
(4.6) 

high  
(5.7) 

low 
 (3.3) 

moderate  
(4.2) 

*Sample aggregated at lowest concentration of PEG3350. ** Approximately 70% of sample aggregated at lowest 
test concentration of PEG3350. ***MEDI1912IgG4P (pH 5.0) aggregated at < 2.0 mg/mL and therefore could 
not be tested. 

Figure 5. Plot shows CNT0607IgG4P (red line), MEDI1912IgG4P (green line) and MEDI1912-STTIgG4P (blue line) concentration versus the PEG 3350 concentration in PBS pH 
7.4 (squares) and 50 mM acetate 125 mM sodium chloride pH 5.0 (triangles). Table inset shows MAPT scores and PEGmdpnt scores derived from a nonlinear regression 
sigmoidal dose response (variable slope) fit.
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profiler (TAP),39 a well-known computational method 
reported to selectively highlight antibodies with aggregation 
issues. The refined clinical stage therapeutic (CST) antibody 
profiling rules were calculated as described by the authors (pH 
range of pH 6.4 to 8.4, centered at pH 7.4). The four profiling 
descriptors were: CDR hydrophobicity, Fv domain charge, 
CDR length and Fv domain net charge asymmetry 
(patch_cdr_hyd, ens_charge_Fv, cdr_len, and Fv_chml = VH 
charge – VL charge). For patch_cdr_hyd, a cutoff of 530 Å2 was 
applied, an ens_charge_Fv range from −2.5 to 8.5 was used, 
a cdr_len window from 61 to 75 and for Fv_chml charge 
separation, a window from −4 to +4 was used.

Table 6 compares MAPT scores, with experimentally 
derived native state aggregation data, to the antibody profiling 
method for determining developability. All antibodies’ native 
state aggregation risk propensities were correctly identified by 
MAPT. In contrast, the antibody profiling rules incorrectly 
identified the aggregation propensity of several samples (false 
positive and false negative aggregation propensity assign-
ments). CNTO607IgG4 had three flags, suggesting high aggre-
gation propensity, but this antibody was reported to be stable at 
110 mg/ml in PBS37 and had a high PEG midpoint score 
indicating low aggregation propensity at pH 7.4. Four antibo-
dies had no flags, two of which (drozitumab and infliximab), 
were experimentally determined to show high aggregation 
propensity at pH 7.4.16 Two samples had only one flag (duli-
gotuzumab and sirukumab), both of which were reported to 
have high aggregation propensity in PBS.16

Discussion

Therapeutic antibodies are often required to be stable at high 
concentrations and have high affinities. Improved affinity, 

however, is frequently achieved by the selection of samples 
that have a greater number of charged and hydrophobic resi-
dues in the CDR, which can result in increased aggregation 
propensity.40,41 This problem can be resolved by screening for 
(or designing) high affinity molecules that have reduced aggre-
gation propensity. The aim of this work was to develop and 
validate a computational aggregation prediction methodology 
facilitating the early selection of viable therapeutic molecules. 
We previously described a charge-based model that elucidated 
the cause of the differential aggregation propensities of human 
IgG1 and IgG4(P) mAb with the same Fv domains,24 and this 
model was recently corroborated by the work of Tang et al., Lai 
et al. and Han et al.42–44 We reasoned that by adding 
a computationally derived hydrophobicity descriptor to our 
electrostatic model the generation of a robust aggregation 
propensity scoring system could be achieved.

We investigated the use of hydrophobic interaction chro-
matography (HIC) to experimentally validate our homology 
model-derived hydrophobicity scores. Several groups have 
reported the use of HIC for evaluating aggregation propensity 
by ranking sample elution times.16,22,45 The HIC assay requires 
a high concentration of ammonium sulfate (0.8 M) to facilitate 
binding to the column matrix. To ensure that the HIC buffer 
did not affect native state conformation, we tested the thermal 
stability of eight mAbs in 0.8 M ammonium sulfate 50 mM 
phosphate pH 7.4 (SI Table 2). We observed a large range of 
thermal stability increases of up to 10°C for the Fab domains. 
Notably, the Fc domains did not show substantial thermal 
stability changes. These data suggested that the high salt HIC 
buffer induced CDR structural rearrangements. Consequently, 
HIC retention times are unlikely to reflect the native state 
hydrophobicity of mAbs in typical storage buffers. This obser-
vation could explain the difficulty in using in-silico methods to 

Table 6. Comparison of MAPT to the mAb profiling tool.

Clinical stage therapeutic mAbs profiling results

Identifier Test isotype
Experimental aggregation  

propensity
MAPT 
score Patch_cdr_hyd Ens_charge_Fv CDR_len FV_chml

Duligotuzumab IgG1 High* High 
(7.5)

282.2 −2.8 66 −3

Cixutumumab IgG1 High* High 
(6.5)

602.8 3.2 77 3

Sirukumab IgG1 High* High 
(6.3)

632.1 1.0 63 3

Drozitumab IgG1 High* High 
(6.2)

378.3 0.9 68 5

Infliximab IgG1 High† High 
(6.1)

480.5 −0.9 65 1

MEDI1912 IgG4P High# Moderate 
(4.6)

547.3 0.6 77 −0.9

MEDI1912_STT IgG4P Low# Low 
(3.3)

359.1 0.7 77 −0.9

CNTO607 IgG4P Low‡ Low 
(2.0)

599.3 −4.5 68 6.3

Rituximab IgG1 Low† Low 
(1.3)

309.2 8.0 65 0

Tocilizumab IgG1 Low† Low 
(1.1)

215.5 8.1 64 2

Comparison performed at pH 7.4 to conform with the mAb profiling methodology. * Experimental aggregation propensity sourced from Jain et al.16 (maximum AC SINS 
scores = 29.6), † Experimental aggregation propensity sourced from by Jain et al.16 (low AC SINS scores ≤2.1) and determined in this work by the PEG aggregation assay, 
‡ Experimental aggregation propensity sourced from Bethea et al.37 (stable at 110 mg/mL), and determined in this work by the PEG aggregation assay, # aggregation 
propensity determined in this work by the PEG aggregation assay.
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accurately predict HIC column elution times.46,47 Therefore, 
we could not generate reliable experimental validation of our 
in-silico-derived hydrophobicity score.

To contextualize and validate the MAPT methodology, we 
applied it to a data set of 97 clinical stage mAb therapeutics (76 
IgG1, 21 IgG4(P)). This panel was modified from the 137 
clinical stage mAbs panel collected by Jain et al.16 We excluded 
samples that had mutations in Fc domains, antibody-drug 
conjugates, and therapeutics with non-typical structures. It is 
reasonable to expect that most of these mAbs would be biased 
toward low aggregation propensity (greater developability). 
However, the fact that these mAbs reached clinical stage testing 
does not preclude the possibility of some of these molecules 
having sub-optimal developability characteristics. Typically, 
high-affinity antibodies are selected, and these molecules are 
then triaged based on their biophysical properties. Poor devel-
opability may be mitigated by time-consuming iterative experi-
mental investigations of various purification methods and 
formulation conditions. Therefore, Fv domains with net charge 
or ABSASA hydrophobicity scores that are outside of the 
normal range could reflect poor developability.

We found that the 97 clinical stage samples, the majority of 
which belonged to the IgG1 subclass, were biased toward hav-
ing positively charged Fv domains. Only five of the 97 Fv 
domains had net negative charge lower than −2 at pH 7.4. 
This observation was consistent with our isotype dependent 
electrostatic interaction aggregation model.

We observed a wide range of ABSASA hydrophobicity 
scores for the 97 Fv domains (393.8 Å2 – 757.5 Å2). We 
reasoned that an ABSASA hydrophobicity score greater than 
the 90th percentile (> 638.5 Å2) would be a good approxima-
tion of a Fv domain with an unusually high hydrophobic 
character. This cut off was consistent with an internally gen-
erated hydrophobic risk score generated using early stage 
UCB project samples (proprietary data). Five of the nine 
samples with high hydrophobicity scores were reported to 
be discontinued,35,36 although we appreciate that antibodies 
may be discontinued for a variety of reasons. The mAbs with 
Fv domains that had extremes of charge (+6 to +9 and −3 to 
−5) had relatively low ABSASA hydrophobicity scores. There 
were no IgG4(P) molecules in this subset with positive charge. 
These observations were consistent with our hypothesis that 
a high Fv domain ABSASA hydrophobic score combined with 
an unfavorably high net charge (sign dependent on isotype 
and buffer pH) would be predicted to show high aggregation 
propensity.

MAPT analysis of the 97 clinical stage mAb therapeutics 
showed that 75% of the samples had low MAPT scores (<4.0) at 
pH 7.4, indicating low aggregation risk. Five samples from the 
clinical stage test set had MAPT scores >6.0, four of which were 
reported to be discontinued (duligotuzumab, cixutumumab, 
sirukumab and drozitumab). Markedly, Jain et al. reported 
that all five of these IgG1 samples had the maximum AC 
SINS assay score (∆λmax 29.6 nm, tested in PBS), suggesting 
poor developability. It is probable that self-interactions con-
tributed to these extremely high AC SINS scores, although 
additional nonspecific cross interactions with the capture 

complex are likely.16 It was surprising to find that infliximab, 
an IgG1 therapeutic approved in 1998 for the treatment of 
rheumatoid arthritis, had a MAPT pH 7.4 score of 6.1. 
MAPT identified that the aggregation risk could be mitigated 
by formulation in a slightly acidic buffer. As predicted, inflix-
imab showed high aggregation propensity in the PEG aggrega-
tion assay at pH 7.4 that was substantially reduced by 
formulating at pH 5.0. This mAb was one of the first approved 
antibody therapeutics36 and pre-dates the development of sev-
eral biophysical assays now commonly used to rank antibody 
developability. These observations suggested that MAPT 
would be a good predictor of aggregation propensity. To con-
firm the utility of MAPT we examined the literature for mAbs 
that have been shown to have high native aggregation 
propensity.

CNTO607 is a potent neutralizing anti-IL-13 IgG1 mono-
clonal antibody derived from phage display technology. Its use 
as a therapeutic was prevented due to its high aggregation 
propensity.33 The Fv domain of this mAb has a net charge of 
−6. The lowest net negatively charged score observed for the 97 
clinical stage mAbs was −5. An ABSASA hydrophobicity score 
of 671.1 Å2 was generated for CNTO607, which indicated that 
this molecule had an Fv domain with an unusually high hydro-
phobicity score. MAPT flagged this molecule as having very 
high aggregation risk at pH 7.4 consistent with the published 
solubility limits of 13.3 mg/mL for this IgG1 mAb in PBS.33 At 
pH 5.0 MAPT predicted improved solubility for this Fv 
domain formatted as the IgG1 Isotype. This prediction was 
consistent with the work of Baker et al. who reported that this 
molecule exhibited greater solubility in sodium acetate pH 5.0, 
although the extent of improvement was not defined.48

To further validate the utility of our method, we generated 
CNTO607 as an IgG4P mAb. In contrast to CNTO607IgG1, 
MAPT predicted that CNTO607IgG4P would show low aggre-
gation propensity at pH 7.4 due to lack of intermolecular 
electrostatic attraction between the Fv domain and constant 
domains/greater electrostatic repulsion. The PEG precipitation 
assay gave a PEGmdpnt of 11.4 for this molecule at pH 7.4, 
indicating low aggregation propensity. This result was in agree-
ment with data published by Bethea et al. showing that 
CNTO607IgG4P did not aggregate at 110 mg/mL in PBS pH 
7.2.37 MAPT predicted that CNTO607IgG4p would have high 
risk of aggregating at pH 5.0. During buffer exchange to the 
slightly acidic test pH the sample visibly aggregated. Removal 
of aggregates by filtration and dilution to 2.0 mg/mL did not 
prevent further aggregation. Therefore, we could not generate 
a PEGmdpnt since we could not achieve a concentration of 
2.0 mg/mL required for the assay. The outcome of the isotype 
swap was consistent with our hypothesis that Fv domain net 
charge can mitigate the hydrophobic contribution in 
a predictable manner.

MEDI1912 is a phage display-derived IgG1 mAb with pico-
molar affinity for nerve growth factor, but a remarkably high 
aggregation propensity; aggregates were observed at concentra-
tions as low as 1.0 mg/mL.34 This molecule was generated by 
in vitro affinity maturation of MEDI-578 which was reported not 
to exhibit the undesirable properties observed for MEDI1912 
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(aggregation propensity of MEDI-578 was not revealed). 
Hydrogen/deuterium-exchange mass spectrometry and the 
SAP algorithm25 were used to identify the amino acid residues 
unique to MEDI1912 that were most likely to be responsible for 
the high aggregation propensity. Three hydrophobic residues 
were mutated back to the counterpart amino acids in the par-
ental MEDI-578, W30S, F31T and L56T (MEDI1912_STT), 
resulting in improved relative solubility (no aggregates were 
observed at 1–6 mg/mL by dynamic light scattering).

We generated a homology model of the MEDI1912 Fv 
domain to compare our computational scoring system with 
the published experimental data. The net charge was deter-
mined to be −1, the ABSASA hydrophobicity score was 
744.9 Å,2 substantially greater than our hydrophobicity score 
cut off, suggesting high aggregation risk. MAPT indicated that 
this Fv domain would have a high risk of aggregating at pH 7.4 
when formatted as the IgG1 isotype. The ABSASA hydropho-
bicity score for the Fv domain of MEDI1912_STT was 622.8 
Å,2 which was below our hydrophobicity risk cutoff point. The 
MAPT prediction was consistent with the published experi-
mentally determined solubility data.

As with CNTO607, we produced MEDI1912 and 
MEDI1912_STT as IgG4P mAbs. MAPT indicated that both 
Fv domains formatted as an IgG4P mAb would show decreased 
aggregation propensity at pH 7.4 and greater aggregation pro-
pensity at pH 5.0. Consistent with the MAPT prediction, 
MEDI1912IgG4P showed high aggregation propensity at pH 5.0, 
with visible aggregates at 2.0 mg/mL preventing analysis by the 
PEG aggregation assay. At pH 7.4 MEDI1912IgG4P showed 
reduced aggregation propensity compared to MEDI1912IgG4P 
at pH 5.0. The sample was stable at 2.0 mg/mL in PBS, but 
a PEGmdpnt could not be determined as ~70% of the sample 
aggregated at the lowest test concentration of PEG3350. As 
predicted, the lower ABSASA hydrophobicity score of 
MEDI1912-STTIgG4P resulted in a substantial reduction in 
aggregation propensity. The PEGmdpnt score at pH 7.4 was 
greater than at pH 5.0, consistent with the MAPT prediction.

Taken together these data suggested that electrostatic attrac-
tion/repulsion can increase/decrease the impact of the hydro-
phobic aggregation force. Altering the charge state of a mAb, 
by changing the buffer pH can substantially alter aggregation 
propensity. This can be explained by the relative distances that 
are required for each force to show an effect. Unlike electro-
static forces, which are comparatively long ranged and can 
exert an effect in dilute solutions, hydrophobic forces are 
short ranged and require protein solutions to be relatively 
concentrated before having a meaningful effect. The amount 
of intermolecular electrostatic attractive or repulsive force 
likely alters the local concentration in relatively dilute solu-
tions, thereby modulating the hydrophobic contribution.

To evaluate the predictive power of our method, we com-
pared MAPT to a refined version of TAP, a highly cited 
homology model-based method for the identification of anti-
bodies with high aggregation risk.39 The refined antibody pro-
filing method produced by Thorsteinson et al.38 used four 
descriptors, CDR hydrophobicity, Fv domain charge, CDR 
length and Fv domain net charge asymmetry. The authors 
reported that each of these rules individually provided a trace 
preference for approved antibodies, but taken together, 

provided an enrichment for approved antibodies. MAPT cor-
rectly identified the aggregation risk of each antibody, whereas 
the profiling methodology gave false negative and false positive 
predictions compared to the experimentally derived aggrega-
tion data at the test pH.

Application of MAPT permits samples to be selected based 
on developability and facilitates selection of buffer pH to 
decrease aggregation propensity mitigating developability 
issues. However, samples that are predicted to have high risk 
of aggregation at a physiological pH may impede the effective-
ness of the therapeutic. Therefore, MAPT informed engineer-
ing strategies to reduce aggregation propensity may be 
preferred. Biopharmaceuticals are commonly formulated at 
slightly acidic pH (with a variety of stabilizing agents), whereas 
the pH within the subcutaneous tissue is approximately 7.4.49 

Post administration of drug, the beneficial properties of the 
formulation are lost. This is a particular concern for subcuta-
neous administration since the sample remains at a high local 
concentration for a significant period, increasing the potential 
for aggregation. It is well known that the formation of protein 
aggregates can elicit adverse events and are associated with the 
formation of anti-drug antibodies, which may affect potency, 
or pharmacokinetics.50 For example, Sharma et al. reported 
that mAbs with characteristics associated with increased aggre-
gation propensity tended to show greater clearance in cyno-
molgus monkeys.51 Both MEDI1912IgG1 and CNTO607IgG1 
(each stabilized by slightly acidic formulation buffers) were 
reported to show poor pharmacokinetics/serum persistence. 
MEDI1912 had a poor pharmacokinetic profile compared to 
MEDI1912_STT, intravenous administration to rats revealed 
a 2-fold difference in half-life.34 Baker et al. reported that 
CNTO607, although stable in slightly acidic formulation buf-
fer, exhibited phase changes associated with aggregation events 
when mixed with serum.48 Although approved, infliximab has 
been reported to exhibit unusually high aggregation propensity 
at physiological pH and is associated with a high risk of infu-
sion-related adverse events52 and high immunogenicity.53 

These observations suggested that mAbs with high aggregation 
propensity at physiological pH might not be optimal drug 
candidates. While it remains unclear what constitutes an 
acceptable level of aggregation propensity,50,54 it is reasonable 
to assume that therapeutic molecules with low aggregation 
propensity would have advantages.

Native state aggregation is an extremely complex process 
and not limited to electrostatic and hydrophobic interactions. 
Despite this, our data demonstrate that MAPT robustly pre-
dicts the aggregation propensity of an Fv domain formatted as 
either the hIgG1 or hIgG4(P) isotype at slightly acidic and 
neutral pH. This permits the selection of optimal formulation 
strategies, or rational engineering of antibodies with 
improved biophysical properties, decreasing the likelihood 
of encountering technical difficulties during the production 
of the antibody. Furthermore, MAPT offers the potential for 
identifying therapeutic mAbs with a lower risk of adverse 
events and improved pharmacokinetics. In conclusion, 
MAPT facilitates the early selection of therapeutic lead can-
didates, which may increase the efficiency of the drug discov-
ery process, and potentially reduce the time to market and 
immunogenicity risk.
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Materials and methods

The variable region (V-region) sequences for antibodies 
CNTO607 and MEDI1912 were taken from PDB entry 
3G6A and patent US 2016/0297878 A1, respectively. The 
MEDI1912_STT variant sequence information was obtained 
from a report by Dobson et al.34 The V-region sequences for 
infliximab and rituximab were taken from patents US 
5656272 and WO 02/060955 A2, respectively, and the 
sequences for tocilizumab were taken from Sato et al.55 

Genes encoding the heavy and light-chain V-region 
sequences for each antibody were designed and constructed 
by an automated synthesis approach by ATUM, Inc. The 
synthesized genes incorporated restriction endonuclease 
sites to facilitate cloning into human lambda or kappa light- 
chain vectors or gamma-1 or gamma-4P IgG heavy-chain 
vectors, and Kozak and N-terminal leader peptide sequences, 
derived from mouse antibody V-region genes, to enable 
expression in mammalian cells.

Recombinant IgGs were expressed in UCB’s proprietary 
CHOSXE cell line using our electroporation expression 
platform.56 Following electroporation (MaxCyte® flow electro-
porator), cells were cultured in wave bags for 14 days in 
ProCHO medium (Lonza) containing 2 mM Glutamax, at 
32°C, 5% CO2. Culture supernatants were harvested by centri-
fugation for 45 min at 4000 RPM and clarified by filtration 
using 0.22 µm Stericup filters.

Purification of samples

Samples were purified using a two-step purification process. 
A 25 mL MabSelect SuRe column, (GE Healthcare, 17543802) 
and a HiLoad 16/600 and Superdex 200 prep grade gel filtration 
column (GE Healthcare, 28989335) was attached to an 
ÄKTAXpress (GE Healthcare, 18664501). The MabSelect 
Sure column was equilibrated in PBS pH 7.4 and supernatant 
was applied at a flow rate of 5 mL/min. The column was 
washed with PBS pH 7.4 and the bound material was eluted 
with 0.1 M sodium citrate, pH 3.6 and fractions were pH 
adjusted with 2 M TRIS-HLC pH 8.5 to a pH of 5–6 with 
2 M Tris-HCl pH 8.5. The eluted material was then applied 
to a HiLoad Superdex 200 16/600 gel filtration column (GE 
Healthcare, 28989335) to remove aggregates. Unlike the other 
purified samples, CNT0607IgG4P and MEDI1912IgG4P exhibited 
high levels of aggregate formation post pH adjustment and 
required additional filtration steps prior to loading onto the 
gel filtration column.

Sample preparation

Post gel filtration, the samples’ concentrations were normalized 
to approximately 3.0 mg/mL, filtered through a 0.22 µm filter 
and buffer exchanged into PBS pH 7.4 or 50 mM sodium acetate 
125 mM sodium chloride pH 5.0 using Slide-A-Lyzer™ MINI 
dialysis device 10 K MWCO (ThermoFisher Scientific, 88401), 
following the manufacturer’s instructions. Following dialysis, 
the samples were diluted to 2.0 mg/mL in the respective buffer. 
For clarity, the buffers are referred to by their pH value.

Polyethylene glycol aggregation assay

Stock PEG 3350 (Merck, 202444) solutions (w/v) were prepared 
in PBS pH 7.4 or 50 mM sodium acetate 125 mM sodium 
chloride pH 5.0. An eleven step, 1:1.1 serial titration was per-
formed by an assist plus liquid handling robot (Integra, 4505), to 
avoid liquid handling issues the top concentration of PEG 3350 
was limited to 40%. To minimize non-equilibrium precipitation, 
sample preparation consisted of mixing protein and PEG solu-
tions at a 1:1 volume ratio. 35 µL of the PEG 3350 stock solutions 
was added to a 96-well v-bottom PCR plate (ThermoFisher 
Scientific, AB1300). 35 µL of a 2.0 mg/mL sample solution was 
added to the PEG stock solutions resulting in a 1.0 mg/mL test 
concentration and PEG 3350 concentrations of 7.7–20% (w/v). 
The plates were then sealed with adhesive PCR plate foils 
(ThermoFisher Scientific, AB0626) and incubated at 20°C for 
24 h and subsequently centrifuged at 4000 x g for 1 h at 20°C. 
50 µL of supernatant was dispensed into a UV-Star®, half area, 
96-well, μClear®, microplate (Greiner, 675801). Protein concen-
trations were determined by UV spectrophotometry at 280 nm 
using a FLUOstar Omega multi-detection microplate reader 
(BMG LABTECH). The resulting values were plotted using 
Graphpad prism version 7.04, the PEG midpoint (PEGmdpnt) 
score was derived from the midpoint of a sigmoidal dose– 
response (variable slope) fit.

Hydrophobicity score

We first generated homology models of each Fv domain 
sequence being analyzed using ABodyBuilder,57 and refined 
these models using MAESTRO prepwizard to remove any 
remaining steric clashes. We defined a hydrophobic residue 
as being one of the eight most hydrophobic residues accord-
ing to the normalized hydrophobicity consensus scale pub-
lished by Eisenberg et al.32 These residues are: phenylalanine, 
isoleucine, tryptophan, leucine, valine, methionine, alanine 
and glycine. Every hydrophobic amino acid’s side chain 
ABSASA (measured in Ångstroms squared) was calculated 
using the program PSA, which is part of the JOY suite,58 

and these numbers were summed over the entire Fv region 
to yield a single overall score. As a natural side effect of this 
calculation, the contribution of each hydrophobic amino acid 
to the overall score is therefore weighted by the size of its 
sidechain, as well as its surface exposure within the local 
environment.

Electrostatic analysis

We used discrete charge rather than partial charge to simplify 
the charge scoring system. The pH values chosen for analysis 
(pH 7.4 and pH 5.0) are sufficiently described by discrete 
charge due to the dominant contribution of charged side 
chains at these pH values, and their prominent involvement 
in protein–protein self-interactions. The amino acids with 
electrically charged side chains used for our calculations were 
arginine, lysine, histidine, aspartic acid, and glutamic acid. 
Basic residues were binned into two groups, residues with 
positively charged side chains at pH 7.4 (lysine and arginine) 
and residues with positively charged side chains at pH 5.0 
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(histidine, lysine and arginine). Residues with negatively 
charged side chains at pH 7.4 and pH 5.0 included aspartic 
acid and glutamic acid. Net charge was determined by sub-
tracting the number of negatively charged residues from the 
number of positively charged residues, at a given pH. The 
predictions are based on typical storage buffer salt concentra-
tions (50 mM −150 mM), substantial deviations from these salt 
concentrations would compromise the accuracy of the predic-
tion due to salt shielding effects.24

Clinical stage therapeutic profiling tool

The method for calculating the CST profiling tool descriptors 
was as described by Thorsteinson et al.38 In brief, homology 
models of the variable regions that were not part of the test set 
published by Thorsteinson et al. (CNTO607IgG4P, 
MEDI1912IgG4P and MEDI1912_STTIgG4P) were created using 
the Antibody Modeler application with Molecular Operating 
Environment (MOE) 2022.02, from the Chemical Computing 
Group. The descriptors were calculated with the MOE Protein 
Properties application with sample feature toggled on. This 
produced 100 conformations of each model where the frame-
work is restrained, and sidechains are free to move using 
LowModeMD and alternate protonation states are sampled 
from pH 6.4 to 8.4, centered at pH 7.4. Four profiling rules 
were used describing CDR hydrophobicity, Fv domain charge, 
CDR length (MOE CCG CDR definition) and Fv domain net 
charge asymmetry (patch_cdr_hyd, ens_charge_Fv, cdr_len, and 
Fv_chml = VH charge – VL charge).

Alphabetical list of abbreviations

Å Angstrom; ABSASA Absolute solvent-accessible surface area; 
AC-SINS; Affinity-capture self-interaction nanoparticle spectro-
scopy; CCG Chemical Computing Group; cdr_len Total number 
of CDR residues annotated with CCG scheme; CST Clinical-stage 
therapeutic antibody; Ens_charge_Fv Forcefield charge of the Fv 
averaged on a structural ensemble; Fc Fragment, crystalizable 
domain of the antibody; Fv Fragment, variable domain of the 
antibody; Fv_chml Fv charge heavy minus light; HIC 
Hydrophobic interaction chromatography; IgG Immunoglobulin 
G; mAb Monoclonal antibody; MAPT mAb aggregation predic-
tion tool; patch_cdr_hyd Surface area of the hydrophobic patches 
near the CDRs; PEG Polyethylene glycol; SEC Size exclusion 
chromatography; TAP Therapeutic antibody profiler
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