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The operational performance of a chemical process plant highly depends on the assets’

condition and maintenance practices. As chemical processes are highly complex systems,

increasing the risk frequencies and their interactions, the maintenance planning becomes

crucial for stable operation. This paper provides a critical analysis of the recently devel-

oped approaches for asset maintenance approaches in the chemical industry. The strategies

include corrective maintenance, time-based, risk-based, condition-based and opportunistic

maintenance. Various methods on selecting the optimal maintenance strategy are dis-

cussed as well. This paper also evaluates reliability issues in chemical plants and integrated

sites  encompassing the maintenance optimisation. Several directions for potential future

improvements are proposed based on this analysis, as follows: (i) potential study of exploit-

ing  production or other opportunities to postpone or conduct earlier maintenance; (ii) joint

optimisation of spare part ordering strategy and data-driven maintenance planning study

is  needed; (iii) fault propagation modelling of structural dependent units to facilitate proper

maintenance planning; (iv) a framework or tool that consider quantitative and qualitative
time-variant data inputs is lacking for business-informed asset maintenance.

©  2020 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
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In another review, Sharma et al. (2011). highlighted that
.  Introduction

he importance of maintenance management has grown over
he years. Apart from the energy cost, the spending on mainte-

ance can be the most significant part of operational budgets
in the chemical industry and refineries. Maintenance is a fun-
damental component of good housekeeping practice in the
industry. Many  companies in the chemical process industries
prefer to replace malfunctioning equipment with the latest
technology, instead of performing a critical evaluation of the
maintenance plans (Armitage, 2015). Equipment replacement
only has the marginal benefits provided the maintenance pro-
grams are ineffective, i.e. the long-term cost-to-benefit ratio of
maintenance is larger than replacement due to the high failure
rate of the equipment. The goal of an effective maintenance
and reliability program is to provide the right maintenance
on the right assets at the right time. Maintenance actions are
made to reduce the failures (rates/frequency) to prolong the
production uptime and reduce production loss. As the chem-
ical processing industry has high numbers of process-related
accidents (shown in (Okoh and Haugen, 2014)), maintenance
planning for risks reduction is crucial for safe operation. This
point is underscored by the catastrophic failure of the Union
Carbide plant in Bhopal, which can be traced to equipment
failure (Chouhan, 2005).

Maintenance management has benefited from the advent
of a large area in operational research, called maintenance
optimisation. This approach is based on mathematical models
in which both costs and benefits of maintenance are quanti-
fied, and the optimal balance between both can be obtained.
In the early 1960s, this research area was founded by sev-
eral researchers, whose models and results are documented
by McCall (1965). However, the main question arises: What
are the gaps of applications of the maintenance optimisation
models in practical maintenance management? Dekker (1996)
conducted a literature search of published works before 1990,
which focus on publications with applications. The majority
of the analysed works dealt with the use of maintenance opti-
misation models with real case studies. The remainder dealt
with hypothetical case studies with real data or real examples
with hypothetical data. However, limited publications were
reported on the petrochemical and chemical industry.
maintenance is becoming a profit-driven business function
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Fig. 1 – The asset maintenance management model
(Elhdad et al., 2013).

(

(

(

instead of just a supportive function to the assets. The effort in
improving operation up-time and enhancing assets’ capabil-
ity and service lifetime could improve the cost-effectiveness
of the process. This is specifically applicable to the oil and
chemical industry as they are highly susceptible to hazardous
risks, which are detrimental to production, operation, human
and environment. The common assumption in maintenance
modelling is that the maintenance is ‘imperfect’ (see the lat-
est British Standards of risk inspection (BS-EN-13306, 2017).
Carlo and Arleo (2017) conducted reviews on the applications
of ‘perfect’ maintenance into real practises in the indus-
try and provided guidelines to select the proper ‘imperfect’
maintenance model. de Jonge and Scarf (2019) presented a
comprehensive review of different mathematical approaches
used by researchers in generic systems up until 2018 in main-
tenance planning

Tseng et al. (2015) did a comprehensive review of the main-
tenance management models in various industries. Most of
the studied areas focus on the power plants, manufacturing
facilities and oil refineries. Various published works from 1995
to 2011 that utilise preventive and predictive maintenance
strategies, e.g. time-based maintenance (TBM) and condition-
based maintenance (CBM) are reviewed. Alrabghi and Tiwari
(2015) conducted a state-of-the-art review of simulation-based
approaches for maintenance systems in various industries.
Majority of the reported works used discrete event simu-
lation and genetic algorithm (GA) as an optimisation tool.
They suggest that a well-developed framework to guide the
maintenance planning process is needed in real case studies,
especially in the context of CBM.

In summary, a significant body of scientific literature about
the maintenance management models can be found. How-
ever, the overall lifecycle of the asset is not considered in the
available reviews, but rather the reviewed papers deal with
asset’s failure performance given a time horizon, thus decide
on maintenance on the asset. The asset maintenance concept
follows a hierarchical framework, presented in Fig. 1. As such,
the main questions arise: (i) Which maintenance strategies are
the most suitable for industrial practitioners in the chemical
process industry? (ii) What are the advantages and disadvan-
tages of each maintenance planning policies? (iii) What should
be the future directions to comprehensively optimise the asset
management in the industry, as well as the extension of main-
tenance optimisation models? A more  considerable effort has
to be made to produce outcomes linked with the published

works to solving real-world problems.
1.1.  Purpose  of  this  review

As discussed in the previous section, various maintenance
strategies adopted in the chemical industries were proposed
and extensively researched, but their applicability is still
questionable. In the state-of-the-art, despite the fact that sys-
tematic strategies are widely used, the main limitations are
the oversimplified assumption of assets’ lifetime and condi-
tion, as well as the complexity of risk evaluation. A detailed
analysis to pinpoint the pros and cons of each maintenance
approaches is needed. This review is aimed to fulfil the
ultimate goal of providing critical insights into industrial prac-
titioners on various maintenance strategies used in chemical
industries. The targets of this review paper are described as
follows:

a) Analyse previous research articles on various approaches
in maintenance planning and scheduling models in the
chemical process industry. Their historical and recent
applications will be vastly reviewed and discussed, pro-
viding critical insights to each approach.

b) Identify the research gaps in the current literature. The
potential improvement areas in maintenance planning
and scheduling, maintenance strategy selection, as well
as Total Site maintenance scheduling, are identified that
allows more  efficient and effective determination of pro-
cess bottlenecks as well as maintenance actions.

(c) Discuss the potential future development of the current
frameworks. New innovative elements can be exerted or
combined with the current frameworks to facilitate effec-
tive asset management optimisation.

1.2.  Structure  of  this  review

This review paper is structured as follows: Section 2.1 analyses
the approach for long-term maintenance planning in chemi-
cal processes. It consists of their brief introduction, historical
and recent development, followed up by the critical analysis of
each policy. Section 2.2 summarises the maintenance strategy
selection approaches, and Section 2.3 comprises of short-
term maintenance scheduling models applied in the chemical
industry. Section 3 focuses on the maintenance framework for
integrated chemical sites. Section 4 provides an overall sum-
mary of the review, and section 5 consists of the suggested
future direction in the domain of asset management. In short,
the following problem classes are considered:

(i) Long-term Maintenance Planning. This section analyses
the state-of-the-art practices in long-term maintenance
planning, including time-based, risk-based, condition-
based and opportunistic maintenance. Short-term main-
tenance schedule models in the chemical plant are
discussed as well.

(ii) Long-term Maintenance Strategy Selection. This sec-
tion mainly assesses various approaches (qualitative and
quantitative) on selecting the optimal maintenance plan-
ning strategy for the chemical process.

iii) Long- and Short-term Maintenance Planning for Inte-
grated Chemical Sites. The up-to-date analysis of
published works on Total Site maintenance planning and
scheduling is provided in this section.
(iv) Summary and Perspective on Asset Maintenance and
Management. Suggestions on the future development of
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Fig. 3 – The common failure ‘bathtub’ curve, adapted from
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edopoulos and Shah (1995).

asset maintenance planning and scheduling models, as
well as way-forwards of asset optimisation other than
maintenance, are proposed.

Generic maintenance management approaches such as
otal Productive Maintenance (TPM), Reliability-Centered
aintenance (RCM) and Total Quality Maintenance (TQM)

re not discussed in this paper. These approaches are based
n guidelines for practitioners and standard operating pro-
edures. Such procedures and guidelines are the output of
onceptual modelling and optimisation, which positions them
eyond the current scope. This paper focuses on the analysis
f different strategies used by other researchers in optimis-

ng maintenance planning. For more  information about their
escriptions or implementations, the readers are suggested
o refer (Ahuja and Khamba, 2008) for TPM, (Hezoucky and
gence internationale de l’énergie atomique, 2008) for RCM
nd (Al-Najjar, 1996) for TQM.

.3.  Selection  of  the  Publications

he collected articles in this review paper have been found
ia Google Scholar, Scopus and Web of Science databases. The
rticles are searched by the following keywords: ‘Maintenance
cheduling | Planning’ & ‘Chemical Process | Production | Refin-
ry’, where ‘&’ and ‘|’ are logical operators for ‘and’ and ‘or’.
ig. 2 shows the publication statistics using these keywords.
eb of Science lists fewer publications (total 1033) compared

o Google Scholar (total 1200) and Scopus (total 1047). Articles
rom Google Scholar are collected and filtered manually for
nalysis in this review to avoid omitting relevant papers. The
ublications for 2020 are published as of 1st July 2020.

To further refine the search, the word ‘optimisation’ is used
s the benchmark keyword to spot the relevant articles manu-
lly that dealt with maintenance optimisation in the chemical
ndustry. A total of 315 articles is found to be related. Not all
rticles are used in this review upon thorough examining their
ontents to provide a quality analysis of the paper. The list is
urther reduced to about 200+ publications.

.  Maintenance  planning  and  scheduling

he reliability of an unmaintained system, usually a single-
omponent or simple system is typically described with the
o-called ‘bathtub curve’ (Fig. 3). The failure rate function is
ivided into 3 periods, the initial period of decreasing failure
ate (the burn-in phase), the constant failure rate period (the
andom failure phase) and the increasing failure rate period

the wear-out phase). Equipment in the chemical process
ndustries is usually characterised by a relatively long period
of increasing failure rate that requires maintenance optimisa-
tion (Mauney and Schmidt, 1997). Maintenance actions must
be performed on equipment to provide reliable and safe oper-
ations.

There are two kinds of maintenance, generally: reactive
and proactive maintenance (Iqbal et al., 2017). Reactive main-
tenance, also called corrective maintenance, is performed
after a failure has occurred. On the other hand, proac-
tive maintenance is done before a failure occurs to avoid
unplanned plant breakdown. However, Al-Najjar and Alsyouf
(2003) stated that more  cost than a complete replacement
would be incurred if the maintenance interval is not well
planned. The focus in this part is mainly on assessing dif-
ferent models of maintenance planning and scheduling. The
applications of each maintenance model are identified and
analysed. The limitations or potential development for each
maintenance planning models are suggested and discussed.

2.1.  Long-term  maintenance  planning

2.1.1.  Corrective  maintenance  (CM)
Corrective Maintenance (CM) is one of the oldest maintenance
policies, in which the concept is to ‘fix it when it breaks’
with no monitoring or risk analysis is needed (Kothamasu
and Huang, 2007). It is a policy to replace or repair a compo-
nent to its expected function after a failure has occurred to it.
Performing CM only leads to frequent equipment downtime,
high production loss and high maintenance cost due to unex-
pected failure. Since the consequences of failure can be very
costly to repair a posteriori, or may even be catastrophic, PM
is often economically preferable, to reduce the failure rate or
the ‘effective age’ of the equipment by preserving the equip-
ment’s condition. For both CM and PM policies, the equipment
must be decoupled from the process until the maintenance
activity is completed (Azadeh and Abdolhossein Zadeh, 2016).
However, PM is not able to eliminate failures but reduces the
failure rate. In many  cases, improper planning of PM actions
incurs more  cost than CM. In most of the companies, CM is
still widely adopted in engineering practice, claimed to reduce
unnecessary maintenance planning cost and resources (Wang
et al., 2014).

2.1.2.  Time-Based  Maintenance  (TBM)
The Time-Based Maintenance (TBM) typically involves regular
examination, recognition and improvement of equipment’s
condition prior to their operational failures. This type of main-
tenance strategy often uses statistically-derived probability
distribution functions of the failure rate over time as predic-
tors of the equipment reliability. Time there may refer to the
elapsed time since installation or repair (calendar years), or
operating time (e.g. accumulated hours of service).

This maintenance policy is further divided into two
sub-classes of methods: age-based policy and block-based
policy (see Fig. 4). The age-based policy is a preventive
maintenance/replacement policy that is dependent on the
equipment’s lifetime, assuming a specific deterioration rate
with equipment ageing. Failure replacement is conducted if
a failure occurs before the maintenance time. Replacement
also occurs if the time elapsed reaches a statistically deter-
mined period, even if failure has not yet occurred. The time of
replacement end then becomes the starting point for the next
period of maintenance. The maintenance period is affected

by the failure events. This policy brings the advantage of
maximising the lifetime of equipment but requires complex
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Fig. 2 – Publication statistics of maintenance planning and scheduling in the chemical industry: Google Scholar, Scopus and
Web of Science databases up to 1st July 2020 (‘*’ denotes the ave

Fig. 4 – Types of time-based maintenance policy: (a)
block-based policy; (b) age-based policy (Jiang and Ji, 2002).

One of the earliest instances of periodic maintenance plan-
ning in the chemical industry is the work done by Dedopoulos
maintenance activity and planning (Jiang and Ji, 2002). The
block-based policy is a periodic maintenance policy that is
conducted on the component(s) independent of its/their previ-
ous failures. Preventive maintenance is conducted after fixed
periods. Even after a failure occurs, and the next maintenance
period is unaffected. It was implemented to maximise the pro-
duction rate and allow the maintenance to occur on the basis
of a fixed schedule. In the case of ‘imperfect’ maintenance
model, the maintenance policy can be aperiodic due to the
increment of failure frequency. However, the main concern
is that the new equipment may undergo excessive mainte-
nance, which incurs extra maintenance cost (Kamaruddin and
Ab-Samat, 2014).

The failure and reliability of data for equipment are the
main input for the time-based maintenance optimisation
model. Failure analysis through component reliability study
must be performed at the design stage (Vilarinho et al., 2017).
The goal is to determine the fundamental reliability functions,
in particular, the failure density function (Eq. (1)), the survival
or reliability function (Eq. (2)), and the hazard rate function (Eq.
(3)). The estimation of the reliability functions from collected
data set is generally made up of two approaches: the first
approach derives directly empirical survival functions from
real data about time to failure (TTF), and it is called empirical
function direct to data; the second, called theoretical distri-
bution research is more  complicated and most appropriate
for theoretical distributions, such as Weibull, exponential or
normal (Gaussian) (Faccio et al., 2014). The authors concluded
that the second approach is usually adopted because it pro-
vides more  information, in particular, a better evaluation of
reliability from the range of collected data. The theoretical dis-
tribution can be used in more  complex engineering analysis of
reliability and maintenance policy decisions. The most popu-
lar distribution model for the failure function is the Weibull
model (Eq1), because of its flexibility. It is suitable to study the
rage publication from 1960 to 1998).

lifetime of components with different hazard rate functions
(Jóźwiak, 1997). Its mathematical formulation is as follows:

f (t) =
(
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R(t) = P(Tf > t) = 1 −
∫ t
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f (t)dt = exp

(
−
(

t

y

)b
)

(2)

h(t) = Probability of failure occurs given no failure

before time t = f  (t)
R(t)

(3)

where f(t) is the failure density function, y is the scale
parameter, b is the shape, Tf is the failure time, R(t) is the
reliability function, and h(t) is the hazard rate function. The
estimation of scale and shape parameters can be carried
out from the run-to-failure analysis. The application of least
square method allows calculating the Weibull parameters
according to empirical reliability data. The estimated fail-
ure rate data for plant equipment can be obtained from the
recently published OREDA handbook (OREDA, 2015).

2.1.2.1.  Historical  overview  of  TBM  in  chemical  process.  In the
industry, the application of the PM strategy can be generally
performed through either experience or original equipment
manufacturer (OEM) recommendations which are based on a
scientific approach. The application of PM through experience
is a conventional PM practice. In most cases, it is performed at
regular time intervals (Shey-Huei Sheu et al., 1995), for exam-
ple, every 1,000 h or every 10 d, based on recommendations.
Through experience, no standard procedures are followed, and
knowledge from technicians and engineers for maintenance
purposes is a valuable asset to the company. Technicians and
engineers in this setting learn from previous mistakes and
past experiences. They are able to detect the abnormal con-
ditions of a machine by observation, and then decide the
appropriate PM actions to apply in order to avoid machine
breakdown. The main drawback of PM through experience is
that the company may face difficulties when the experienced
person leaves the company. The personnel may not always be
present in production lines to solve maintenance problems.
This PM practice is not usually applicable when attempting
to minimise operation costs and maximise machine perfor-
mance, as mentioned by Ahmad and Kamaruddin (2012).
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nd Shah (1995). They first developed a short-term stochastic
cheduling problem to determine the expected profitability of

 multi-purpose plant varies with the hypothetical equipment
ailure rate. The solutions are then transferred to the next
ong-term maintenance optimisation problem to determine
he optimal time-based maintenance policy, with the objective
o maximise the expected profit of the plant. The maintenance
olicies determination for a multipurpose or batch production
lant framework are complicated as the process operation,
nd equipment flexibility must be considered. The unplanned
quipment shutdown could affect the timely production of
ifferent products.

Tan and Kramer (1997) proposed a generic framework
tilising Markov model to identify optimal preventive mainte-
ance plan in a feed pre-heat exchanger network. As failure is

 stochastic phenomenon, it is necessary to consider it quan-
itatively from a probabilistic point of view. In the mentioned
orks, the failure analysis provides a basic understanding of

he failure characteristics that enable the plant reliability engi-
eer to estimate the bottlenecks of the operations. However,
he quantitative aspects of reliability engineering are often
naccurate and criticised as complicated. Their models also far
rom applicable because the lifetime data is solely theoretical,
nd the risk aspects are not considered.

Mauney and Schmidt (1997) presented a quantitative
ecision-making model by integrating engineering analysis
ith economic evaluation of the chemical process plant com-
onents. They applied the use of failure analysis to determine
he PM action at the optimal timing to obtain maximum NPV.
hey applied the concept to primary reformer replacement in

 single path ammonia synthesis unit and boiler feed water
ump as case studies. However, their model only focuses on

 single equipment, which neglects the interaction between
nits. As failure effects may propagate through the equipment

n the real case, their simplified model limited its practicality
nd required further development.

Charles et al. (2003) had implemented the periodic PM and
M strategies on batch plant scheduling in a semiconductor
afer fabrication facility. By examining the industrial data,

he lifetime distribution and the repair time for all equipment
re fitted. In their work, the MELISSA-C++ is utilised as an
bject-oriented simulator to model the interaction effect on
roduction and maintenance. The interdependency between
M and CM actions are also identified. They also performed

 graphical search to determine optimal PM frequency, with
he objective to minimise the direct and indirect maintenance
osts. The proposed work is only tested on a bench of semi-
onductor manufacturing prototype, which is yet applied in

 real plant. As the optimum cost is only identified using a
raphical approach, an advanced global optimisation tool or
lgorithm is needed to identify the optimal PM frequencies.

In contrast to the approach that mainly focuses on identi-
ying effective PM policy, Pistikopoulos et al. (2000) proposed a
eneral MILP optimisation framework to properly account for
aintainability of equipment at process design level for a sim-

le multipurpose chemical process. They also proposed the
odel for simultaneous optimisation of design, production

nd maintenance planning. The degree of assets utilisation is
etermined by the initial reliability characteristics and imple-
ented time-based maintenance policies.
Goel et al. (2003) also proposed a MILP model to integrate

eliable process design with production and time-based PM

lanning for a large-scale industrial process. Their frame-
works allow the selection of reliability of the equipment at the
design stage by balancing the associated cost with its impact
on process availability at the operational stage. However, the
frameworks proposed by the mentioned works only applied
to the imaginary and simplified block-based case studies. The
practicality of the proposed models might be low for large-
scale problems due to the large numbers of variables. The
associated failure events and risks are not incorporated into
the models either.

A review of TBM application prior to 2010 is given by Das
and Sarmah (2010). They focus on the review of the theoretical
optimisation models for the repair/replacement/inspection of
components/assemblies/subsystems in heavy process indus-
tries. The maintenance grouping models based on economic
dependencies are also provided. According to that study, the
grouping of maintenance activities that deal with combina-
torial aspects of maintenance planning is more  practical in
industries. However, the articles they reviewed mostly deal
with theoretical optimisation models with no real applica-
tions. Most of the models made several assumptions, which
restrict their practicality in the real industry.

2.1.2.2.  Recent  development  of  TBM  in  chemical  process.  In
recent years, Mat  Dan and Zulkafli (2016) applied Weibull
analysis on the equipment in a gasification process to deter-
mine their failure behaviour. The data is either estimated or
obtained from the company’s owner with permission. They
fitted Weibull function to the data in order to determine the
minimum and maximum of constant maintenance intervals
as well as the frequencies of maintenance. They also esti-
mated the size of labour required to perform the maintenance
tasks. However, their method might not be applicable to the
real process as several factors are ignored (e.g. unit dependen-
cies, risks and maintenance-production relationship).

A framework to optimise the reliability of a heat supply sys-
tem is illustrated in the work of Postnikov et al. (2018). The joint
optimisation of the component reliability of heat source and
heat network schemes is considered in their study. The prob-
lem focuses on the determination of the optimal redundancy
(hot standby) allocation to the equipment (to reduce failure
rates) and the effective maintenance policy equipped with
advanced control systems and instrumentations (to reduce
restoration time). They also consider the post-emergency heat
supply systems in the event of component failure. Their pro-
posed model ensures the most efficient distribution of heat
supply with high confidence in heat supply reliability.

Thodi et al. (2016) had applied a Markov modelling tech-
nique to identify the optimal PM intervals for each equipment
in the liquefied natural gas processing facility. By setting cer-
tain availability threshold for the process, the PM time interval
for each unit can be determined. Their study is able to deter-
mine the states of the equipment (failed or operating) for a
certain timestamp based on their corresponding failure and
repair rates. However, their study did not consider the asso-
ciated maintenance costs and assumed the equipment is ‘as
good as new’ once they are maintained, which is hardly the
case in practice.

Nguyen and Bagajewicz (2010) proposed a Monte-Carlo
simulation-based maintenance optimisation model, with the
objective to minimise the maintenance costs for a 2 y time
horizon of plant operations. The model is an extension of a
previous analysis framework (Nguyen and Bagajewicz, 2008),

including more  features, such as spare parts inventory poli-
cies, human labour allocations based on their specific skills
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and imperfect maintenance model. They applied the model in
the realistic chemical processes: Tennessee Eastman Problem
(Ricker and Lee, 1995) and a large-scaled fluid catalytic crack-
ing (FCC) unit in refineries. Based on reliability data obtained
from previous studies, the PM time schedule and resources
allocations (spare parts and human labours) were determined
with optimal maintenance costs. However, to simplify the
model, they assume the maintenance intervals and starting
times are fractions of the equipment’s Mean-Time-to-Failure
(MTTF). The workforce size is also determined solely by the
maintenance intervals with no scheduling planning. Further
development of a maintenance schedule is required to deter-
mine the manpower and inventories requirements. Mendes
and Lorenzoni (2018) also applied a Monte Carlo simulation
approach to determine the optimal periodic maintenance
intervals (lowest maintenance cost with required availabil-
ity) for generic cold-standby systems. This approach is useful
for any probabilistic failure functions, not limited to expo-
nential functions only. Hamedi et al. (2019) applied a similar
approach to maximise the availability of the process. Simu-
lation approach allows the simplified analysis of a complex
system or maintenance policy. A real application of such an
approach is needed in order to validate the model.

Halimi et al. (2014) also studied the maintenance planning
for industrial compressors. As the demands change in every
season, the operating speed for the compressors would need
to change as well. This, in turn, results in an unexpected break-
down occurs. The expected number of failures, which depends
solely on the collected failure rate data, is minimised by deter-
mining the planned periodic maintenance intervention time.
However, the data source for their model is unknown and
depends entirely on the statistical analysis.

Kopanos et al. (2015) provided a general mathematical
framework to optimise the operations of the compressor and
maintenance simultaneously in an air separation plant. As
compressors are among the most energy-intensive parts in
most industrial environments, they are usually targeted for
energy and cost savings (Saidur et al., 2010). In their model,
they considered the PM tasks with fixed and flexible main-
tenance starting times, both determined by the pre-defined
minimum shutdown time for compressors with an associated
cost. The starting time of the flexible maintenance tasks is
the decision variables to be identified in the proposed frame-
work. They also considered a reactive maintenance scheduling
based on fluctuations in compressed air and oxygen demands
of the system. The proposed flexible maintenance policy
resulted in reduced start-up, shut-down and power consump-
tion cost. However, they assume the compressors are not
susceptible to fouling. Fouling process or vibration analysis
should be incorporated into the model to allow more  effective
maintenance planning.

2.1.2.3.  Summary  of  the  TBM  application.  From the analysis
of maintenance planning with time-based method from the
above, all of the published works rely on the use of prior fail-
ure data of the equipment. Most of the works formulated
cost-based optimisation models and setting the desirable
availability or reliability threshold to acquire the optimal
maintenance tasks frequencies (reactive or proactive). For
example, Charles et al. (2003) fitted the lifetime and repair
time distribution of the semiconductor facility to identify the
optimal maintenance intervals in order to minimise direct

and indirect maintenance cost. Nguyen and Bagajewicz (2010)
used a Monte Carlo simulation on the plant reliability data,
coupled with cost optimisation model to identify the main-
tenance intervals as well as the workforce size and the spare
parts inventories. Thodi et al. (2016) applied the Markov mod-
elling approach with the aid of failure data from the liquefied
natural gas processing plant to determine the optimal pre-
ventive maintenance tasks which give minimal cost. Several
sources also propose the integration of maintenance planning
with process design or production planning. Kopanos et al.
(2015) formulated a mathematical framework for planning
operations and maintenance of compressors jointly in an air
separation plant. The maintenance and operational decisions
are made so that the demands fluctuations and minimum
shutdown time are fulfilled for reliable operations.

In summary, researchers often utilise the historical failure
data to provide a numerical representation of the equipment’s
reliability variation with time. The estimated failure data of
individual equipment is mostly obtained from the OREDA
handbook (2015). The data allow the estimation of units’ life-
time so that maintenance can be performed to extend their
uptimes. However, the data are not always available in real
practice. The failure data can be inaccurate or misinterpreted.
As the data are often recorded by the person-in-charge, incor-
rect judgement on the failure modes of the unit may occur. A
unit replacement due to end-of-life of equipment or planned
maintenance may also be mistaken for failure during data col-
lection (Ahmad and Kamaruddin, 2012). For forecasting the
condition and to plan maintenance of novel technologies and
processes that have recently been commercialised, it is unsuit-
able for relying on historical data.

The development of this type of maintenance models is
also very time-consuming. Most of the methods require the
intensive use of mathematical and programming knowledge
to set up the optimisation models. This limits the use of such
models in practical applications. Simulation-based approach
(Monte Carlo simulation) is an alternative to modelling a com-
plex system or maintenance policies. The failure time data
also provides no information about the types of failures. The
failure modes are often assumed and modelled as random
events based on intuition. Dekker (1996) also pointed out that
a sufficient set of lifetime data has to be collected for a few
years for modelling purposes. It can be time-consuming and
may be expensive to collect, process and validate an adequate
amount of data. It is often difficult to define the most effec-
tive maintenance intervals due to the lack of reliable historical
data. This may lead to unnecessary maintenance that itself
may cause deterioration of machines if incorrect maintenance
is implemented (Srivastava et al., 2018). Significant improve-
ment of the process reliability would require the selection of
better equipment at the design stage.

Not too many  works have dealt with the interdependency
between units. TBM relies on the statistical lifetime model to
anticipate failure on a unit. However, the failure propagation
effect could not be identified. For example, a failure of a par-
allel heat exchanger systems might cause the redistribution
of the streams to a standby unit. The capacity of the standby
unit might not be able to accommodate multiple streams and
eventually disrupt the subsequent units. The effects of cas-
cading failure should not be neglected. A small breakdown of
a unit might adversely affect the whole production network
and potentially cause catastrophic disasters.

Although time-based maintenance is a theoretical
approach, it still provides a logical estimation of the fail-

ure behaviour of the unit, and especially of the failure trends
with time. The engineers can understand the failure rate
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f the units by investigating their past failure behaviours.
his provides engineers with some numerical background to
upport maintenance decision making.

Time-based maintenance planning alone is of limited use
nd to be applied in practice; it has to be combined with
dditional information and models. The use of other data
ources or information that are available in practice can be
ntegrated into the time-based approach. Data or information
uch as equipment monitoring parameters, condition data
rom the manufacturer or ISO standards, subjective informa-
ion from experienced personnel and risk assessments can
e combined with the lifetime data to strengthen the main-
enance decision-support system, suggested by Ahmad and
amaruddin (2012). The following section describes the use
f risk analysis techniques to aid in maintenance decision
akings in the process industry.

.1.3.  Risk-based  maintenance  (RBM)
he periodic inspection and maintenance on the equipment
ithout any bases is certainly not the optimal maintenance

trategy. As the chemical process equipment often runs under
igorous conditions, they are susceptible to erosion, wear
r tear, and other risks, which results in large financial

oss. As such, Risk-Based Maintenance (RBM) strategies have
eceived increasing attention from researchers and developed
o account for unpredictable risks. The main part of RBM
s to improve plant reliability while achieving a significant
eduction in failure likelihood and risk severity/consequences
Silva, 2016). Combining the risk assessment methods with
isk-based decision tool allows the improvement and opti-

ised asset maintenance management. The information and
pproach on how risk-based methodology could achieve bet-
er asset management can be found in (Montgomery and
erratella, 2002).

RBM first requires the risk assessment of an industrial unit.
isk assessment is a systematic approach to understanding,
xpressing, and evaluating the risk in chemical industries
sing available knowledge. It is formally defined by Kaplan
nd Garrick (1981) as a triplet of questions, namely: (1) “What
an go wrong?” (2) “How likely is it?” and (3) “What are the
onsequences?”. If the computed risk is above the accep-
ance threshold, proper mitigation actions need to be taken
o reduce the overall risk. The inspection and maintenance
trategies (CM or PM)  are prioritised based on the quanti-
ed risk values for each equipment. The extended work by
ameed and Khan (2014) consists of a qualitative risk ranking
atrix on the plant equipment in a process plant.
As an example, Risk-Based Inspection (RBI) is proposed as

n alternative for time-based maintenance activities through
he implementation of Special Scheme Inspection (SSI) Regu-
ations 2014 in Malaysia. Mohamed et al. (2018) stated that the
ntroduction of the regulation causes tremendous change to
he Malaysian industries as periodic inspections approaches
ere transformed into a more  flexible risk-based approach.
his is well-received by the petroleum and chemical indus-

ries, for which the 45.7% of the RBI Scheme users belong to
hemical and processing industry, 8.6% to the oil refinery and
he rest to a gas processing facility. The occasional industrial
ccident, such as the Bhopal disaster (Chouhan, 2005) that led
o the catastrophic release of methyl isocyanate (MIC) from
nion Carbide’s facility, could have been avoided through risk
nalysis (Ishizaka and Labib, 2014). Their ex-post event anal-

sis shows that the incident was caused by a combination of
esign flaws, inappropriate materials, maintenance delay and
human errors. Those errors could easily be mitigated through
proper risk analysis of the process. This suggests that learning
from risk prediction is less costly than learning from acci-
dents.

2.1.3.1.  Risk  assessment  approach  in  chemical  process.  Risk
assessment is classified into four main groups: qualitative,
semi-qualitative, quantitative and hybrid. Khan et al. (2015)
conducted a comprehensive review of the state-of-the-art risk
assessment method before 2015 in the process industries, con-
cerning the past, present and future trends of risk assessment.
According to their study, the popular risk models used are
Hazard and Operational Study (HAZOP), Failure Mode Effect
Analysis (FMEA), Fault Tree Analysis (FTA) and Event Tree
Analysis (ETA) before the 1990s. More  recent works integrate
the models with networking approaches such as AHP and ANP
to determine the interaction between events. For example,
Ishizaka and Labib (2014) presented a Crisis Tree Analysis with
AHP to identify the criticality of each risk for the Bhopal inci-
dent, and similarly, Labib (2015) utilised Fault Tree Analysis.
Following the evolution of technology, the researcher tends
to focus on the quantitative approach, including probabilistic
and dynamic risk analysis (see a review of dynamic risk anal-
ysis in (Villa et al., 2016). Fault detection is also integrated into
the framework to aid in decision making.

Table 1 shows the summary of recent publications of
research articles regarding the risk assessment approaches
in the chemical process industry. It can be noticed that
the researchers are inclined toward quantitative or hybrid
approach, such as fuzzy modelling, Monte Carlo Simulation,
Bayesian Network (BN), P-graph, etc. The analytical approach
is developed to handle the uncertainty with probabilistic
quantification. BN is particularly well-received due to its
uncertainty handling and updating abilities. The review of BN
for risk quantification in the process industry is well discussed
in (Kabir and Papadopoulos, 2019). Its usage in climate change
impacts in risk assessment is also discussed in (Sperotto et al.,
2017). The risk analysis model is not discussed in detail in
this paper. Instead, this paper focuses on the application of
such risk models in making maintenance decision (see Section
2.1.3.2 onwards).

2.1.3.2.  Historical  overview  of  RBM  in  the  chemical  process.
One of the earlier works for RBM was done by Harnly in
1998 (Harnly, 1998). They developed a risk-ranked inspection
recommendation procedure that is used in one of Exxon’s
chemical plants to prioritise repairs that are identified during
equipment inspection. The associated risks in the plant are
identified through the FTA, which are determined based on the
experiences on operations. The equipment is prioritised based
on the severity index, which is the failure potential combined
with consequences of failure. The inspection or maintenance
can be prioritised according to the computed risk values.
Hannu and Backlund (2002) determined that the effective use
of resources can be achieved by optimising where and when
to perform maintenance on the equipment in a hydropower
plant. However, details of risks methods are unknown. The risk
analysis requirement is vague and not organised, with incom-
plete documentation. Jovanovic (2003) made a review on the
use of RBM in European power and process plants, including
some suggestions on methods, frameworks, and standards to
be followed. The review analysis from the author shows that

the detailed RBM requires extensive data, models and soft-
ware.
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Table 1 – Summary of recently published literature on risk assessment in the chemical process industry.

Year Method Applications Remarks Refs.

2013 FMEA Utilised FMEA software
package on geothermal
power plants.

The  wrong control signal
has the highest risk score,
which can be calibrated
with backup calibrating
equipment

Feili et al. (2013)

2013 Fuzzy logic and Monte
Carlo simulation

A  benzene extraction unit
of a chemical plant

Provides better and more
flexible risk measures with
uncertainties (failure
probability)

Arunraj et al. (2013)

2014 Crisis Tree Analysis
(CTA) and FTA + AHP

The study is done to
evaluate how failures could
contribute to industrial
disaster – Bhopal incident
(Labib, 2015)

The  criticality of each
failure events are evaluated,
and safety mitigation
investments are optimised

Ishizaka and Labib
(2014)

2014 Fuzzy bow-tie analysis
and ‘lean’ principles

Fishbone diagram and
FMEA are used on
decorative paint, adhesives,
industrial paints and
printing inks manufacturer

Risk  scores for the unit are
identified, and the selection
of mitigation strategies is
optimised

Aqlan and Mustafa Ali
(2014)

2015 Input-output modelling Criticality ranking of the
processing unit in a
polygeneration plant and a
bioenergy park

The  risk-based analysis is
performed via unit capacity
changes and measuring the
downstream effects

Benjamin et al. (2015)

2015 Adaptive risk analysis The effect of the
decision-making process is
updated dynamically for
the oil and gas industry

The method provides more
degree of freedom in
tackling changing
information

Bjerga and Aven (2015)

2015 Bayesian Network (BN) The method is used to
determine spatial and
temporal evolutions of
domino effects of accidents
(e.g. fire) in a hypothetical
fuel storage plant

The  equipment is ranked
considering the risk and its
effect propagation. The
most probable sequence of
accidents is determined

Khakzad (2015)

2016 Dynamic BN The dynamic FTA is
mapped into the BN
approach and
demonstrated with a tank
level control system

The  time factors and unit
dependencies are
considered. Qualitative
methods are suggested to
map into BN to develop risk
ranking matrix

Barua et al. (2016)

2017 Process graph (P-graph) Criticality analysis of the
facilities in an integrated
bioenergy park and a
bio-refinery

Sensitivity analysis of the
production criticality is
performed. The method is
robust and applicable to
various bioenergy systems

Benjamin et al. (2017)

2018 P-graph Criticality ranking of
integrated bioenergy park
considering supply and
demand disruptions

The approach is flexible to
uncertainties, such as
climate change-induced
events or variations in
demand

Benjamin (2018)

2018 Event tree and fuzzy
FTA

Failure behaviour study the
advanced treatment units
in industrial wastewater

The  framework is useful to
estimate the system
reliability when limited

Piadeh et al. (2018)
reuse

Khan and Haddara (2003) proposed a framework for RBM,
where the failure events probabilities are determined via FTA.
By setting risks as constraints, the maximum probability of
failure occurrence can be determined by using reverse fault
tree analysis. The adverse effects of the failure on financial,
production, human and environment are incorporated in the
risk analysis framework. The optimal periodic PM is deter-
mined given the threshold for risk and reliability. In their
follow-up work (Khan and Haddara, 2004a), they applied a
similar strategy to offshore oil and gas processing facilities. A
detailed maintenance plan is constructed for the safe and the-

oretically fault-free operation of the facilities. These authors
also applied a similar framework to an ethylene oxide produc-
data is available

tion plant. In their study, the ethylene transportation pipeline
is determined as the highest risk unit based on risk analy-
sis and evaluation. The cost-effective maintenance program
is determined with the proposed methodology. Krishnasamy
et al. (2005) also developed an RBM methodology to an oper-
ating oil-fired electrical steam power generating a plant. The
maintenance intervals are decided with the objectives to
reduce financial risk and increase equipment reliability. FTA
is also used to determine potential risks and failures. Hu  et al.
(2009) proposed an imperfect maintenance model by imple-
menting similar RBM strategy to a petrochemical reforming

reaction system in Sinopec Luoyang. The periodic PM plan
for plant equipment is established to meet the risk criteria. It
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an be observed from those models, that subjective risk anal-
sis utilising FTA are applied in the maintenance planning. It
llows the graphical representation of the risks and their asso-
iated causes and effects, which provides better visualisation
f the risks or fault propagations.

FTA based methods are extensively used in the field of risk
nalysis of process systems and fault diagnosis. However, this
pproach is not suitable for analysing large systems as it is
ot able to identify redundant failures, common cause fail-
res or mutually exclusive primary events. The failure events

n FTA are also assumed to be independent, which is not appli-
able to real systems (Khakzad et al., 2011). They are also
nable to directly handle logical feedback loops and require
dditional steps to remove circular logic that may exist in
eal systems (Lim and Han, 2012). Apeland and Aven (2000)
roposed that the Bayesian method could be a potential alter-
ative to RBM optimisation compared to the conventional
robabilistic framework. As risk analysis is a tool for treat-

ng uncertainties, the classical probabilistic approach is not
ble to represent the uncertainties fully, and the analysis is
ften not convincing, especially the uncertainties are large.
n an overview study of BN done by Weber et al. (2012),
hey showed that BN is widely accepted and applied in the
ontexts of risk analysis, failure dependability and mainte-
ance. The research work on the use of BN in the topics
ad increased by 800% in the last 10 y. The full Bayesian
pproach describes the uncertainties as probabilistic distri-
utions, based on data collected, subjective estimates, and
xperiences.

The breakdown events in a chemical process would
ontribute to the release of hazardous emissions to the
nvironment. As such, Vassiliadis and Pistikopoulos (2000)
roposed a multi-criteria maintenance optimisation model,
hat integrates the environmental risk, plant reliability and
rocess design over a particular time horizon. The model

s applied in a reaction-separation process as a case study.
he environmental risks are modelled as emissions ratios
elative to the standard limit value. Optimal maintenance
ctions (corrective maintenance or periodic maintenance)
re determined on the process, which gives the maximum
rofitability/minimum environmental risks. The trade-offs
etween environmental impacts, process revenues and main-
enance costs are determined as well. Such analysis provides
uidelines to decide on what maintenance policies are needed
o that profits are maximised while complying environmental
egislation limit. However, the maintenance model is simpli-
ed and only assumes a single maintenance action at a time
ith independent failure events, which rarely occurs in real

ases.
Dey (2001) proposed an Analytic Hierarchy Process (AHP)

ethod to assess risks level in cross-country petroleum
ipeline. The inspection and maintenance of pipeline seg-
ents are prioritised that ultimately reduce the maintenance

ost. The efficient design and operation guidelines, con-
truction methodology, and logical insurance plans are also
uggested. The weighting factors of the failure modes are
ased on subjective information and experiences from vari-
us experts. For this method, the opinions from the experts
re not able to capture the information about the risks fully.
s a consequence, although the risks are quantified, the fail-
re events still could occur unpredictably. Further advanced
ethods have to be combined with the cognitive experiences
rom the individuals to allow more  accurate and effective risks
uantification. For instance, fuzzy modelling of experts’ opin-
ions can be a useful approach, due to its ability to account for
vagueness and uncertainty.

Bertolini et al. (2009) proposed a strategy by combining
a panel of academicians and refinery operators to develop
qualitative and systematic procedures for RBI and RBM for
petrochemical plants. Communication between experts is
encouraged, and information is shared about the process. Fail-
ure categorisation, severity and decision criteria are developed
based on the outcomes of the panel. Maintenance actions are
identified, and the schedule is determined to reduce the finan-
cial and safety risks. The work procedure developed led to
easily comprehensible technical discussions between person-
nel that interact with the system.

2.1.3.3.  Recent  development  of  RBM.  Qinqin et al. (2014)
utilised bow-tie analysis and fishbone diagrams to evalu-
ate the critical factors of the environment-related hazardous
events and risks within the petrochemical industry. Various
risks indices are developed for determining routine inspection
and better management of risk sources within the facility. The
framework is a valuable and flexible tool. As new research data
are generated or time factors are considered, the model algo-
rithms may need to be updated dynamically. The output may
also be further enhanced to allow for better and faster data
interpretation. Some statistical analysis may be incorporated
to account for the confidence intervals of the risk levels.

Mohamed and Saad (2016) also devised a quantitative like-
lihood of risk (LOR) method to evaluate the risks identified by
the FTA for a mixer and a valve in a petrochemical plant. The
risks criteria are computed as the monetary terms based on
the area under the damage radius. The CM and PM costs are
identified as financial loss, while production loss is neglected.
They also assumed the weights for the consequences of differ-
ent risk criteria are equal. This is rarely the case as the weights
are dependent on the preferences of the decision-makers.

Aoki et al. (2014) conducted a study of RBM in a Japanese
nuclear power plant. FTA is used to evaluate the potential
risks associated with the process based on the judgement of
the experiences. As the nuclear power plant requires high-
reliability operations, careful judgement and suggestions are
necessary to prevent any undesirable danger events. In their
work, they proposed the use of probabilistic analysis of plant
reliability and the corresponding failure rate to determine
the relevant maintenance interval and actions. The aim of
their work is to develop new inspection and on-site work-
team plan with technical knowledge and experience regarding
the maintenance planning from the past. Since the proba-
bilistic analysis is theoretical and often represent the failure
behaviour inaccurately, the practicality in the nuclear power
plant is highly doubted due to the high-reliability requirement
for operations. This method may still be applicable for process
plants with high occurrence of less-critical failures.

Melani et al. (2018) presented a framework to determine
the criticality of the equipment in a flue gas desulphurisation
system of a coal-fired power plant. HAZOP and FTA are used to
assess the potential process of deviations and failure events.
The Failure Modes and Effects Criticality Analysis (FMECA)
is then used to identify the criticality of the events. ANP is
used to rank the most critical component, considering the
equipment’s Mean Time to Repair (MTTR), financial impact,
environmental impact and the energy generation impact. The
ranking figures are shared with the engineering team of the

plant, and they agreed to the evaluated results based on their
perception of the historical data of the plant. However, the
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methods are mainly based on subjective opinions, and risk
uncertainties are not considered. Some advanced methods
(e.g. BN or fuzzy inference) may be incorporated to account
for the uncertainties of the risks, with fault diagnosis and
prognosis for better maintenance planning.

Another RBM study is performed by Vinod et al. (2014) on
an H2S based process plant. A qualitative approach to esti-
mate consequences on leakage of H2S using influence factors
from the American Petroleum Institute (API) is proposed. For
their case study, the H2S flowrate falls below the lowest cate-
gory as per API 581. They developed a new approach to scaling
the quantity factor by performing CFD simulation on H2S
dispersion at ground and stack level. The proposed methodol-
ogy classifies the equipment in different inspection categories
based on their failure likelihood and consequences. It pro-
vides a substantial reduction in the unnecessary inspection
of the system. The model provides useful insights and visual
representations on the H2S dispersions in the plant. How-
ever, the maintenance approach is only performed after the
leakage has happened. Fault prognosis on the leakage using
condition monitoring sensors could be implemented into the
model.

Keshavarz et al. (2012) combined the preventive mainte-
nance policy, active redundancy and standby redundancy to
achieve the minimum risk for the expected life of an LNG
plant. In their work, the consequence of the risk is calcu-
lated in the monetary terms, which focus on initial asset
cost, income, production losses and maintenance costs. The
method proposed is capable of improving the plant reliabil-
ity while maintaining its operational risk above the desirable
level, which is superior to the maintenance strategy of periodic
intervals. However, the work did not consider the equipment
prioritising criteria for shutdown intervals characterisation.
The numbers of maintenance and shutdown can be reduced
by removing selected equipment that poses a relatively lower
risk to plant reliability. The criticality analysis of the equip-
ment done by the mentioned works is mainly qualitative,
which limited the usefulness in quantifying risk uncertainties.

Shutdown inspection is necessary to perform a mainte-
nance check on the equipment to reduce the risks exposures.
Hameed and Khan (2014) estimated shutdown and mainte-
nance intervals for a gas chilling and liquefaction unit in a
hydrocarbon processing facility based on the reliability-based
risk analysis of the equipment. The total operating costs are
reduced due to lower production loss and lower risks. Hameed
et al. (2016) extended the work by integrating the factors of
human errors is proposed to determine the optimal shut-
down inspection and maintenance interval for a processing
unit. The human errors are modelled using the Success Like-
lihood Indexing Method (SLIM) is applied in this work. Expert
judgement is used to quantify the performance factor and
importance of the task, which is then converted and incor-
porated into failure probability equations.

Huang et al. (2012) present a qualitative and quantitative
framework to assess risk factors in the petrochemical indus-
try. Five criteria are considered in their study: financial risks,
logistical support, service level, learning and innovation and
risk control. The performance of the unit based on these
criteria is assessed by collecting expert opinions, and the Ana-
lytic Network Process (ANP) is used to calculate the weighting
factors. Four different companies that handled headstream,
midstream and downstream of the processes are chosen as

the industrial case studies. The proposed model is proven to
be a reliable reference for asset management, as the depen-
dencies between each criterion could be determined using
ANP method. The downside for this method is that the risk
values are deterministic, which are not able to represent the
uncertainties fully.

Kumar and Maiti (2012) presented fuzzy ANP (FANP) to
select the optimal maintenance policies in a section of a chem-
ical plant. The criteria considered are the equipment risks
and maintenance costs. The use of fuzzy intervals in priority
judgements removes the shortcomings of AHP and goal pro-
gramming approach that use crisp or deterministic values for
decision making. ANP handles all relationships between goal,
criteria and alternatives. The study provides better insight in
finding safer and more  economical maintenance strategies
and applicable to all process industries. Yadava et al. (2011)
and Yazdi et al. (2019) had developed a fuzzy dynamic risk-
based maintenance investment optimisation on a separation
system of a common offshore facility. FTA is used to per-
form failure likelihood assessment and the severity of the
failure. The safety investment factors are to-be-determined
using AHP. As classical AHP is often insufficient to capture
human cognition, the Intuitionistic Fuzzy Analytic Hierar-
chy Process (IFAHP) is proposed to determine the important
factors in the risk index quantitatively. A bi-objective opti-
misation model is formulated to minimise failure probability
and risk severity, subjected to costs budgets constraints. Sug-
gested expansion on safety investment on risks management
is provided. Jaderi et al. (2019b) applied the fuzzy RBM meth-
ods for the risk analysis of petrochemical assets failure in the
Amirkabir petrochemical plant. The use of a fuzzy member-
ship function allows the incorporation of vagueness and risks
uncertainty to risks factors evaluation. The hybrid of both
quantitative and qualitative analysis of risk as well as statis-
tical analysis is introduced in their work. Four consequence
factors are considered, which includes operational impact,
operational flexibility, maintenance cost and impact on safety
and environment. They concluded that the fuzzy calculation
is more  rigorous and accurate compared to traditional RBM
methods.

BahooToroody et al. (2019) presented a dynamic risk-
based optimisation framework for maintenance schedule for
a Natural Gas Regulating and Metering Station. Time series
regression is used to predict the future perturbation behaviour
of the pressure of the unit based on the historical data.
The behaviour of the failure in the plant is modelled using
Dynamic BN, Damage Modelling and sensitivity analysis.
Markov degradation model is also used to model the process
deterioration in the discrete-time case. The optimal mainte-
nance time schedule is estimated by performing cost analysis
on the inspection and maintenance strategies.

Bhandari et al. (2016) also applied the dynamic risk-based
risk assessment and determined the optimal maintenance
interval for a typical offshore processing facility. The unde-
sirable failure events are first determined using scenario
analysis, and the BN approach is used to evaluate the dynamic
risk of the facility. The methodology incorporates the sub-
components dependencies, model the risk uncertainty, and
produces consistent maintenance and inspection frequencies.
The consequences also can be represented with nodes in the
networks. The consequence analysis can be performed by
determining the damage radii (the radius of the area which
damage would occur, property damage and toxic effects,
which was presented by Khan and Haddara (2004b).
Leoni et al. (2019) applied the BN approach on the risk-
based maintenance model for a Natural Gas Regulating and
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etering Station, after BahooToroody et al. (2019). A step-
y-step framework is proposed to model the associated risks
sing the BN method. In their work, the risks are analysed
ualitatively and differentiated into three main categories:
inor risk, major risk and catastrophic risk. The optimal
aintenance intervals for each component are estimated, and

he critical component (longest maintenance interval) is iden-
ified. The use of BN is clearly beneficial due to its updating
bility. The dynamic risk assessments can be performed with
uch a method with the changing opinions of the plant author-
ties. The ability of BN to utilise statistical functions to model
isk uncertainties can aid engineers in estimating the main-
enance outcome. The works mentioned in the above clearly
emonstrated the advantages of BN. Nevertheless, fault diag-
osis and prognosis approach can be incorporated into the BN

ramework to allow more  effective and accurate maintenance
lanning.

Using AI or Big Data analytics for risk evaluation is the
merging field for risk-based maintenance management. Sen
t al. (2018) had recently proposed an AI platform to facili-
ate asset management in water, wastewater and reuse plant.
he equipment criticality scores, coupled with risks reduc-

ion metrics and the probability of failure, allows the proper
lanning of maintenance. Jaderi et al. (2019a) proposed an
nsupervised learning model based on self-organising maps

SOMs) to evaluate the risk level in a petrochemical plant in
ran. The use of SOMs is applicable to quantitative and qual-
tative data, which can be used in an accurate estimation of
isk in petrochemical processes or equipment. The risk man-
gement is inherently a matter of pattern recognition, and
OMs are relevant to this type of problem, as suggested by
ikoo et al. (2013). Five critical parameters (operation impact
nd flexibility, maintenance cost, safety impact, environmen-
al impact, frequency) are inputted to the model, and the
raining algorithm applied is retrieved from Kohonen (1989).
he computed results from their model are compared with

he fuzzy model, and they concluded that this method yields
igher accuracy and flexibility to data input. The use of adap-

ive learning algorithms to compute predicted future risks is
n interesting framework and allows engineers to plan main-
enance proactively. However, the use of such models often
equires extensive sensor data and computational power. The
nvestments in developing skills or training on the computing
echniques are needed. The framework could also be inte-
rated with the health condition data of the units to make
etter predictions.

.1.3.4.  Summary  of  the  RBM  development.  It is noticeable that
uite a number of publications and applications have been
eported on the use of a risk assessment approach to aid
n maintenance management. Several tools for risk assess-

ent that are coupled with maintenance planning have been
eported. The tools included are FTA (Mohamed and Saad,
016) ANP (Huang et al., 2012), FANP (Kumar and Maiti, 2012),
HP (Dey, 2001), FAHP (Zhen et al., 2018), bow-tie analysis
nd fishbone diagrams (Qinqin et al., 2014), HAZOP (Melani
t al., 2018), FMECA, standardised API approach (Vianello et al.,
016), BN (BahooToroody et al., 2019) and SOM approaches
Jaderi et al., 2019a). Reported work from Hameed and Khan
2014) and Hameed et al. (2016) to incorporate Human Errors
n risk-based maintenance using Success Likelihood Index-

ng Method (SLIM). The dynamic risk analysis method is also
eported to be applied in the maintenance management, for
example, in Bhandari et al. (2016) to adapt for the continuous
changing of experts’ opinions.

Based on the analysis above, it can be observed that human
judgement is required to quantify the risk level. This requires
some multidisciplinary expertise to assess the potential fail-
ures of the process. A detailed assessment of the equipment
based on past experiences is needed to compute the sever-
ity index. The process can become tedious and troublesome
if the process is large, which requires intensive documenta-
tion and expert meetings (for FMECA, FTA, HAZOP, ANP and
AHP). The problem could become considerably large, to the
extent that the risk computation becomes impractical using
FTA or FMECA. The calculated risk indices, based on these
methods, are deterministic as well, which could not capture
the uncertainties of the failure events, human judgment and
cognitive thoughts. Fuzzy modelling is thus incorporated into
these methods to enhance the capability of coping with uncer-
tainties. AI approaches such as SOMs are also applied in future
risk prediction so that the maintenance could be planned in
advance (Jaderi et al., 2019a), but require a certain amount of
computation knowledge to demystify the model.

The risk-based maintenance can be a practical and better
approach than the solely time-based approach. The down-
side of this approach is that the failure and consequences are
stochastic, which requires probabilistic or fuzzy modelling.
The uncertainties are not easy to model as no strong back-
ground knowledge or experiences regarding the asset’s failure
behaviour or other influential factors. They can be biased
depending on the individuals. The accuracies of the proposed
models are questionable since the information of the failure
events is based on past historical data. In the case of extremely
rare modes of failure, or for novel process technologies, his-
torical data may be very sparse or even totally absent. The
only method to deal with such uncertainty is by fuzzy mod-
elling of the risk, influenced by the experts’ experience or
opinions.

2.1.4.  Condition-based  maintenance  (CBM)
CBM relies on the monitoring of the operating conditions of
the system to detect the problems and provide relevant infor-
mation to the maintenance personnel. The system could be
preventively maintained long before a failure occurs when
necessary. This, in turn, saves resources (human and spare
parts) and improves system availability. The main goal of CBM
is to eliminate wasted operating time in mitigating failures
and the risk of failures with quick detection of abnormalities
(Xiang et al., 2012). This maintenance approach is required
for challenging systems with their reliability and functionality
are of the utmost importance, such as aerospace equipment,
nuclear power plant and offshore installations (Marseguerra
et al., 2002).

Maintenance decision making under the CBM program is
dependent on two contexts: faults diagnosis and prognosis.
Diagnosis is the process of finding the source of a fault (Jeong
et al., 2007), while the prognosis is the process of estimat-
ing/predicting when a failure may occur (Lewis and Edwards,
1997). The main aim of diagnosis is to provide early warning
signs to engineers while the monitored equipment is operat-
ing but deteriorating. There may still be a certain amount of
time before the actual failure occurs. The prognosis has to be
done to address this situation. The main aim of prognosis is

to provide further warning by estimating/predicting when the
equipment would fail. As such, the equipment can be fully
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utilised, and the appropriate time to carry out PM just before
it fails can be determined.

2.1.4.1.  Brief  description  of  condition  monitoring.  The condition
monitoring plays a significant role in detecting and diagnosing
the fault of the equipment/system before any sudden fail-
ure or breakdown. The health of the current equipment can
be inferred based on the obtained monitoring information. It
facilitates the maintenance personnel to decide/modify the
maintenance strategy of the plant. The international standard
ISO 13381 documents the detailed monitoring, diagnostic and
prognostic approaches for industrial machinery.

The most popular monitoring approach used in the CBM
program since 1997, especially for rotating equipment (e.g.,
compressors, bearing and gearbox), is vibration monitoring
(Al-Najjar, 1997). The vibration monitoring refers to the use of
sensing and analysis of equipment characteristics. The health
of the equipment is tested or determined in situ (on-line) with
the aid of special devices, such as vibration sensors, to detect
changes that may indicate damage or degradation. The mon-
itoring processes can be either periodical or continuous in
practice.

Sound or acoustic monitoring is another monitoring tech-
nique frequently used in CBM. While vibration sensors are
rigidly mounted on the component involved to register local
motions, acoustic sensors ‘listen’ to the equipment. Simi-
lar to vibration monitoring, sound or acoustic monitoring
is executed on-line, either through periodical or continuous
manners. The anomalies could be detected based on the fre-
quency and amplitude of the collected signal. The acoustic
monitoring can be performed efficiently for timely detection
for check valves. The process noise data fluctuations are used
as the indicative signals to monitor the reactor, e.g. coolant
flow velocity distribution.

Another method is the oil-analysis or lubricant monitoring.
The condition (quality) of the oil is evaluated by determining
whether the oil is suitable for further use. The results of oil
analysis can show the wear conditions of internal oil-wetted
components, such as engine shafts. This method has two gen-
eral purposes: safeguarding oil quality and safeguarding the
components involved. A detailed discussion of the physical
test and contamination identification procedures that consti-
tute a regular periodic oil sampling program is given by Newell
(1999).

Other condition monitoring approaches include electrical,
temperature, and physical condition monitoring. The elec-
trical monitoring approach involves measuring changes in
equipment properties, such as resistance, conductivity, dielec-
tric strength, and potential. These are mainly used to monitor
the state of electrical systems in the plant. The temperature
monitoring method is often applied for the failure identifica-
tion and monitoring of electric and electronic components.
Physical condition monitoring focuses on the identification of
the physical changes of materials, such as cracks and corro-
sion (e.g. tubes in heat exchangers). This approach is typically
carried out off-line via direct inspection. For more  information
on the CBM methods, the readers are referred to (Ahmad and
Kamaruddin, 2012).

2.1.4.2.  Applications  of  CBM.  This section presents an
overview of the application of CBM in the field of chemical
and process engineering. Ahmad and Kamaruddin (2012) had

compared the use of TBM and CBM in their comprehensive
review. Data accuracy and availability is the main issue for
CBM. TBM, on the other hand, relies solely on theoretical
statistical rules and analysis, for which the accuracy is often
criticised. It is also more  time consuming to conduct TBM
and requires a mathematical background for engineers. More
detailed applications and published works on TBM and CBM
in other fields can be found in (Ahmad and Kamaruddin,
2012) as well. Shin and Jun (2015) provided an overview of
some related international standards of CBM, which includes
definitions, advantages and drawbacks of the CBM tools.

Barbera (1994) had presented a heuristic to optimise the
PM policy for a chemical system that is subject to random
‘shock’. The problem investigated is the rotating pump units
in a chemical plant in Monsanto. They modelled ‘shock’
as stochastic non-decreasing wear and deteriorating pro-
cess. The proposed model could aid the decision-makers to
determine whether it is cheaper to repair or maintain a dete-
riorating production system. In their work, only wear and tear
of the equipment is considered as ‘shock’. It is a good way to
model ‘shock’ as a statistical probabilistic distribution func-
tion, but it could not provide reality representation of the
shocks. The ‘shock’ can be measured by installing physical
and real sensors in the equipment to monitor its condition.

Zhao et al. (2010) proposed a predictive maintenance pol-
icy based on the condition data obtained by simulating the
chemical process (Tennessee Eastman Problem). The process
variables are transformed into a combined index. The method
to calculate the control limit for the index is proposed and
used in fault predictions. The reliability of the system is thus
estimated and analysed with different maintenance cycles.

Sikos and Klemeš (2010) have suggested a methodology
to combine specific Heat Exchanger Network (HEN) optimisa-
tion tools with reliability software packages to improve the
HEN reliability. For HENs, fouling mitigation strategies can
be modelled using Fuzzy Logic Expert Systems (FLES) and
Computational Fluid Dynamic (CFD) software. Comprehen-
sive reviews on the reliability software packages are done by
the authors. The suggested approach is applied in a HEN of
a petroleum refinery plant in Hungary. Major failures such
as breakdowns, fouling and leakages of heat exchangers are
included in their study. They concluded that integration of
failure analysis with HEN reliability optimisation, fouling esti-
mation of heat exchangers could eliminate the need for total
unit shutdowns required for cleaning. Faults diagnostics and
prognostics approaches can be implemented along with the
framework to allow better HEN maintenance planning. Niu
et al. (2010) also developed a novel condition-based framework
to optimise maintenance cost for low methane compressors
and induction motors. They employed a data fusion strat-
egy for improving the health condition monitoring, health
assessment and fault prognostics. Their results show that the
approach is efficient and effective in maintenance planning.
Regretfully, the method requires a massive input of data that
is expensive to retrieve.

Trzcinski and Markowski (2018) proposed that heat
exchangers (HE) temperature data can be used for fouling pre-
diction. The clean HE data is fed into the ANN model to predict
the outlet temperatures. The fouled HE can then be predicted
by comparing the outlet temperatures due to heat loss. Diaz-
Bejarano et al. (2019) also proposed an approach for refineries
HE fouling parameters estimation using maximum likelihood
method and applied in a real refinery case study. Their method
allows the early detection of acute solid deposition and early

diagnosis to support immediate remedial decisions making.
Diaz-Bejarano et al. (2018) suggested a mathematical simula-
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ion to estimate fouling based on the changes in heat transfer
oefficients and pressure drops. The study is demonstrated
ith HE in a crude oil refinery and shows excellent results.
iyata et al. (2019) presented a Convolutional Neural Networks

CNN) approach to detect and diagnose faults in a heat source
ystem with thermal water storage. As CNN is typically used
or applications such as image-recognition models, the pro-
ess data has to be converted into images data. High accuracy
ault diagnosis is achieved with this model by comparing with
eal data. These methods (ANN, Maximum likelihood, CNN)
elp analyse the real data and indicates faults with probabil-

ty. However, this analysis requires massive data loading and
omputational power.

Wang et al. (2013) designed a general mathematical frame-
ork for joint spare part, ordering and CBM for a general
roduction system. The prognostic information (remaining
seful life) about the condition of the critical components are
pdated online using Bayesian updating technique. The data
ill be inputted to the cost-based optimisation model to deter-
ine the optimal replace time, and subsequently, the ordering

ime for spare parts is identified. This provides a more  reason-
ble maintenance planning considering the spare parts delay
nd logistics as well as faults prediction. However, the appli-
ation has not yet tested on any real applications. The process
egradation model has to be validated with real-time or his-
orical data to confirm the applicability of the framework.

Kareem and Jewo (2015) had developed a failure predic-
ion model based on the monitored condition in the Carbon
lack Processing Unit of a petrochemical plant in Nigeria.
he traditional inspection model is modified that incorporates
rogressive deterioration in the equipment to plan a preven-
ive/corrective action. The physical properties of the plant’s
ritical component: centrifugal compressor are collected,
amely temperature, pressure and the vibration analysis of
he unit. The expected failure will be predicted based on the
ollected data, and the maintenance activities can be planned
roactively. Their findings showed that the planned mainte-
ance with failure prediction is profitable. According to their
tudy, the component’s functionality and conditions have to
e monitored closely to prevent any false positives or nega-
ives. Time and efforts have to be invested for process control
o that the anomalies can be detected proactively.

Susto et al. (2015) presented a novel multiple classi-
er method for CBM on an implanter in a semiconductor
anufacturing process. Their machine learning (ML) based

ramework allows the prediction of unexpected breaks and
ifetime. The cost-effective maintenance plan can then be
lanned and updated dynamically based on the currently col-

ected data. Ben Ali et al. (2015) also shows an ANN model
o assess performance degradation of rolling element bear-
ngs for industrial machinery. The model is capable to classify
he defects accurately to aid in maintenance decision making.
owever, their models might require modest computational
ower to process data with high dimensionality and to train
he model.

Cho et al. (2016) had demonstrated the possibility of the
ondition-monitoring approach to determine future failure
imes for an offshore plant. The vibration data of the gas
ompressor shaft is on-line monitored closely. They proposed
he use of continuous-time Markov model-based approach,
egression model and the hybrid approach to predict whether
he vibration level will exceed the threshold value. The next

ailure time is then predicted from the analysis, which pro-
ides a relevant guideline for maintenance planning. The use
of Markov model provides an interesting insight into the life-
cycle of the compressor. However, the problem can get very
large if more  parameters and longer time frames are consid-
ered.

Pan et al. (2019) combine health condition data and com-
pose a multi-level indicator to determine the pump shaft
system’s failure phenomena in nuclear power plants. Fuzzy
modelling and AHP is then used to model the deterioration of
the key indicators. This provides a good basis for predictive
maintenance planning.

Benkedjouh et al. (2013) presented a two-step (offline and
online) approach to health monitoring for bearings. Feature
reduction is applied to analyse the vibration signals (offline),
and the current health state of the bearing is estimated
using support vector regression (online). Zhang and Hu (2013)
summarise the achieved milestones, challenges and emerg-
ing trends of safety prognostic technology in the complex
petroleum engineering system. By combining knowledge of
the process and system, the authors proposed that the HAZOP
analysis, degradation analysis and dynamic BN can be inte-
grated with the database to predict failures, accounting for
the spatial and temporal dimensions. More effective technol-
ogy system and knowledge bases are needed to transform the
‘fail and fix’ maintenance practises to ‘predict and prevent’
strategy.

2.1.4.3.  Summary  of  the  CBM  development.  Based on the
reviews above, CBM requires the data collection of the phys-
ical health condition of the operating assets. It reflects the
real condition of the equipment that allows accurate inter-
pretation of the potential risks. Vibration monitoring is mainly
used in the rotating equipment in process industries, reported
applications are from the nuclear power industry (Ayo-Imoru
and Cilliers, 2018), and oil refineries (Kareem and Jewo, 2015).
Temperature and noise analysis are also a common approach
to asset health monitoring. Fouling analysis, along with the
CFD tool, is reported to be applied in heat exchanger network
(HEN) fouling mitigation (Sikos and Klemeš, 2010).

Condition monitoring methods can be integrated with
faults diagnostic and prognostic approach, such as the
Bayesian method (Wang et al., 2013) to devise an efficient
and accurate maintenance planning. Shin and Jun (2015) sum-
marised the tools or approaches that are typically used in each
CBM phases, including data processing, diagnostics, prognos-
tics and maintenance strategy selection. They are also done
some surveys on international standards for CBM of various
equipment. Various sophisticated AI or machine learning tools
such as ANN (Ben Ali et al., 2015), CNN (Miyata et al., 2019)
Support Vector Regression (Benkedjouh et al., 2013), multiple
classifier model (Susto et al., 2015), Bayesian Network (Wang
et al., 2013) or Continuous Markov Chain (Cho et al., 2016)
are useful in providing quick, accurate and online prediction
framework for fault prognosis and diagnosis, as well as degra-
dation/deterioration modelling.

In contrast to the TBM approach, the dataset used for
CBM reflects the true health condition of the equipment. TBM
utilises past failure data, and the statistical function is needed
to model the failure behaviours. Although CBM is capable of
predicting equipment failure, the data collection and analysis
process is often expensive. The installation of costly sensors
and instrumentations is necessary. The investors and compa-
nies’ shareholders are often against this approach since they

are not willing to invest in them (Ahmad and Kamaruddin,
2012). The equipment condition data collected is difficult to
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Fig. 5 – Demonstration of opportunistic maintenance

grouping with cost-saving as a failure event occurs.

be processed. For example, the vibration or acoustic data con-
tains noise signals, and visual images data are made up of
large dimensional numerical values. The analysis and inter-
pretation of these data require investments in experts and
software usage training. The CBM framework can be combined
with the simulation of the maintenance system (e.g. discrete
event simulation) to enhance the quality of the decision-
making process (Alrabghi and Tiwari, 2015). Ramesh et al.
(2020) highlight the needed preparation, especially in logis-
tic aspects towards fully remote condition monitored process
plants.

2.1.5.  Opportunistic  maintenance  (OM)
Performing regular PM requires the stoppage of the process
and incurs expensive downtime cost. Opportunistic main-
tenance (OM) policy exploits the production stoppage as an
opportunity to execute maintenance. The elaborate combina-
tion of preventive and opportunistic maintenance might be
beneficial from the perspective of cost reduction. This idea
is illustrated in Fig. 5 for two components/equipment items.
Assume component/unit 1 has failed; there exists an opportu-
nity to maintain component 2 with component 1 to save the
stoppage cost.

Group maintenance policies are extensively applied to
complex multi-unit systems. Koochaki et al. (2012) pointed
out that the aim of OM is to group maintenance activities of
two or more  components based on their conditions in order
to reduce maintenance costs, downtime and hazardous risks.
The maintenance activities can be grouped together (oppor-
tunistic) by considering the common dependencies within
the system. Group maintenance relies on the fact that the
common maintenance cost of a group of components is less
than the total cost of maintaining these components individu-
ally. Under this policy, the components with similar operating
conditions (such as electrical components) are identified and
undergo an inspection and maintenance tasks together (Shi
and Zeng, 2016). In other words, a group maintenance policy
provides a basis to combine maintenance activities and share
the set-up costs with a number of components in the sys-
tem. Such a sharing strategy can decrease cost or may result
in lower cost compared to the case when maintenance tasks
are conducted separately for each component. This economic
dependency by saving the set-up cost is the most common
approach considered by previous researchers.

However, as pointed out by Besnard et al. (2009), higher
maintenance and spare parts costs would be incurred for
equipment that is still in good shape. The grouping strategy is
only suitable for high failure rate components. It requires com-
plex planning and might take more  time than the scheduled

downtime. Petchrompo and Parlikad (2019) offer a compre-
hensive review of asset management on multi-asset systems.
Their research outcome concludes that the multi-component
dependencies are classified into three types: performance,
stochastic (similar failure rate) and resource (limited repair-
men  or spares). They delve into modelling approaches adopted
by previous researchers and addressed the potential research
gaps in multi-asset systems. de Jonge and Scarf (2019) pre-
sented a comprehensive review of different mathematical
approaches used by researchers up until 2018 in maintenance
planning, including the grouping maintenance strategies.

Opportunistic maintenance models have been extensively
reviewed in the literature by Lapa et al. (2006). Generally, those
models are formulated within two main frameworks, i.e.,
TBM and CBM. The TBM framework defines an age threshold,
exceeding which triggers the consideration for opportunis-
tic. The CBM framework performs opportunistic maintenance
based on the measurement of the current system condition
(Moghaddam, 2013). For instance, if a system is found defective
or wear-out at an inspection or its degradation level exceeds a
predetermined level, opportunistic maintenance is accepted.

2.1.5.1.  OM  historical  overview.  A maintenance policy termed
as an opportunistic replacement and inspection was intro-
duced by Radner and Jorgenson (1963). It is based on research
conducted by the RAND Corporation to find optimal mainte-
nance policy for manned aircraft and ballistic missile systems.
In the process industry, opportunities may arise for low-
cost maintenance activities via the utilisation of unavoidable
stoppage events (e.g. exhaustion of raw materials, lacking
demands or harsh environmental conditions). One of the pio-
neering works in this field of research on the production
system is the work done by Kulshrestha (1968). They proposed
an opportunistic maintenance policy for two classes of units.
When a breakdown occurs in one of the units, it provides
an opportunity to repair component in another class of the
unit that has already failed. Bergman (Bergman, 1978) sug-
gested a preventive maintenance policy for a single machine
with two identical components. Upon failure on one of the
components, the other component is also repaired if its sta-
tistical age exceeds a pre-defined critical age limit. Similarly,
Zheng (1995) presented an opportunistic maintenance model
for non-identical units in a system. The failure occurrence
and the reactive replacements create opportunities to repair
another unit, which its hazard rate has exceeded a hazard rate
tolerance. It is apparent that the early researches mainly focus
on the use of the component’s age to identify the opportunities
for simultaneous maintenance. The statistical representation
of the equipment age requires historical failure data and is
often inaccurate. Performing excessive maintenance on the
functioning system may incur a higher cost as well as wastage
of resources.

For industrial applications, Nilsson et al. (2009) studied the
OM in a nuclear power plant. They reconstructed the replace-
ment schedules of shaft seals in a feed-water pump system.
The components in the pump system are clustered accord-
ing to their individual failure data. The proposed approach is
to minimise the cost according to some constraints and dis-
counted by the time value of money. A sensitivity analysis
was also done where the different parameters vary in relation
to the discount rate. The conclusion drawn is that the pro-
posed OM optimisation model is a deterministic model and
applicable in practice.

Laggoune et al. (2009) presented an approach for group-

ing maintenance activities on a hydrogen compressor in a
continuous operating oil refinery. They also applied the sta-
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istical failure data to estimate the age of the components
nd identify the maintenance periods. The maintenance on
he components is grouped together by solving the cost-
ased optimisation model, for which the grouping would
ield the total expected maintenance cost per unit time. The
aintenance planning, including opportunistic grouping, are

xpressed as decision nodes in each time period and incor-
orated into Monte Carlo framework. The numerical search is
erformed to identify the pathway that yields minimal main-
enance cost. Although grouping maintenance strategy might
ot give optimal condition for individual components, the
verall cost can be optimised. The framework requires further
efinements for real applications due to the several assump-
ions are made (e.g. instantaneous maintenance actions and
eglected resources availability)

.1.5.2.  Recent  development  in  OM.  Another line of research
hat emerges in OM is the delay-time concept. The concept
as first proposed by Christer and Waller (1984), which the
elay time is the time window from the first detected product
efects to the failure of the process. Wang (2012) provided a
omprehensive review of numerous models and case studies
sing this concept. Zhao et al. (2015) utilised the delay-time
ased concept to determine the optimal PM interval in a steel
ill. The production stoppages caused by waiting for raw
aterials provides an opportunity to inspect and perform
aintenance action. According to their study, the production

toppage is not the critical factor in determining optimal PM
requency in the steel mill. This might not be applicable to the
arge-scale process as the production stoppage could cause

ajor production losses. The relationship between production
toppage and PM scheduling should not be ignored. Berrade
t al. (2017) also utilised this concept to evaluate the optimal
ostponed maintenance time intervals to avoid production
isruption. They explored the conditions for the delayed time

n performing maintenance to devise cost-effective planning
or maintenance and production, assuming the unit is still
unctional after a defect is found. The method is tested in

 hypothetical case study with food processing production
ine, and they claimed that if the failure cost is not too high,
he postponed maintenance can be beneficial to the produc-
ion constrained by a time limit. However, the time for failure
rrival is modelled with an assumed probabilistic model with
o real data as supporting evidence.

Huynh et al. (2013) devised a strategy to utilise oppor-
unities from the monitored condition of the equipment
deterioration level) to determine a cost-effective main-
enance program. They proposed a general maintenance
ramework on a k-out-of-n deteriorating system with the
bjective to identify the minimal long-run expected cost from
he maintenance action. The decision variables are the inspec-
ion time and conditional reliability. Zhang et al. (2013) applied

 Markov decision process (MDP) to a k-out-of-n system to
evise an opportunistic maintenance program subjected to
eterioration caused by environmental conditions. The multi-
omponent system is solved by decomposing into several
ingle-component systems. They claimed that the deteriora-
ion accelerates when the environment condition gets worse.
he study is interesting to consider the environmental influ-
nce and might be applicable to the real chemical system (e.g.
tilities supply system for a chemical site), considering the
nit dependencies.
Laggoune et al. (2010) studied the optimisation of replace-
ent for a multi-component series system subjected to
random failures, where the cost rate is minimised under gen-
eral lifetime distribution. When the system is down, either
correctively or preventively, the opportunity to preventively
replace functional components is considered. The proposed
optimisation model for the component replacement is vali-
dated for the hydrogen compressor in an oil refinery. Li et al.
(2018) proposed a maintenance strategy for automotive pro-
duction line considering the reliability, operating rate and
maintenance cost for the equipment. In their study, the rela-
tionship between the failure rate and the operating rate of
the production line is determined by using regression anal-
ysis. The maintenance plan of the most critical machines is
built based on the delay-time theory, for which the mainte-
nance period is optimised by taking the total shutdown time
as the objective function. Based on the mentioned works,
the maintenance on the units is solely determined by the
statistics of the failure data, which gives the optimal main-
tenance cost with certain reliability threshold. However, their
model neglects the cumulative destruction of the mainte-
nance actions on the conditions of the machine.

Kamaruddin and Ab-Samat (2014) conducted an overview
of the implementation of OM. They concluded that most of
the researchers utilise mathematical modelling, fuzzy logic
and statistical analysis to perform OM planning. Majority of
the published works also use cost as criteria up until 2013.
Based on their results, not many  publications on the industrial
application of OM are found.

Cavalcante and Lopes (2015) presented an approach to con-
struct the OM policy of a sugar and ethanol cogeneration
system. The maintenance is mainly focused on the water
supply pumps for the boilers, exploiting the maintenance
opportunity arises when a plant system fails. The time points
of the arising opportunities are modelled with the Poisson
distribution. The authors considered the multi-objective opti-
misation with cost and availability as criteria. The scaling
factors are then determined using value function methods,
using the solution ranges obtained from the single optimi-
sation of the two criteria. The results of their study exploit
the use of the opportunity to perform maintenance based
on decision-makers’ preferences, which encourage the use of
similar mathematical models in a real application.

Basri et al. (2017) pointed out that most of the researchers
only focus on maintenance planning without the implemen-
tation to check its relevance. The reviews did here show that
the scope of maintenance-grouping covers the process of
identifying similarities or recognizing identical characteristics
amongst maintenance actions, systems or components and
spare parts or tools. The grouping approach in the PM planning
has received more  attention from researchers as it provides
various benefits such as simplifying maintenance actions, aid-
ing mathematical analysis and creating a standard process
plan which can lead to time and cost savings. As indicated
by Rustogi and Strusevich (2012), the grouping is an easy and
straightforward approach as the number of groups indicates
the number of maintenance actions involved. The authors
also pointed out that reliable data and grouping procedure
can be incorporated in a computer-based integrated main-
tenance planning and scheduling to assist practical decision
making. The cluster analysis allows for easier representation
of the maintenance-production scheduling problem and could
improve systems performance and productivity.

Yang et al. (2018) presented an OM strategy for a crystalliser

casting machine. The strategy is based on the determination
of the control limits for the deterioration level of the equip-
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ment, which provides opportunistic for maintenance actions.
Different maintenance strategies are compared, namely regu-
lar maintenance, condition-based maintenance or both. They
only considered a piece of single equipment in their work.
However, internal maintenance opportunities may arise for
a complex chemical process (due to another equipment fail-
ure), and failure dependencies may contribute to the chances
for maintenance action. Extra elements or parameters could
be incorporated to extend the proposed model.

Human errors and grouping could be balanced to reduce
major accident risk. In the field of the chemical engineer-
ing industry, not many  publications are found accounting
human errors in the opportunistic maintenance strategy.
Sheikhalishahi et al. (2017a) incorporated human factors into
the opportunistic maintenance strategies for fuel-supplied
electrical power plant. The equipment maintenance actions
are grouped with failure-based opportunities. A component
fails when its cumulative deterioration exceeds the given
threshold, which creates an opportunity to perform repair or
maintenance on other non-failed components. Two human
factors – time pressure and fatigue level, are incorporated
into the model. The grouping maintenance activities con-
sidering human factors could achieve significant cost-saving
and reduce the risks of delaying maintenance. Another case
study, incorporating human factors into maintenance group-
ing in a petrochemical plant, is presented by Sheikhalishahi
et al. (2017b). Similar assumptions and models are utilised in
their work too. According to their results, the proposed meta-
heuristic algorithms could be implemented in small, medium
and even large-scale problems with reasonable computation
time. The downside is that the implementation of the algo-
rithms requires extensive programming background.

2.1.5.3.  Summary  of  OM  developments.  A significant number
of articles exist regarding opportunistic maintenance manage-
ment in the chemical process industry. According to the above
discussion, the researchers mainly identify the maintenance
action clusters through the assets’ economic dependencies
(e.g. the sharing of the fixed set-up cost for maintenance) as is
done in Laggoune et al. (2010), for example. This sharing strat-
egy may yield lower overall costs compared to the case where
maintenance tasks are conducted separately on each equip-
ment. The works on grouping strategies, based on stochastic
dependencies (e.g. deterioration characteristics of the assets),
are also found, for example in (Nilsson et al., 2009) for feed-
water pump system and (Yang et al., 2018) for a production
system. The delay-time concept is also applied in OM applica-
tion (Wang, 2012). The maintenance is delayed purposely after
the first fault detection to maximise the production uptime,
provided the fault is not too vital. Zhao et al. (2015) have shown
the application of this delayed opportunity to devise a cost-
effective maintenance plan for the production.

The failure rates of the components or equipment are
assumed to be known from historical data (Laggoune et al.,
2010). As mentioned in Section 2.1.2.3, the failure data is
usually difficult to obtain. They can be inaccurate or misinter-
preted. As the data are often recorded by the person-in-charge,
incorrect judgement of the failure modes of the units may
occur. Choice of probability distributions also affects results
significantly, especially since failures are rare events that
occur in the tails or extremes of probability distributions. A
unit replacement due to end-of-life of equipment or planned

maintenance may also be mistaken for failure during data col-
lection (Ahmad and Kamaruddin, 2012). Previous researches
also neglect the spare parts inventory management. The
maintenance grouping strategy may incur higher mainte-
nance and spare cost for equipment that is still in good shape.
The grouping method also requires complex planning prior to
implementation. Occasionally it is impossible to predict when
to perform the corrective maintenance actions, as failures are
difficult to predict. The incorrect maintenance grouping may
sacrifice the optimal preventive maintenance schedule and
delay the repair actions.

Despite the significant advantages of opportunistic main-
tenance management, there exists a research gap between
theoretical and practical application for this approach. Most
of the works are demonstrated in the maintenance of multiple
components in a single equipment, while multi-unit systems
are considered with at most two dependent components. The
scale of the problem can be enlarged to determine the optimal
clusters of a turnaround for the process equipment. As sug-
gested by Kamaruddin and Ab-Samat (2014), the simulation
of the process is required to check for the validity of the mod-
els before it is implemented. The bottlenecks of the process
can be identified through simulation and criticality analysis
of the plant assets, and the maintenance can be performed
more  effectively.

Chin et al. (2019) presented a resource-allocation model
to identify the optimal investment needed. Failure events
are expressed as the ‘cost demands’, while the opportunistic
maintenance cost saved is treated as ‘cost supply’. However,
their model requires further validation. Human errors can be
integrated into the simulation, as suggested by Sheikhalishahi
et al. (2017b), to further lower the risks of failures and
improve the process reliability. de Jonge and Scarf (2019) men-
tioned there are ample research opportunities considering
different dependencies in multi-asset systems, including eco-
nomic (similar set-up cost), structural (system configuration),
stochastic (similar asset failure or deterioration behaviour)
and resource (limited repairmen and spares).

2.2.  Long-term  maintenance  strategy  selection

An appropriate maintenance strategy could mitigate the
probability of equipment failure and improve their work-
ing conditions. This could result in lower maintenance cost
and higher product quality, which in turn leads to a larger
profit. As reported by Okoh and Haugen (2014), most of
the major accidents occurred in chemical and petrochemical
plants (46% of 183 major accidents) from 2000 to 2011, were
maintenance-related. This suggests that the proper selection
of maintenance policy is crucial to reduce the risk levels in
terms of operational, production, human safety and environ-
mental risks.

Selection of an appropriate maintenance strategy for the
process is a complex task due to the difficulties of data col-
lection and a large number of conflicting criteria or goals
that need to be considered. The criteria that are needed
to be fulfilled consist of investment cost, safety hazards,
environmental constraints, failure and maintenance costs,
plant reliability, manpower allocation, etc. Some of the men-
tioned criteria are not easy to be quantified and cannot be
expressed in monetary terms. As such, the maintenance
strategy selection problem is often considered as a complex
multi-criteria decision making (MCDM) problem. The MCDM
approach developed by Shafiee (2015) considers the set of

maintenance alternatives (CBM, PM, CM, RBM, TBM, OM), for
which the decision-maker (i.e. top management) must select
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Fig. 6 – Examples of criteria to be considered in

he optimal strategy. The maintenance strategies are evalu-
ted based on their weighted importance of the finite set of
re-defined criteria (see Fig. 6). The comprehensive review
f the MCDM framework for maintenance strategy selection
efore 2013 is presented in Shafiee (2015).

Table 2 shows the selected published works on mainte-
ance strategy selection based on MCDM framework. In their
pproaches, most of them expressed qualitative data such
s risks quantitatively, e.g. in (Sahoo et al., 2014). Although
isk or safety thresholds are quantified, the physical mean-
ng of the numerical values is doubtful. The deterministic
alues of the risks are not able to project the uncertainty fac-
ors within them. The use of fuzzy logic in decision making
llows the uncertainties of the safeties to be modelled. A num-
er of publications are reported applying fuzzy approaches in
CDM framework. The cognitive thoughts from the experts

an be properly quantified and incorporated into the model
o aid in decision making using this approach. AHP is also
idely used to determine the weighted rankings of the cri-

eria. Events simulation is also used in evaluating different
olicies, see (Alrabghi et al., 2017). However, such a simula-
ion model for complex maintenance system requires high
omputational expenses. Powerful workstation and multiple
oftware licenses are inevitably required for this approach.

.3.  Long-  and  short-term  maintenance  scheduling

he discussion about the maintenance problems from pre-
ious sections only focuses on the long-term maintenance
ntervals and optimal maintenance time for the process. The
onstraints on the availability of the resources (e.g. time,
anpower, storage and money) are generally not considered

n the previous planning models. In this section, some of
he works performed in the area of maintenance schedule
ptimisation in the chemical industry, emphasising main-
enance tasks allocations are discussed. A joint production
nd maintenance scheduling model with multiple preven-
ive maintenance services are also presented. The turnaround
lanning in a chemical plant requires long-term turnaround
lanning; then the short-term individual maintenance tasks
cheduling can be performed (see Fig. 7). The turnaround usu-
lly takes at most one year for a chemical plant (Cheung et al.,
004).
Pistikopoulos et al. (2001) formulated a mixed-integer
inear programming (MILP) model to perform production
maintenance strategy selection (Shafiee, 2015).

scheduling and exploit idle times in multi-purpose equipment
utilisation to perform preventive maintenance. Piecewise-
constant failure rates of equipment are assumed, and these
are incorporated in a multi-period planning model. Explicit
uptime constraints are included to quantify the availability
of equipment. The solutions are able to balance the pro-
cess design cost with the maintenance costs corresponding
to the system effectiveness criterion. However, solving the
optimisation problem requires complex mathematical formu-
lations and computational effort which limits its applicability
in large-scale problems. Cheung and Hui (2001) also formu-
lated a MILP to perform long-term maintenance scheduling
for a chemical complex with eight plants and associated util-
ity plants. The planning horizon considered is two years, with
monthly planning periods. A cyclic schedule is built, assum-
ing that each unit needs to be shut down for maintenance
once a year. Scenarios, including the availability of interme-
diate storage, and the import of electricity and intermediate
products are considered. Similarly, the computational burden
would become heavier as the problem domain gets larger.
More robust and computationally efficient algorithms have to
be used for larger-scale problems.

Ahmed et al. (2015) devised a maintenance scheduling
problem for a complex gas absorption system in a hydrocarbon
processing facility. Considering the constraints of equipment
risk, maintenance cost, system reliability and availability,
the proper scheduling involving inspection, maintenance and
replacement is determined. In their model, they assumed dif-
ferent actions could alter the original failure characteristics
over time. The proposed model successfully optimised the
existing maintenance schedule of a gas absorption system and
an estimated 17% in maintenance cost saving is achieved as
compared to similar system reliability levels. However, accu-
rate failure analysis of the equipment is needed, which heavily
depends on historical data, fault diagnostics, and prognostic
information.

Sahoo et al. (2014) studied and proposed the maintenance
scheduling of a gas engine power plant for 3 y time hori-
zon, where only a single maintenance crew is available for
maintenance. The task is to schedule the shutdown of parallel
units so as to minimise idle time and shutdowns in high-tariff
periods assuming seasonal variation in electricity prices. The
model also allows for staggering the duration of shutdowns

in the case of low power demands. A continuous-time for-
mulation is proposed, and a general disjunctive programming
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Table 2 – Selected publications on approaches of maintenance strategy selection in the process industry.

Year Method Applications Remarks Refs.

2010 AHP and goal
programming

A  benzene
extraction unit of a
chemical plant

Considering both safety and cost as criteria, CBM
is preferred for high-risk equipment and CM for
low-risk equipment, over TBM

Arunraj and Maiti
(2010)

2014 FMECA Reciprocal
compressors in the
hydrocarbon
processing industry

Different maintenance strategies (CM, TBM and
CBM) are assigned to the equipment based on
their RPN. The maintenance policies are selected
depending on the RPN scores for the units

Sahoo et al. (2014)

2015 Fuzzy AHP Assembly cell in a
manufacturing plant

The input data (opinions) for various aspects are
transformed and normalised before they are
used in the analysis. The alternative
maintenance policies used in their study are
CBM, TBM, CM and OM. The order of
maintenance policies from the most suitable to
the least is CBM > OM > CM > TBM

Azadeh and
Abdolhossein Zadeh
(2016)

2017 Stochastic
discrete event
simulation (DES),
with
multi-objective
optimisation

Petrochemical plant
and tyre re-treading
factory

The maintenance strategies that were
investigated are CM, TBM, OM and CBM. TBM is
determined as the optimum strategy for the tyre
re-treading factory case study. However, CM is
surprisingly determined as the optimum
strategy for the petrochemical plant. This is due
to the expensive cost to stop production and
difficult to obtain the resources for advanced
maintenance strategies

Alrabghi et al. (2017)

2017 Logarithmic
Fuzzy Preference
Programming
(LFPP) with AHP

A  thermal power
plant in China

The proposed methodology applies
multiplicative constraints and deviation
variables to ensure the same priority rankings
for upper and lower triangular judgments.
Quantitative and qualitative criteria are used to
select the optimal strategies (CM, TBM, CBM and
predictive maintenance)

Ge et al. (2017)

2018 Fuzzy AHP Panipat thermal
power station

The considered criteria for selection include a
safety factor, cost, the added value of the
maintenance and the maintenance execution
capability. The selected strategies in this study
are CM, TBM, OM, CBM and predictive
maintenance (identify the temporal trend of the
monitored condition parameters) The boiler
section requires the CBM as it is highly
susceptible to failures

Srivastava et al.
(2018)

2019 Qualitative
Process
Resiliency

Cooling  towers in
power generation
plants

The  maintenance strategy (PM, CM and CBM) is
selected qualitatively based on the failure risk,
downtime and equipment life, with the
pre-defined process and cost model

Jain et al. (2019)

Fig. 7 – Comparison between long-term and short-term maintenance scheduling for a chemical plant (adapted from Cheung
et al. (2004)).
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cheme is used to solve the problem efficiently. The availability
f only a single maintenance team causes a critical bottleneck
o the process. For future development, outsource of contrac-
ors and manpower allocation could be integrated into the

aintenance scheduling process.
Megow  et al. (2010) consider turnaround scheduling in the

hemical industry, specifically in continuous plants. The task
s to minimise the cost of maintenance with respect to the
esources used, which are manpower and maintenance equip-

ent. This minimisation is subject to pre-set precedence rules
or maintenance tasks and resource scheduling constraints
hat involve shift calendars for maintenance workers. The
ssignment constraint, which assigns maintenance resources
o jobs in each time period, gives the detailed maintenance
chedule. The interesting trade-off is the time-cost trade-off,
here more  expensive external resources can be utilised in
rder to perform a certain task in reduced time. The authors
nly consider the risk evaluation after the schedules have been

dentified. The inherent risk analysis of the whole production
rocess is neglected.

Aguirre and Papageorgiou (2017) formulated a continuous-
ime MILP model to determine the optimum production and

aintenance schedule for a multiproduct batch process. The
asks are scheduled by using the travelling salesman prob-
em (TSP)/precedence-based concepts, which are different
rom the previously applied principle of first-in-first-out (FIFO)
Dedopoulos and Shah, 1995). Their model also incorporated
he production resources constraint and unit performance
ecay that reflect the reality of a chemical batch process. The
erformance decay is modelled as a statistical distribution. It
rovides some numerical guidelines to engineers to determine
he optimal maintenance actions considering the deterio-
ation model. However, the representation of performance
ecay without any data as evidence is hardly convincing.
nother published work on integrating process and mainte-
ance scheduling can be found in Idris (2016). The study is
onducted on a Mexican oil chemical company. The authors
roposed a mixed-integer non-linear programming (MINLP)
odel to optimise the product processing time and over-

ll profit. The PM actions are translated into maintenance
emands, and they are considered as products constraints
ith specific time windows and goals. By using historical pro-
uction data from the company, they applied a Monte Carlo
pproach to generate several production instances and signif-
cant improvement of profit is obtained using the proposed

odel. However, the practicality of the model is questionable,
ince a longer time horizon of maintenance planning enlarges
he problem significantly.

The need to have the right spare parts at the right place
nd at the right time inevitably requires the joint optimiza-
ion of maintenance schedules and logistics of maintenance
esources. The joint decision-making problem becomes par-
icularly challenging if one considers multiple options for
M operations and multiple delivery methods for the nec-
ssary spare parts. Wang and Djurdjanovic (2018) presented
n integrated decision-making policy for simultaneous PM
cheduling, spare parts inventory management and trans-
ortation planning in a system of geographically dispersed
ulti-part degrading assets and maintenance. This integrated

ecision-making policy considers both perfect and imperfect
aintenance options, as well as multiple shipping methods

or spare part deliveries. The problem investigated here is only

 theoretical example, but the framework can be extended and
pplied to large-scale practical problems in chemical process
plants with real data. The allocation of human resources also
deserves to be researched to execute maintenance activities.

3.  Design  of  reliable  integrated  chemical
sites

An integrated site consists of a network of plants or large-scale
processes (Feord et al., 2002). A large-scale integrated chemical
site constitutes a number of individual production units that
are either connected to each other directly or through buffer
storage capacities. Each production unit supplies raw mate-
rial to other units and produces final products that are ready
to be shipped to end-users. Buffer storage tanks are usually
installed between inter-connected plants so that the product
demand can be fulfilled during the turnaround periods (see
Fig. 8). Notes that the plants may not be connected in a similar
way with the structure as shown. This figure is for illustration
purpose only.

The integration of this network of plants provides syn-
ergistic opportunities for sharing raw materials, products,
process and business information, domain knowledge, energy,
utilities, manpower, safety infrastructure, and transportation
(Amaran et al., 2015). An example of a large-scale chemical
integrated site is the Dow Texas Operations. From the year
2017, it has gradually evolved from smaller sites to home its
state-of-the-art ethylene facility with a nominal capacity of 1.5
Mt (Dow, 2019). However, the risk of integration failures, such
as mismatch on capacity and blocking or starving other units,
can be fatal and causes more  obstructions to the processes
compared to the conventional independent production plants.
Terrazas-Moreno et al. (2010) mentioned that uncertain events
could affect the performance of an integrated site as well.
The variations in external supply, demand, or fluctuations in
plant throughput could significantly affect the operation of a
chemical site.

The presence of buffers or intermediate storage in a process
creates different dynamics in the production line, as discussed
by Marquez et al. (2003). They claimed that the buffer inventory
level should provide the proper isolation time for mainte-
nance before the buffer becomes empty. Maintenance can be
performed on failed components in the upstream, without
causing propagation of the effect of the failure to the down-
stream (avoiding the so-called ‘material starvation’). Similarly,
the buffer inventory level should guarantee the maintenance
action is entirely performed to the failed downstream equip-
ment without causing propagation of the failure effect to the
upstream (avoiding the so-called ‘blocking of production’).
This strategy is interesting in the process industry, as the
typical capital cost of equipment is high, and the holding
cost of material is low. The isolation times before reaching
‘material starvation’ or ‘blocking of production’ have to be
properly identified to make an accurate analysis of their effect
on the throughput of the line. Benjamin et al. (2015) suggested
that criticality analysis has to be performed to each unit to
determine which will cause greater disruption in the entire
chemical site.

Terrazas-Moreno et al. (2010) presented a bi-objective MILP
stochastic optimisation model, coupled with a continuous-
time Markov model for the design of cost-effective, reliable
integrated chemical sites. The unexpected risks occurrence
and varying products demand to incur uncertainties in the
level of the intermediate storage. The main design decisions

considered are the changes in process capacity, the introduc-
tion of parallel units, and the addition of intermediate storage.



182  Chemical Engineering Research and Design 1 6 4 ( 2 0 2 0 ) 162–194

Fig. 8 – An example of integrated chemical sites + steam utility system with buffers (adapted from Cheung et al. (2004) and

based on Klemeš et al. (1997)).

A metric is known as expected stochastic flexibility to quan-
tify the robustness of the integrated site is used. As expected,
the higher capital investment could tackle a higher amount
of uncertainties for reliable operation. The downside for this
proposed framework is its inability to handle exponential
growth in the number of states for large-scale problems, which
requires further developments for improving the method scal-
ability.

Macchi et al. (2012) provided an assessment of the effect of
buffer inventory levels on production throughput for support-
ing maintenance decisions. In their work, a model, derived
by extending the well-known reliability block diagram (RBD)
method, integrated with state space approach is provided to
analyse the effects of process isolation times to the production
line. The integrated tool is applied in the mining industry to
demonstrate its practicability. More  accurate analytical mod-
els can be applied to the analysis, such as fluid Markov chains
(Li et al., 2009) and fluid stochastic Petri nets (Silva and Recalde,
2004). Demir et al. (2014) presented a classification of the
research work in the buffer allocation problem in a production
system. According to their results, the goal of the majority of
the existing works was to choose buffer sizes for a produc-
tion line. They assume that the only parameters to find are
buffer sizes. However, the proper maintenance planning, cou-
pled with buffer allocation, is required for optimal, reliable
design of integrated chemical sites. Nahas (2017) considers a
serial production line consisting of n unreliable machines with
(n − 1) buffers. The objective is to determine the optimal pre-
ventive maintenance policy and the optimal buffer allocation
that will minimise the total system cost subject to a given sys-
tem throughput level. The time-based maintenance policy is
utilised in their model. The numerical results showed that pre-
ventive maintenance has a major impact on throughput and
the total cost for a serial production line.

Plant maintenance poses widespread disruptions to pro-
duction. Maintenance effects are amplified when the plant
is part of an integrated chemical site, as production levels of
adjacent plants in the site are also significantly influenced.
A challenge in dealing with turnarounds is the difficulty in
predicting their duration, due to discovery work and delays.
Amaran et al. (2016) mentioned that this uncertainty in dura-
tion affects two major planning decisions: production levels

and maintenance manpower allocation. The size of the main-
tenance crew must be decided several months before the
turnarounds occur, contractors are typically hired several
months in advance for a specific time period. If maintenance
exceeds the nominal duration, and maintenance person-
nel are not available, certain maintenance activities could
be deferred to future turnarounds. This could have severe
impacts on production, especially in a tightly integrated site.
Replacement or on-demand manpower is usually not an
option due to scarcity, so there is no immediate recourse
action that can be affected. As a result, the availability of man-
power for the nominal duration as well as for an extended
duration is crucial. It is unlikely that all the turnarounds
occurring in the time window concerned are affected. These
characteristics indicate that a schedule that is robust to
uncertain turnaround durations with respect to manpower
availability is needed.

Amaran et al. (2016) investigate the turnaround planning
problem under uncertainty over a medium-term time hori-
zon (24 weeks). Two approaches were proposed to handle the
uncertainty in turnaround duration. The first involved a robust
sequential optimisation in minimising the turnaround fre-
quencies and multistage stochastic programming approach
to maximise profit. The demands and manpower constraints
and turnaround duration are also evaluated. The downtime of
the plants will be managed by the use of inventory capacity.
The combined robust optimisation and two-stage stochas-
tic programming formulation are to conduct scheduling as
well as production simultaneously. The scheduling decisions
at the first stage are then fixed in the multi-stage stochastic
linear program to optimise production planning. An advan-
tage that the sequential approach has is that one may choose
to enhance the manpower and subtask model with more
detail, for which the expense of the simultaneous approach
may significantly increase. The downside of the sequential
approach is that the solution is not guaranteed to be a global
optimum.

Integrated sites may also benefit from holistic and long-
term maintenance turnaround planning. Amaran et al. (2015)
devised a long-termed turnaround planning for hypotheti-
cal integrated chemical sites (30 years). The main objective
is to minimise profit losses due to unexpected failures, con-
straint by resources availability and financial impact. The
three significant decisions for the framework are the tim-

ing of turnaround that: (1) maximises the net present value;
(2) balancing financial and operational performance; and (3)
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utsourced manpower reduction. Real-world issues such as
he incorporation of seasonal constraints and the possibility
o import intermediate products are discussed. They men-
ioned that rolling horizon planning (decompose to several
lanning sub-models) is more  relevant than cyclic scheduling
ue to more  resemblance to real cases. However, the plan-
ing model is computationally expensive, which limited its
ractical usage.

Rajagopalan et al. (2017) proposed a stochastic model to
valuate the risk of loss in rescheduling turnarounds over
ast networks of interconnected plants. The strategy of using
nventories during unplanned outages is also considered,

hich adds the flexibility factor to the maintenance plan-
ing problem. They performed a sensitivity analysis of the
nancial risks due to loss of sales between the base sched-
les and proposed alternative turnaround plan. They found
ut that the benefit of frequent turnaround is determined by
he trade-off between financial loss and chances of a produc-
ion outage. For the shorter term, the benefit of rescheduling
urnarounds increases with time due to demands become
eaner (more intermediate storage is available). For the longer
erm, proactive planning is more  attractive in terms of prof-
ts. The proposed method is useful for optimal planning of
uture prediction for production and inventory. However, the
uthors only incorporate the financial risks into the mainte-
ance planning of the sites. Future development of the model

s needed to account for several risks, such as environmental
isks and human risks.

Cheung et al. (2004) formulated a MILP Model for short-term
ite-wide maintenance schedule in a chemical production
ite, which consists of eight production plants. The mainte-
ance schedule requires pre-determining utility and product
emand profiles during plant shutdown, overhaul and start-
p. Payment for skilled labour is another primary concern

n the scheduling process. As in-house skilled maintenance
perators are limited, external labours are hired to supple-
ent the manpower shortage. The objective of the model is

o identify the optimum profit considering labour cost, elec-
ricity cost, production cost and maximum product revenue,
aking into account the varying electricity prices and pro-
uction demands. They also performed an analysis of the
aintenance planning based on different electricity contracts

nd overhaul periods. The determined maintenance plan per-
orms better than the original heuristics-based maintenance
chedule in terms of feasibility and profitability.

Terrazas-Moreno et al. (2011) combined simulation and
ptimisation to design the integrated chemical processing
etworks, which are subjected to random failures of units.
he superstructure optimisation model is formulated to add
arallel units or additional buffers to the integrated sites. Dis-
rete rate simulation is used to represent the failure modes
nd operation of the integrated site with great details. The
bjectives of the model are to minimise the overall capi-
al investment as well as maximise the average production
apacity. The MILP formulation of the stochastic program-
ing model incorporates endogenous uncertainty of failures

or different design selections and production/storage capac-
ties. The problem is decomposed into multiple stages. It first
equires to iteratively solve for the design (flowsheet) with only

 few failure scenarios for low-risk equipment, and then solve
he rest of the problem in a reduced space where only scenar-
os relevant to the fixed flowsheet are considered. However, the

omputation performance of the model is still relatively weak.
The model requires refinement so that it can be accepted as a
tool for an industrial setting.

4.  Summary  of  reviews  and  limitations

This section discusses the overall summaries of the mainte-
nance planning and scheduling model in the process industry.
Separate sections are devoted to the optimisation criteria and
the limitations of the current modelling methodologies.

4.1.  Overviews  of  maintenance  planning,  scheduling
and strategy  selection

Summarising the reviews of maintenance planning, the chal-
lenges most often faced are the issue of data availability and
accuracy. For TBM, RBM, OM or sometimes CBM, the failure
characteristics of the asset are needed and require the histor-
ical operational data. The data requires a significant amount
of time to be collected, and even worse, the data might be
censored or truncated due to misinterpretation. The deteri-
oration modelling also relies on the virtual age of the asset,
which raises the issue of applicability and accuracy. For RBM,
the risk scores can be integrated with uncertainty modelling.
Probabilistic modelling is used for the uncertainty that can be
modelled with statistical distribution; while fuzzy modelling
is for the epistemic uncertainties due to lack of fundamen-
tal knowledge (Kiureghian and Ditlevsen, 2009). However, it is
difficult to understand the uncertainties due to the lack of sta-
tistical data or too little background knowledge to understand
the judgement of the failure occurrence. Risk computations
can also become impractical if the problem domains get too
large. CBM is thus introduced to overcome these issues. The
maintenance decision making depends on the health condi-
tion of the asset, evaluated as a combination of measurements
of indicators by various sensors and estimation of other prop-
erties. The data collection requires the installation of costly
instrumentations to closely monitor the data and to prevent
any false alarms. Expensive software licenses are needed to
process the information, train the model and to estimate the
remaining useful life of the assets. Majority of the works on OM
are also focused on the maintenance of multiple components
in a single piece of equipment.

Significant amounts of literature are published for main-
tenance strategy selection. Majority of the works formulate
the model as a multi-criteria optimisation model, where the
criteria can be in the context of economic, technical, social
and environmental. Most reported approaches applied expert
judgement system (e.g. AHP and ANP) to determine the weight
factors of each considered criteria. Simulation approach and
fuzzy modelling are widely applied to this problem to account
for the uncertainties. The optimal maintenance strategy (e.g.
TBM, CM, RBM, OM and CBM) is selected based on the cho-
sen criteria. The obtained results often show CBM is the best
policy. However, CM is occasionally reported as the optimal
strategy due to a limited budget.

The published works on maintenance scheduling in the
chemical industry are also collected and analysed. Mathemat-
ical optimisation models (mainly MILP) are often formulated to
determine optimal scheduling. The works on joint production
and maintenance planning are also reported, such as (Aguirre
and Papageorgiou, 2017). The material balances, inventory

requirements, resource availability and demand requirements
are often set as constraints in the scheduling problem to deter-
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mine the cost-effective maintenance schedule. It is also noted
that the long-term (Idris, 2016), the medium-term (Amaran
et al., 2016) and short-term maintenance scheduling (Castro
et al., 2014) are reported, with both cyclic schedule and rolling
horizon approach. Similarly, the maintenance schedule for
integrated chemical sites is also considered in Section 3. The
buffer allocations to store for products are needed for inte-
grated chemical sites as the turnaround of a plant causes the
production stoppage.

4.2.  Optimisation  criteria

The widely-used optimisation criterion in these models is the
cost. This can be the maintenance cost or cost integrated
with production loss, labour cost and inventory cost. The Net
Present Value (NPV) or the profit of the plant considering the
equipment’s lifetime is also commonly used as the objec-
tive function for the models. For systems with high-reliability
requirement (e.g., nuclear power plants or power generation
plants), the optimisation criteria often prioritise the system
availability, constrained by pre-defined maintenance budget,
labour or spares storage limitations. Preventive maintenance
time or intervals, labour workforce size and the spare parts
inventories are usually the chosen variables to be identified
in the optimisation model. It is also common to express risk
as monetary terms, e.g. financial risk or production risk- see
(Mohamed and Saad, 2016), while environmental risk can be
expressed with the ratio between emission-to-standard limit
values, see (Vassiliadis and Pistikopoulos, 2000).

4.3.  Limitations  of  methodologies

In most cases, renewal theory is used as the main method-
ology to identify the optimum cost per replacement cycle
during long-term maintenance planning. However, the simpli-
fied assumptions of renewal theory on cost optimisation is not
appropriate for industrial application. For vastly connected
process networks, renewal theory becomes infeasible as the
analytical solution is difficult to obtain. For more  complex
models, such as the inclusion of deterioration or maintenance
with production planning, the simulation-based approach is
often used. Monte Carlo Simulation is the most popular due
to its simplicity and ease of use. The simulation is also widely
used to compare different maintenance policies. The Markov
decision process is also often used for modelling equipment
deterioration within a time horizon, either continuously or
with discrete states. However, not many  works have consid-
ered the combination of both quantitative and qualitative data
input for maintenance decision making. Quantitative input
such as equipment’s image  or health condition has to be pro-
cessed with qualitative data (e.g. human speech or risk scores)
for well-informed business decision making. A minority of the
works consider the constant changing of data as well.

To model the maintenance/repair effect, the common
approach is to use ‘minimal repair’ policy, i.e. quick fixes
immediately after the failure, especially in time-based mod-
els. The failed equipment is returned to the state just before it
is failed. Imperfect maintenance models provide a repair pol-
icy to the equipment to back to a slightly better state. The
failure rate is also often assumed to be increasing after a
repair, depending on the chosen failure distribution. The ‘age
threshold’ or ‘risk threshold’ method is also often used as a

benchmark to identify the maintenance period. Practically, it
is impossible that failure occurs only after a fixed deterioration
level. Failure could occur; even the deterioration level is stable
(de Jonge and Scarf, 2019). In fact, failure should be described
by the statistically derived failure rate that depends on the
deterioration level or identified from the data.

The concept of postponing or conducting maintenance ear-
lier is addressed in the opportunistic maintenance model, to
save the production downtime and cost. In the current state,
there is still a lack of research results concerning on oppor-
tunity maintenance policy. The interaction of multi-asset in
a vastly connected network is also challenging to model. Not
only structural interdependencies, but the unit failure would
propagate and affect the operating parameters, causing major
damage to the system, especially in an integrated chemical
sites

There is also a lack of publications concerning job schedul-
ing or shift scheduling to individual maintenance operators
in the chemical plant/sites. Most of the works assumed the
repair or replacement is immediately performed once a fail-
ure is detected. The spare parts logistics are also usually
ignored. Although Wang and Djurdjanovic (2018) considered
this aspect, their case study is hypothetical. Real studies con-
cerning these issues are needed to reflect the reality of the
problem.

5.  Future  research  directions

5.1.  Way  forward  for  maintenance  optimisation
models

CBM is the more  accurate maintenance planning model than
TBM as the data collected reflects the real-time condition of
the equipment. This signifies that on-line monitoring frame-
work of the data is needed to implement CBM. The framework
proposed by Zhang and Hu (2013) is an example of the
integrated maintenance framework, which gathers data col-
lection and maintenance management software. Some of
the advanced maintenance planning models (e.g. RBM with
dynamic BN) can be coded and implemented in the existing
Computerised Maintenance Management Systems (CMMS)
and integrate with the condition monitoring systems to allow
for the effective fault diagnosis and prognosis. The mainte-
nance strategy selection framework can be incorporated into
the computer tools as well to select the optimal maintenance
decision. The readers are referred to (Ahmad and Kamaruddin,
2012) for further information about the existing CMMS  tools.

AI approaches such as SOMs are also applied in future
risk prediction so that the maintenance could be planned
in advance (Jaderi et al., 2019a). The approach is useful as it
allows adaptive prediction of risks with both quantitative and
qualitative inputs. The learning algorithm could predict the
risk in advance, allowing proactive actions to be planned. How-
ever, this approach requires extensive training with a large
amount of historical data. The challenge lies in separating sig-
nals from the noise. For future works, Principal Component
Analysis (PCA) is a promising tool that reduces the dimen-
sionality while considering multiple criteria without the loss
of information. Quantitative and/or qualitative risk scores can
be inputted into PCA model to determine the weightage of
the risks in different aspects (cost, environmental or social),
and in turn, devise a proper maintenance plan. FANP can be
incorporated as well to identify the interdependencies and

uncertainties of factors. These tools can be further developed
to aid in risk-based decision making in maintenance since the
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omputational resource is well developed in this era. In a con-
tantly changing business environment, the weight priorities
ia AHP/ANP has to be updated dynamically. The dynamic risk
nalysis framework should be incorporated, for example, from
handari et al. (2016) to adapt for the continuous changing of
xperts’ opinions.

The maintenance planning models should also combine
ith the maintenance scheduling framework for systematic

sset maintenance management. Maintenance planning can
e just an ideal case which neglects the resources manage-
ent (e.g. human labour, spare parts and time constraints).

he online CBM framework can be coupled with the mainte-
ance strategic planning and scheduling optimisation models

ormulated in commercial optimisation software for effective
aintenance tasks allocations. The opportunistic mainte-

ance policy should also be incorporated into the optimisation
odel.

.2.  Tools  extension  for  complex  maintenance  planning

ost of the maintenance planning or scheduling models
eveloped were mostly MILP model, and inevitably some are
INLP model. The discrete decisions on when to perform the
aintenance are the causes for the integer/binary variables.
ILP is indeed preferable, but as the problem gets compli-

ated, it requires heavy computation burden as well. However,
s maintenance planning is a planning problem, computa-
ion speed, up to some extent, is not a major issue because

 solution can be obtained eventually. The major issue is the
lobal optimality of the solution and the generation of near-
ptimal solutions simultaneously. This feature is important
s the engineers/practitioners could evaluate the alternatives
ased on their preferences in one go. Regretfully, not all solvers
urrently have this feature. This calls for a graph-theoretical
ool (e.g. P-Graph, 2019) to represent and generate all combi-
atorially feasible network structures. These structures can be
sed to identify optimal and near-optimal solutions for exam-

nation by decision-makers. This approach can also accelerate
ptimisation of large problems by reducing the problem search
pace. It could be coupled with evolutionary algorithms (e.g.
article Swarm Optimisation) as well to obtain a globally opti-
al  solution. The readers could refer to the application of

-graph in process system failure analysis (Orosz and Friedler,
019), reliability analysis in a process system (Kovacs et al.,
019) and Heat Integrated system (Orosz et al., 2019) and (Orosz
t al., 2018) for reliability with sustainability analysis.

The maintenance scheduling model is often formulated
s a ‘black-box’ mathematical model. It is difficult to inter-
ret the solutions if the user has limited mathematics and
rogramming knowledge. A graphical approach based on ther-
odynamic background, such as Pinch Methodology (Linnhoff

t al., 1982) was a new research direction to facilitate the allo-
ation of risk mitigation strategies, see (Tan et al., 2016). For
ore  recent developments see e.g. Klemeš et al. (2018), main-

enance jobs scheduling (Chin et al., 2020) or maintenance
lanning (Chin et al., 2019). P-graph based approaches can be
sed as well for optimum allocation of maintenance services
ithin the plant. This method is applied to prioritising crit-

cal areas in an organisation (Aviso et al., 2017) and human
esource planning in a university setting (Aviso et al., 2018).

he similar approach can be applied to an analogous system
f workforce planning in a chemical site.
5.3.  System  retrofit  vs  maintenance

Maintenance is not the only option to improve process relia-
bility. The retrofit of the assets in production can be a better
alternative compared to maintenance. For example, when the
remaining service life of the asset becomes shorter, it might
be better to replace the equipment instead of repairing it
any further. The relationship between its service life, failure
behaviours and the maintenance effect can be a potential
research area to devise proper asset maintenance as well as
investment planning.

In the perspective of smart asset management operation, it
is necessary to form a collaborative design platform based on a
knowledge base, highly integrated knowledge sharing among
professional design systems. An example is the integration of
asset management life cycle analysis with the remote faults
diagnostics and simulation models for prediction of equip-
ment failure, as well as qualitative risk-prediction approach.
The remaining life of the asset could be estimated based on
the collected data to provide ‘just-in-time’ mitigation action.

The system retrofit and the maintenance are related
intrinsically, but the modelling approaches have developed
in parallel, with the little intersection. To provide the link
between these task classes is another challenge, requiring a
multi-disciplinary approach.

5.4.  Maintenance  as  the  sustainable  alternative

The increasing amount of repairs and maintenance of
machinery, which produces various types of wastes would
increase the burden on the environment. Ajukumar and
Gandhi (2013) emphasised that the product design should
not be focused solely on its functionality, but also take into
account the environmental impact during maintenance. They
proposed that the design of engineering equipment should be
driven by the green-maintenance concept. The design charac-
teristics should fulfil the operational criteria, safety criteria,
as well as environmental compatibility. Orosz et al. (2018)
applied the P-graph tool in identifying the optimal process
system design in term of reliability, investment and footprint.
The selection of operating units with non-optimal design may
incur sustainable penalties during operating and maintenance
phase.

Maintenance strategies can reduce the environmental
effects due to the breakdown of machinery. Potential impacts
can result from accidental release of intermediates or prod-
ucts, or from energy and feedstock utilised to produce
off-specification products that need to be reprocessed fur-
ther. For serious accidents, such as the Bhopal incident
(Ishizaka and Labib, 2014) (release of methyl isocyanate to
the environment), the massive release of the chemicals incurs
environmental risks. Smaller accidental releases of chemicals
may still cause impacts on the environment. The maintenance
system can be simulated by paying attention to the investment
in new and green technologies as well as green maintenance
operation technologies in future research work. New tech-
nologies to decrease pollution and improve product efficiency
should be considered. The installation can be compared with
performing maintenance on the asset so that the investment
and environmental impact can be compromised.

The facts that maintenance planning could address the
issue of environmental risks prove the relationships between

maintenance and sustainability. For example, the loss of
contaminant from broken equipment is critical and cause
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Fig. 9 – Asset maintenance planning with the concept of

Circular Economy.

undesirable hazards to the environment. For potential future
development, the life-cycle sustainability assessment of dif-
ferent maintenance approaches based on site-specific data
can be performed to evaluate the maintenance actions. The
maintenance as an alternative sustainable action instead
of introducing new technologies or different mitigation
approaches could be a new method and trend to promote
sustainability, which is in-line with the concept of Circu-
lar Economy (CE) (see Fig. 9). CE is a conceptual framework
that proposes a closed-loop system (i.e., waste and in-house
resources maximisation) when considering planning, design-
ing, and operating industrials systems within an economy.

5.5.  Maintenance  with  accident  modelling

Maintenance could prevent potential major accidents, but it
can also be a cause of the major accidents themselves. As
reported by Okoh and Haugen (2014), for the period from
2000 to 2011, from 183 major accidents taken place in chemi-
cal and petrochemical plants, 46% were maintenance-related.
Modification-related process accidents could occur while the
item is being repaired or restored to its original required func-
tion (BS-EN-13306, 2017). Typical accidents reported are fire
occurrence, explosion, emission of hazardous substances and
equipment structural failure.

The most effective improvement strategies for main-
tenance planning could be identified by investigating the
accident causes. The abnormal events, such as near-misses
also frequently occur in chemical process operations. Such
events are often termed as accident precursors, and its infor-
mation is crucial to understand the safety of a process
(Rathnayaka et al., 2011). Gnoni and Saleh (2017) concluded
that there are important synergies between near-miss man-
agement, risk mitigation and maintenance for accident
prevention. The abundance near-miss data from multiple
sources can be integrated into the existing safety management
framework (e.g. risk assessment or maintenance planning) to
improve the system reliability. The intervention of the process
to perform maintenance increases the likelihood of near-miss,
accidents or operational deviation. This suggests that the
proper selection of maintenance policy is crucial to reduce the
risk levels – such as operational, production, human safety and
environmental risks.

Gnoni and Saleh (2017) also stated that near-misses,
operational deviations and mishaps, are crucial indicators

of the potential process failure. Learning from the near-
misses is less costly than learning from the accidents. As
presented by Rathnayaka et al. (2011), a predictive acci-
dent modelling approach (e.g., Bayesian approach), combining
risk assessment approaches, accident precursor information
(near-misses) and the failures cause-effect relationship could
be coupled to maintenance optimisation models. The process
behaviour can be captured dynamically, and the accident like-
lihood can be updated through predictive capabilities. The
accident model can be integrated with assets’ condition data
or other AI predictive strategies (e.g. deep learning models) for
more  accurate predictions.

During critical times, like the current COVID-19 pandemic,
plant managers may forego maintenance since some of the
production of the goods companies are operated at well below
the capacity. This is an incorrect approach that might place
the company’s business into future difficulties when recov-
ery eventually occurs and production returns to normal. Not
only the equipment breakdown risk or accident prediction
should be incorporated into the maintenance model, but the
epistemic uncertainty resulting from adverse external disrup-
tions strongly affects the maintenance requirements as well.
This has received considerable attention recently, see, e.g.
(Klemeš et al., 2020a,b). Unlike statistical uncertainty, this type
of uncertainty is difficult to predict, as no measurement can be
performed and data is sparse. Accounting for the effects of this
type of uncertainty is crucial in data-driven risk quantifica-
tion, which affects the outcome of maintenance optimisation.
The same principles apply to other types of disruptive events
that can affect plant operations and maintenance, such as
natural disasters or political crises.

5.6.  Big  data  and  cloud  computing  for  predictive
maintenance  management

Maintenance in this era faces the challenge of utilising these
technologies and concepts in the form of a smart system that
predicts failure, makes a diagnosis and triggers maintenance
(Kumar and Galar, 2018). The architectural design and the
conceptual framework for a smart maintenance decision sup-
port system that is based on corporate Big Data analytics can
be utilised. More effective technology system and knowledge
bases are needed to transform the ‘fail and fix’ maintenance
practises to ‘predict and prevent’ (Zhang and Hu, 2013).

For the predictive maintenance framework (see Fig. 10), dif-
ferent sources of data (e.g. healthy asset data and faulty asset
data) can be acquired and pre-processed using some data ana-
lytics algorithms. As the data is often noisy, especially periodic
data from vibration monitoring, the feature extraction method
is needed to classify different types of faults. The successful
application in the chemical process industry, as mentioned by
García-Muñoz and Macgregor (2016) is to project the data into
low dimension latent space (i.e. PCA). This is because only a
few dominant variables are driving the process under normal
operations. Projecting data from higher to lower dimension
space allows the interpretation of the problem and data visu-
alisation.

The processed data can then be used to identify the remain-
ing useful life (RUL) of the equipment by comparing the
healthy and faulty data, by using certain condition indicators
(see an example from (Daher et al., 2020) applied in lab-scaled
distillation column). Different models of RUL computation can
be found in (Okoh et al., 2014) and the review of data-driven
statistical approaches of RUL estimation can be found in (Cox,

1972). These indicators can be useful to develop an appropriate
maintenance planning and schedules.
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Fig. 10 – The predictive maintenance framework.
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Large amounts of data generated from the Internet of
hings (IoT) sensor networks can potentially be mined to help
lan maintenance. Data directly related to the condition of a
omponent or system can be historical or current (real-time).
istorical data includes logistical data from maintenance

ecords, which can also include a user’s experience and knowl-
dge. The sensor data is also collected, along with external
ata, such as the weather or environmental variables. Data
nd knowledge from various sources (e.g., human operator
xperience, technical manuals, and reports) are also valuable.
o extract useful information from all this data, advanced data
nalytics is needed. Methodologies to fuse knowledge from
mpirical data and from experts will also be needed. Bayoumi
nd McCaslin (2017) had demonstrated and suggested the use
f IoT to perform CBM in petrochemical plant, water treatment
lant and general machinery.

Bokinsky et al. (2013) pointed out that written text from
ogistical data can often contain mistakes and gaps due to
uman error. AI tools, such as natural language processing,
an be done in order to transform the text into a useable form.
he written speech from experienced maintenance operators
an also be transformed into some transferable files to provide
etails or training on asset maintenance. The collected sen-
or data will be processed using techniques such as advanced
ignal processing. Advanced signal processing helps in the
xtraction of relationships between sensors (Coats et al., 2011).

Elhdad et al. (2013) presented an ontology-based frame-
ork for flexible integrated maintenance and production
lanning framework for a hypothetical petroleum plant. This
pproach combines the available knowledge bases about
he operations, structures and conditions of the equip-

ent/process. The physical plant elements are captured
ithin the knowledge bases, which allows the decision-
akers to modify it depending on the desired business rules.
onitoring and maintenance records can also be stored in the

ata storage system to track the failure behaviour of the equip-
ent. Natarajan et al. (2012) also utilised this framework to

esign a process supervision system for a large chemical plant.
his approach can be beneficial as the process can be sim-

lated, and scenario analysis can be performed. The created

ogical plant structures mimic  the real simulation of the chem-
ical plant and are able to interpret abstract knowledge from
the operators/engineers in a much more  systematic way. This
framework can be coupled with Big Data analytics and asset
lifecycle planning to decide the actions for the assets: repair,
retrofit or replace.

The current emerging trend in predictive maintenance is to
create a model-based “digital twin” of the asset – a simulated
detailed replica of the asset (Magargle et al., 2017). The replica
provides a simulation of the asset and can be used to diag-
nose anomalies that affect its performance. Future research
can emphasise on creating the digital twin of the assets in the
chemical plant with 3-D simulation, coupled with Big Data
analytics to predict the remaining useful life of the asset.
Fidelity of the digital twin can be incrementally improved
by gradual recalibration using operational data, which accu-
mulates over the life of the asset. Du (2018) presented an
industrial scale virtual instrument technology for the online
monitoring system. This tool is suggested to integrate with an
online monitoring system as well as the digital simulation of
the assets so that the efficiency of the CBM can be improved in
the future. The maintenance plan can be decided effectively
with a higher confidence level since the engineers or operators
could observe the asset’s physical condition.

However, as mentioned by Reis et al. (2016), the data col-
lected may not accurately reflect the actual system, no matter
how large the sample size is. Even with massive data avail-
able, the knowledge about the system is still required. The
careful selection of various data analytic frameworks is neces-
sary so that the model captures the system properly. Another
important issue is the dynamic evolution of data, which would
affect the judgment on maintenance actions. The historical
data may not reflect the current situation accurately, and the
data analytic algorithms have to adapt to the non-stationary
evolving data.

6.  Conclusions

This paper presents an overview of the state-of-the-art
in asset maintenance management practises for chemical

process industries. A significant amount of published scien-
tific articles, devoted to the maintenance policies planning,
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scheduling and strategy selection focusing on the application
in the chemical and process industry, have been assessed. The
potential research gaps have been identified, and the potential
future research developments are suggested.

A critical issue that this review has identified is the limited
availability of data to conduct proper research. For TBM, RBM,
OM or sometimes CBM, the historical failure data of the assets
are needed. The data requires a significant amount of time to
collect, and even worse, the data might be censored or trun-
cated due to misinterpretation or some special reasons. The
deterioration modelling also relies on the virtual age of the
asset, which raises the issue of applicability and accuracy. RBM
can be a better alternative to TBM since it prioritises the assets
according to their criticality rankings. However, the presence
of uncertainties due to the lack of statistical data or too little
background knowledge to understand the judgement of the
failure occurrence is still a pressing challenge. RBM may not
be a practical approach if the problem domain is large due to
the limitations of risk analysis approaches. CBM is preferred as
the maintenance decision is made based on the physical con-
dition of the equipment. However, the data collection requires
the installation of costly instrumentations to closely monitor
the data and to prevent any false alarms. Dedicated software
is also needed to process the information, train the model and
estimate the remaining useful life of the assets.

CBM is the potential predictive maintenance policy with
high accuracy and worth to be developed. It can be coupled
with comprehensive RBM model (e.g. dynamic BN and pre-
dictive accident modelling) for effective faults prediction and
prioritisation. Maintenance scheduling with multi-criteria
optimisation models can also be incorporated into the
framework to screen through several maintenance options.
Maintenance strategic selection is important as well to pre-
vent any maintenance-related accidents and to fulfil multiple
criteria. For a more  comprehensive and practical maintenance
optimisation, tools advancement by coupling structures gen-
eration algorithms with global solvers is necessary.

In terms of modelling approaches, the following poten-
tial advancement on maintenance optimisation are identified
from the review:

(i) Opportunistic maintenance of equipment exploiting pro-
duction stoppage. The current works mostly dealt with
the maintenance of multiple components in a single
equipment, while multi-unit systems are considered with
at most two dependent components.

(ii) Data-driven joint optimisation of spare parts ordering
policy with maintenance planning should be considered.
Currently, there are a lack of practical studies on mainte-
nance optimisation with resource limitations

iii) Non-stationary evolving data on assets’ condition and
hazardous risk should be utilised. Not many  works have
considered both quantitative and qualitative data. Both
types of data should be combined with well-informed
maintenance planning.

(iv) Fault propagation effect from one unit to another
should be incorporated into maintenance optimisation,
especially in Total Site planning. Not only structural
interdependencies but the unit failure could affect the
operating parameters, causing major damage

More  attention should be paid to the sustainability impacts

caused by equipment maintenance and breakdown. Greener
and more  efficient technologies can be installed into the
assets (retrofit), other than the maintenance of the equipment.
Life-cycle sustainability assessment of the asset management
methods can be performed to evaluate the sustainability index
of the assets. Advanced development of assets maintenance
planning and scheduling models concerning the environmen-
tal burden is needed so that the process can advance toward
Circular Economy.

Big Data analytics is going to play an increasingly important
role in predictive maintenance. Other than the condition data,
the logistical data and written text or speech from experienced
operators can be input into maintenance planning models
using AI approaches. In terms of maintenance management,
ontology-based maintenance system is also recommended by
combining the knowledge bases from the operational and con-
dition data generated from the equipment. Cloud computing
provides a potential platform for training the models with
massive loading of data. Digital twins with virtual online mon-
itoring system can be an alternative predictive maintenance
strategy as it provides physical details about the assets and the
measurement systems. Learning from past near-miss or acci-
dent data could lead to a better risk-and condition-informed
maintenance decision making as well. Although massive data
is available, a careful selection of the data analytic framework
is still required to reflect the real asset condition.

This review should serve its purpose if it inspires prac-
titioners or researchers to develop novel ideas for further
research in the field of asset maintenance and management.
System retrofit andmaintenance are related intrinsically. Par-
ticipation of experts and stakeholders from different problem
domains is required to facilitate appropriate and optimal
asset management strategy (e.g. the decision to repair, reno-
vate or replace the asset, see Fig. 9). Future research on the
development of such a decision-making framework would
be beneficial for driving business profit by asset planning
optimisation. Further improvements in the predictive main-
tenance strategy (Fig. 10) are also encouraged. The intellectual
integration between academic researchers and industrial
practitioners play an essential role in addressing the current
imbalance between theory and practice in asset management.
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